

2026

A close-up photograph of a person's face wearing a VR headset. The headset displays a complex, glowing blue digital circuit board or data matrix. The person's hand is visible on the right side, interacting with a similar digital interface. The background is blurred, suggesting a high-tech environment.

SCIENCE

Rules and Syllabuses

University Rules and Syllabuses

for

Degrees, Diplomas and Certificates

offered in the

Faculty of Science

for the 2026 Academic Year

All correspondence should be addressed, as far as is possible, directly to the relevant person or school.

WITS
UNIVERSITY

100
1922-2022

Official address
The Faculty Registrar
Faculty of Science
University of the
Witwatersrand, Johannesburg
Private Bag 3
Wits, 2050
(+27) 011 717 6013 or
(+27) 011 717 6014
www.wits.ac.za/science

This handbook is a series of 7 handbooks produced by the Communications and Publications Unit, Wits University in 2025.

Contents

General Rules for the Faculty of Science

Introduction	8
G1 Definitions	8
G2 Powers of the University	11
G3 Application of Rules	11
G4 Admission	12
4.1 Application for admission	12
4.2 Medical fitness	12
4.3 Discretion of the Senate to admit	12
4.4 Proficiency in English	12
4.5 Faculty or qualification-specific requirements	12
4.6 Certificate of good conduct	12
4.7 Credits and exemptions	13
4.8 Credits for previous study	13
4.9 Admission to an undergraduate diploma, certificate, licentiate or other qualification	14
4.10 Admission to the degree of bachelor	14
4.11 Admission to a programme leading to a higher qualification	16
4.12 Admission of occasional students	17
4.13 Admission of study-abroad/ international occasional students	17
4.14 Admission – previously excluded students	17
G5 Registration	18
5.1 Registration and renewal of registration	18
5.2 Concurrent registration at other institutions or faculties or for other qualifications	18
5.3 Registration as a student prior to registration for a qualification	18
5.4 Late and Retrospective registrations	18
5.5 Registration for twelve months for senior doctorate	18
5.6 Cancellation of registration due to ill health	18
5.7 Cancellation of registration as a result of unsatisfactory performance/progress	19
5.8 Change of registration	20
5.9 Cancellation of registration by student	20
5.10 Refusal of permission to register	20
G6 Attendance	20
6.1 Minimum Attendance	20
6.2 Failure to attend	20
6.3 Outside work, visits, tours, fieldwork, vacation employment, non-examined courses	20
6.4 Exemption from attendance	20
6.5 Attendance requirement for students for qualification	21
6.6 Limitation on the activity of a student for reasons of ill health	21
G7 Curricula	21
7.1 Senate approval of curriculum	21
7.2 Condonation of breach of rules	22
7.3 Restriction on choice of courses	22
7.4 Special curricula	22
7.5 Change of rules during a student's registration	22
7.6 Study-abroad component/ foreign electives	23
7.7 Credits	23
7.8 Minimum requirements of study	23
7.9 Withdrawal of, or refusal to grant credits and/or exemptions	23
7.10 Sub-minimum rule	23
G8 Requirements for Award of Qualification	24
G9 Degree of Master	24
9.1 General	24
9.2 The programme of master proceeding by research	24
9.3 Programme of master by research report and coursework	24
9.4 Conditions for the conferment of the degree of master by research	24
9.5 Supervision of full-time members of staff	24

9.6	Abstract and style of Dissertation or Research Report	25
9.7	Copies of Dissertation or Research Report	25
9.8	Formal declaration	25
9.9	Acknowledgement of conferment of degree if material is published	25
9.10	Completion of all requirements for the degree of master	25
G10	Degree of Doctor of Philosophy	26
10.1	Fulfilment of requirements for conferment of the degree of Doctor of Philosophy	26
10.2	Supervision of full-time members of staff	26
10.3	Copies of thesis	26
G11	Senior Doctorate	27
11.1	Conditions for the conferment of the degree	27
11.2	Notice of intention to apply for candidature	27
G12	Conversion of candidature for higher qualifications	27
12.1	General	27
12.2	Conversion from a programme leading to the degree of master by research to a programme leading to the degree of Doctor of Philosophy	27
12.3	Conversion from a programme leading to a degree of master by coursework and research report to a programme leading to the degree of master by research	28
G13	Assessment	29
13.1	General	29
13.2	Examiners	29
13.3	Eligibility for assessment	30
13.4	Additional oral or other form of assessment	30
13.5	Supplementary assessments	30
13.6	Deferred assessments	30
13.7	Re-assessment	31
13.8	Absence from assessment	31
G14	Academic Progression	31
14.1	Completion of courses prescribed for previous year of study	31
14.2	Standard required to proceed	31
14.3	Prerequisite non-credit bearing courses	31
14.4	Special curricula for students who cannot proceed to the next year of study	31
14.5	Re-attendance requirement for students who cannot proceed to the next year of study	32
G15	Results	32
15.1	Publication of results	32
15.2	Non-publication of results	32
G16	Conferment of qualification	32
16.1	Congregation	32
16.2	Issuing of a certificate	32
16.3	Endorsement of certificate	32
16.4	Non-conferment of qualification	32
16.5	Permission to complete a qualification by obtaining credits elsewhere	33
G17	Conferment of Qualification with Distinction	33
G18	Honorary Degrees	33
G19	Intellectual Property	33
G20	Ethical Clearance	34

Senate Rules for the Faculty of Science

1	Application of Rules	35
2	UNDERGRADUATE	35
2.1	General Degrees	35
2.1.1	Admission Rules	35
2.1.2	Curricula	37
2.1.3	Progression Rules	64
2.1.4	Completion Rules	65
2.1.5	Restriction on admission to courses: Pre- and corequisite rules	65
2.1.6	Restriction on obtaining credits	91
2.1.7	Lapsing of credits or exemptions	93
2.1.8	Repeating of courses	93

3	POSTGRADUATE	93
3.1	Diplomas	93
3.1.1	Application of Rules	93
3.1.2	Admission Rules	93
3.1.3	Curricula	93
3.1.4	Completion Rules	95
3.1.5	Cancellation of Registration	96
3.2	Degree of Bachelor of Science Honours	96
3.2.1	Application of Rules	96
3.2.2	Admission Rules	96
3.2.3	Curricula	98
3.2.4	Progression Rules	115
3.2.5	Completion Rules	116
3.3	Degree of Master of Science (MSc)	116
3.3.1	Application of Rules	116
3.3.2	Admission Rules	116
3.3.3	Curricula	117
3.3.4	Completion Rules	135
3.4	Doctor of Philosophy	136
3.4.1	Application	136
3.4.2	Admission Rules	136
3.4.3	Curricula	137
3.5	Doctor of Science	138
3.5.1	Application	138
3.5.2	Admission Rules	138
3.5.3	Conditions for award of qualification	139

Outcomes for the Faculty of Science

4.1	Degrees of Bachelor	140
4.1.1	Bachelor of Science	140
4.2	Degrees of Bachelor Honours	141
4.2.1	Bachelor of Science Honours	141
4.3	Degree of Master	141
4.3.1	Master of Science	141
4.4	Doctoral Degrees	143
4.4.1	Doctor of Philosophy	143
4.5	Senior Doctoral Degrees	143
4.5.1	Doctor of Science	143
4.6	Diplomas	143
4.6.1	Postgraduate Diploma in Science	143

Syllabuses for the Faculty of Science

POPI Disclaimer

The University collects and processes certain personal information about students which enables the University to meet its contractual obligations with its students. The University is committed to protecting the student's privacy and recognises that it needs to comply with statutory requirements in collecting, processing and distributing of personal information and in performing its obligations, the University will comply with the provisions of the relevant data protection legislation.

List of acronyms

Acronym	Definition
YOS	Year of study
PT	Part time
FT	Full time
CPD	Continuing Professional Development

UNIVERSITY OF THE
WITWATERSRAND,
JOHANNESBURG

100¹⁹²²₂₀₂₂

HIERARCHY OF ACADEMIC GOVERNANCE

ACTS create the powers and responsibilities of entities by law.

STATUTES

define how and what the University does to give expression to the provisions of the Act, and further includes features that are particular to Wits, for example, not all universities have a role for the Convocation.

POLICIES define a plan of action determined by Council.

REGULATIONS are subordinate to Acts and they define orders and authoritative direction. **REGULATIONS** are a set of directions on how **RULES** should be put into effect.

RULES

are made by Council for all areas of operation other than academic matters. Senate approves academic **RULES**, which are endorsed by Council. A **RULE** defines the principle to which action or procedure conforms. **RULES** set out what may or may not be done within a particular area of administration. These Rules are reviewed and published in the University Calendar each year.

PROCEDURES set out the practical steps necessary to realise the object or purpose of Rules and Regulations.

SENATE'S RULES FOR FACULTIES OF THE UNIVERSITY

Senate's rules for faculties of the university are subordinate to the General Rules. These Rules are reviewed and published in the University Calendar each year.

These standing orders are recommended by Faculty Board to Senate for approval.

These standing orders are recommended by the School to the Faculty Board for approval.

HIGHER EDUCATION ACT, ACT 101 OF 1997

AMENDED STATUTE OF THE UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG (2018)

POLICIES OF THE UNIVERSITY

GENERAL RULES OF THE UNIVERSITY

PROCEDURES

SENATE STANDING ORDERS OF THE UNIVERSITY

Standing orders expand on rules and/or policies and govern the manner in which all business shall be conducted. Standing orders are a set of instructions on how to carry out a task.

FACULTY STANDING ORDERS

SCHOOL STANDING ORDERS

UNIVERSITY COMMUNITY

'University Community' means all students and employees of the University, persons officially associated with the University, former students and alumni at the University, as well as invitees, visitors and guests.

Means University's policies, rules, regulations, procedures, standing orders, codes of conduct and guidelines as may be amended from time to time.

CODES OF CONDUCT

GUIDELINES

Set out the preferred manner in which you carry out a process/procedures or course of action.

GENERAL RULES

FOR THE

FACULTY OF SCIENCE

Introduction

The rules contained in this section are the General Rules of the *University* and apply to all students. There are also specific rules for each Faculty, which are subordinate to the General Rules. General Rules are defined by 'Rule G' and apply to all students.

On registering at this *University*, the *student* bears the responsibility of ensuring that s/he is familiar with the rules applicable to her/his registration. Ignorance of these rules will not be accepted as an excuse.

All Rules and Syllabuses are available online. Limited copies are also available in print format.

All words appearing in italics have been defined. Information presented in the shaded boxes, is intended for explanatory purposes only.

G1 Definitions

- 1.1 *Academic year* means the period determined by the *Senate* from time to time for any particular year of study for any particular *qualification*.
- 1.2 *Admission* means entry to a *course* or *qualification* unless it is indicated otherwise.
- 1.3 *Any university or any other university* means any *university* recognised by the *Senate* for the purpose under consideration.
- 1.4 *Applicant* means a person who has submitted an application in hard-copy or electronic format to become a *student* of the *University*.
- 1.5 *Assessment* means the process of judging learning and may have both a formative and/or summative nature.
- 1.6 *Auxiliary pass* (also referred to as ancillary pass or condoned pass, unless the contrary appears in the faculty rules) means a special type of condonation of a failing mark to a pass when no supplementary assessment is offered, so that the *course* will be included as a *credit* towards the *qualification* but the *student* may not proceed to a higher level *course* in that subject.
- 1.7 *Blended mode of provision*: A mode of provision which uses a combination of structured synchronous and asynchronous learning opportunities, purposefully designed to provide students with online and/or on-site opportunities towards their achievement of the intended learning outcomes of the learning programme.
- 1.8 *Candidate/Postgraduate student* (see Rule G1.27) means a *student* registered for a *higher qualification* (see Rule G 1.18).
- 1.9 *Corequisite course* is a *course* which must be taken with another *course* and is a requirement for *credit* in the other *course*.
- 1.10 *Course* means a component of teaching and learning activity, which may run for an entire academic year or a portion thereof, that is recognised in any of the faculty rules as a component of a *qualification*.

1.11 *Credit* means the recognition that is obtained when a student passes such assessments and complies with such conditions as the Senate may impose for the completion of each *course*. A *credit* towards a *qualification* may be granted to a student in respect of a *credit* obtained from another institution recognised by the Senate for this purpose or from another faculty within the University.

The plural includes the singular where the sense so suggests.

1.12 *Credit Accumulation and Transfer (CAT)* is the practice of accumulating credits from one or more cognate learning programmes in an institution, and the transfer of credits to be recognised towards a qualification/part-qualification in the same or a different institution to the satisfaction of Senate. This practice is subject to the rules published by the Council for Higher Education (CHE) and in conformance with the Higher Education Qualifications Sub-Framework (HEQSF) requirements.

1.13 *Curriculum* means a *course* or combination of courses leading to a *qualification*.

1.14 *Dissertation* is the term reserved for an extended piece of written work that makes a contribution to the advancement of knowledge that may incorporate creative work or publications integral to the argument, and is submitted in fulfilment of the requirements for a degree of master by research.

1.15 **Distance Mode of Delivery* involves the interaction between the lecturer or supervisor and the *student*, not on the premises of the institution.

1.16 *Examination and re-examination* mean a formal, compulsory, summative, scheduled assessment.

1.17 *Exemption* from a *course* means that the Senate has deemed a *student* to have a sufficient understanding of the subject matter of that *course* to warrant the *student* not having to complete the *course*. An *exemption* is not a *credit* but allows the *student* to proceed to the subsequent level in a particular *course*. The full number of credits required for a *qualification* is not affected by the granting of an *exemption*.

1.18 *Higher qualification* means a *qualification* which requires at least the attainment of a first degree, or equivalent recognised by the Senate, at entry level and includes a degree of Bachelor Honours.

1.19 *Joint degrees* mean an undergraduate (Bachelors) or a postgraduate degree (Masters and PhD), jointly offered by the *University* and an external non-South African partner institution, recognised by the Senate. The *student/candidate* shall normally receive a single co-branded degree certificate representing work completed at the *University* and a partner institution.

1.20 *Matriculation* means the formal recognition by Umalusi prior to 2008 in terms of any law, of the capacity of a *student* to enter a *university*.

Umalusi is a council for quality assurance in the certification of qualifications in the general education and training band (Grades 0 to 9) and the further education and training band (Grades 10 to 12).

1.21 **Mode of Delivery* means the manner in which education and training is delivered and indicates whether a *course* is delivered in person, online, or through a mixture of both in person and online teaching.

1.22 *National Senior Certificate (NSC)* means the formal recognition by Umalusi from 2008 in terms of any law, of the capacity of a *student* to enter a *university*.

*** Definition is sourced from the DHET - Dictionary of Terms and Concepts for Post-School Education**

**** Prior to January 2022, all honours programme titles were stated as Bachelor with Honours.**

1.23 *National Certificate (Vocational) [NC(V)]* means the formal recognition by Umalusi from 2009 in terms of any law, of the capacity of a vocational student to enter a university.

1.24 *Notional Hours of Learning* means the agreed estimate of the average learning time that it would take a student to meet the defined outcomes. It includes but is not limited to the consideration of contact time, research, completion of assignments, time spent in structured learning in the workplace, and individual learning.

1.25 *NQF credits* are credits recognised by the HEQSF as a measure of the volume of learning required for a *qualification*, qualified as the number of notional study hours required for achieving the learning outcomes specified for a *qualification*.

1.26 *Occasional student* means a person who is registered at the *University* for any *course/s* for non-qualification purposes. An occasional student is deemed to be a *student* as defined in Rule G 1.36 for all other purposes.

1.27 *Postgraduate student/Candidate* means a *student* who is registered for a *higher qualification* (see Rule G1.18).

1.28 *Prerequisite course* is a course for which *credit* must be obtained before being able to register for the subsequent course.

1.29 *Programme* is a course or set of courses or postgraduate research which may lead to a *qualification*.

1.30 *Qualification* includes any degree, diploma, certificate, licentiate, or any other educational attainment that is offered by the *University* as stipulated in its list of qualifications.

1.31 *Recognition of prior learning* means the taking into account of the previous learning and experience of the *applicant* by the *Senate* either for purposes of *admission* and/or for the granting of exemption or full or partial *credit* towards one or more courses.

1.32 *Research Report* is the term reserved for the written document which forms the research component of a degree of master by coursework and *research report* and which may include creative work or publications integral to the argument.

1.33 *Semester* is half an academic year.

1.34 *Senate* is defined in section 1 as read with section 28 of the Higher Education Act 101 of 1997 and is the body which governs the policies and procedures in respect of the teaching, learning, research and academic functions of the *University*. The *Senate* may delegate its powers except where expressly prohibited from doing so by the *University Statute*.

In many cases the powers of the Senate are, for practical purposes, delegated to and exercised by the deans of the faculties or, in specific instances their nominee/s.

1.35 *Short course* is a certified teaching and learning activity of less than 1200 notional study hours which does not, or does not directly, carry *credit* towards a *qualification*. With special permission of the *Senate*, short courses may carry *credit* towards a *qualification*. A *short course student* is not deemed to be a *student* as defined in Rule G1.36 but is still subject to the *University* rules, policies and procedures.

1.36 *Student* means any person registered at the *University* full-time or part-time for a degree, diploma, licentiate or certificate of the *University* or enrolled for any *course* or *programme* of instruction of the *University*, provided that a person so registered or enrolled who is also a full-time or part-time employee of the *University* is not a *student* for the purpose of membership of the *Council* or the *Senate*.

1.37 *Study-abroad component* means that part of a *curriculum* leading to a *qualification* which a *student* has been granted permission by the *Senate* to complete at an institution recognised by the *Senate* for this purpose, in a country other than South Africa.

- 1.38 *Teaching block* is a quarter of an academic year.
- 1.39 *Thesis* is the term reserved for an extended piece of writing based on research that makes an original and significant contribution to knowledge that may incorporate creative work or publications integral to the overall argument, and is submitted in fulfilment of the requirements for a doctor of philosophy *qualification*.
- 1.40 *University* means the *University* of the Witwatersrand, Johannesburg, unless the context indicates otherwise.

G2 Powers of the University

- 2.1 The *University* has the power in terms of section 77(3) of its Statute to confer, in any faculty, the degrees of bachelor, master and doctor, as well as to grant a diploma, certificate, licentiate or other *qualification* to any person who has satisfied such requirements as may be prescribed.
- 2.2 No *qualification*, other than an honorary degree, may be conferred by the *University* upon any person who has not attended the *University* as a *student* for such period, and satisfied such other requirements, as may be prescribed.
- 2.3 The *University* may confer, without attendance or *examination*, an honorary degree of master or doctor, in any faculty, upon any person who has rendered distinguished services in the advancement of arts, science, jurisprudence or other branches of learning, or who has otherwise rendered herself or himself worthy of such a *qualification*. The *University* has the power in terms of section 79(8) of its Statute to withdraw the conferment of any *qualification*.
- 2.4 The *University* provides higher education at or above level 5 of the National Qualification Framework as contemplated in the National Qualifications Framework Act, Act No 67 of 2008.
- 2.5 The *University* has the power in terms of its Statute and the Higher Education Act 101 of 1997 to determine the *admission* policy, the entrance requirements in respect of its *curricula*, the number of students who may be admitted for a particular *curriculum* or *course* and the manner of their selection and the minimum requirements for the readmission to a *curriculum* leading to a *qualification* in a faculty of the *University*. The *University* has the power to refuse readmission to a *student* who fails to satisfy such minimum requirements for readmission.
- 2.6 The *University* reserves the right not to offer a particular *course* or *qualification* notwithstanding that such *course* or *qualification* appears in the rules of a faculty.

G3 Application of Rules

- 3.1 These *rules apply to all students who register for the first time in 2026 and to all students who were registered before 2026 unless for compelling reasons the Senate determines otherwise in a particular case, in which event such a *student* may proceed in terms of the rules under which s/he was last registered, or in terms of amendments to these rules, or in terms of a special *curriculum* laid down for her/him by the Senate subject to the provisions of Rule G7.
- 3.2 Where a right of appeal or review exists any *student*, who is the subject of an adverse decision must be informed by the member of the academic or administrative staff who conveys the decision of that right and of the procedure to be followed.

* This publication contains information pertaining to the General and Faculty Rules of the University applicable at the time of printing. Amendments to and or updating of information of this publication may be affected from time to time without prior notification. The most updated information is available on the University website <https://www.wits.ac.za/students/academic-matters/rules-and-syllabuses/>

G4 Admission

4.1 Application for admission

A person who wishes to be admitted as a *student* of the *University* must apply in hard- copy or electronic format on the *University*'s application form submitting evidence of her/his academic and general qualifications. In the case of application for *admission* to a *programme* leading to a higher *qualification* the *applicant* may be required to indicate the line of research s/he wishes to pursue.

4.2 Medical fitness

In respect of certain courses or qualifications an *applicant* may be required to demonstrate mental and/or physical fitness and may not be admitted to such *course* or *qualification* if s/he does not so demonstrate to the satisfaction of the *Senate*.

4.3 Discretion of the Senate to admit

Notwithstanding anything contained in the Rules regarding the minimum requirements for *admission*, the *Senate* may on good cause admit or refuse to admit any *student* to any year of study.

4.4 Proficiency in English

- 4.4.1** All applicants for *admission* (with the exception of those referred to in Rule G4.4.2) to any *curriculum* leading to a *qualification* must have passed English as a first or second language (higher grade) at *matriculation* or passed English home language or first additional language in the NSC or NC(V) or at a level considered equivalent by the *Senate* or deemed to be equivalent by legislation.
- 4.4.2** Immigrants of less than five years' residence in South Africa who have passed English at the standard grade at *matriculation* or who have passed English in the NSC or NC(V) will be considered for *admission*.
- 4.4.3** Notwithstanding Rule G4.4.1 and Rule G4.4.2, the *Senate* recognises the International English Language Testing System (IELTS) with a minimum test score of (6.5) or the Cambridge English Language Assessment (CAE) with a minimum of 185 points to be proficient for *admission*. In exceptional cases, the Test of English as a Foreign Language (TOEFL) may be recognised by the *University* with a minimum test score of 550 (79 TOEFL iBT/213 TOEFL CBT) for *admission*. Faculties may require a higher test score or points for specific programmes. Please refer to your faculty.

A pass in English at the General Certificate of Secondary Education (GCSE), the International General Certificate of Secondary Education (IGCSE), or the General Certificate of Education (GCE) Ordinary level is considered equivalent to a pass in English at NSC or NC(V) level or at the higher grade at matriculation level.

4.5 Faculty or qualification-specific requirements

In addition to satisfying the minimum *admission* requirements of the *University*, an *applicant* must satisfy any additional requirements of the faculty to which s/he seeks *admission*.

4.6 Certificate of good conduct

A *student* who was registered at any other *university*, must upon application for *admission* to this *University*, submit a certificate of good conduct and an academic transcript issued by that *university* or those *universities*, which satisfies the *Senate* that s/he is a person of good standing.

4.7 Credits and exemptions

4.7.1 Credits

The Senate may grant a *student credit* in a course or courses once only, if s/he has completed:

- a) an equivalent course offered under a different *curriculum*, for the same *qualification* in the *University*;
- b) the same or equivalent course offered for another *qualification* in the *University* provided that the required attendance period at the *University* has been satisfied in terms of Rule G6.1; or
- c) an equivalent course offered in another *university* or institution recognised for this purpose by the Senate provided that the provisions of Rule G4.8 and Rule G7.9 are observed.
- d) an equivalent short course at this *University* recognised for this purpose by the Senate in terms of Rule G1.35 but such short courses shall not constitute more than 50 percent of the credits towards a *qualification*.

Such credits are acknowledged as part fulfilment of the requirements for a qualification and with permission of the Senate these courses may carry credit towards a qualification but shall not constitute more than 50 percent of the credits towards a qualification. See Rule G1.11.

4.7.2 Exemptions

On admission and subject to Rule G7.9 the Senate may grant a *student exemption* from a course or part of a course offered by the *University* where it has deemed a student to have a sufficient understanding of the subject matter to warrant the student not having to complete the course or part of the course. An exemption is not a credit but allows the student to proceed to the subsequent year of study in a particular course. The full number of credits required for a qualification is not affected by the granting of an exemption.

4.8 Credits for previous study

4.8.1

An applicant may be admitted to any *curriculum* leading to a *qualification* and this *University* may accept, as far as practicable, certificates of proficiency (credits) issued by another *university* or institution and periods of study as a matriculated student at another *university* or institution, provided that:

- a) the periods of attendance at this and any other institution are together not less than the completed period prescribed by this *University* for that *qualification*;
- b) s/he has at this *University*:
 - i) in the case of a first *qualification* for which the period of attendance is three or four academic years, attended for at least two academic years and has attended and completed at least half of the total number of NQF credits prescribed for the *qualification* including the final year course/courses in her/his major subject/programme; or
 - ii) in the case of a first *qualification* for which the period of attendance is more than four years, attended for at least half the required period of attendance and completed at least half of the total number of courses prescribed for the *qualification*; or
 - iii) in the case of any other degree of bachelor offered after a first degree, attended for at least two academic years, except for the degree of Bachelor of Education (BEd), for which the period of attendance may be one academic year, and has attended and completed at least half of the total number of NQF credits prescribed for the degree.

- iv) in the case of any postgraduate degree, attended and completed at least half of the total number of courses prescribed for the degree.
- c) s/he applies for such *credit* during or before the end of the first registration period.

4.8.2 A student may be granted entry to a *qualification* if s/he has completed a diploma with a minimum duration of three years at this *University* or another institution recognised by the Senate for this purpose. To allow for such entry into another *qualification* Umalusi must have granted complete or conditional exemption from the *matriculation examination* or must have formally recognised the capacity of the NSC or NC(V) student to enter a *university*. Such *exemption* or formal recognition by Umalusi must have been backdated to the commencement of the year in which *credit* for such diploma was first earned. Credits towards such a diploma may be accepted as part of the requirements for a *qualification* offered by the *University* provided that the *student* complies with Rule G4.8.1 (a), (b) i – iii and (c) above.

4.9 Admission to an undergraduate diploma, certificate, licentiate or other qualification

The Senate may, by resolution, determine the standard for *admission* to a *programme* leading to an undergraduate diploma, certificate, licentiate or other undergraduate *qualification* other than a degree. Different standards may be set for the different qualifications.

4.10 Admission to the degree of bachelor

4.10.1 National Senior Certificate/National Certificate (Vocational)/ Matriculation

The minimum requirement for *admission* to a *programme* leading to the degree of bachelor is:

- a) a *National Senior Certificate (NSC)* with the formal recognition by Umalusi in terms of any law, of the capacity of an applicant to enter a *university* for the degree of bachelor;
- b) a *National Certificate (Vocational) – NC(V)* with the formal recognition by Umalusi from 2009 in terms of any law, of the capacity of a vocational applicant to enter a *university* for the degree of bachelor;
- c) *Matriculation* in the form of a *university entrance examination* or a *matriculation endorsement* from Umalusi or the granting of complete or conditional *matriculation exemption* by the *Matriculation Board of Universities South Africa (USAf)*.

The date of validity of the NSC, NC(V), matriculation certificate, matriculation endorsement, or certificate of exemption from the matriculation examination must precede 2 April of the academic year for which admission is sought, notwithstanding that the certificate may be issued at a later date.

4.10.2 Certificate of conditional exemption on recommendation of the Senate

Certificate of conditional exemption on recommendation of the Senate:

An *applicant* must be issued a certificate of conditional exemption by USAf if that *applicant*, in the opinion of the Senate has demonstrated, in a selection process approved by the Senate, that s/he is suitable for *admission* to the *University*. Where the Senate certifies that the holder of a certificate of conditional exemption issued in terms of this paragraph has completed the normal requirements of the *curriculum* for the first year of study of any *qualification*, USAf must issue a certificate of complete exemption to her/him, dated from the first day in January of the year in which the first degree *credit* was obtained. An *applicant* may be registered for a course under this rule only if places are available for that course. In the case of an *applicant* who has not qualified with an NSC or NC(V) for entry to a *university*, Rule G4.3 will apply.

4.10.3 Certificate of ordinary conditional exemption

An applicant who has been issued a conditional exemption from the *matriculation examination* and who has one outstanding requirement for complete exemption may be admitted to a *programme* leading to the degree of bachelor provided that s/he fulfils that outstanding requirement in the first year of study as prescribed by USAf. In the case of an applicant who has not qualified with an NSC or NC(V) for entry to a *university*, Rule G4.3 will apply.

4.10.4 Mature age conditional exemption

An applicant who has been issued a mature age conditional exemption from the *matriculation examination* by virtue of being over the age of 23 years or 45 years, as the case may be, may be admitted to a *programme* leading to the degree of bachelor on condition s/he fulfils the requirements of the undergraduate *qualification* within the period stipulated by the faculty concerned. Such fulfilment entitles the applicant to complete exemption from the *matriculation examination*.

For the purposes of mature age conditional exemption the USAf distinguishes between applicants aged 23 to 44 years and applicants of 45 years or more. Further details regarding mature age conditional exemption are available from USAf.

In the case of an applicant who has not qualified with an NSC or NC(V) for entry to a *university*, Rule G4.3 will apply.

4.10.5 Holder of a three-year diploma

- An applicant who has passed school Grade 12, but who did not obtain a matriculation exemption, an NSC or an NC(V) to enter university, and who has completed a three-year diploma from a *university*, university of technology, teachers' training college, or a franchised or associated technical or community college, registered on SAQA and accredited by the CHE, recognised by the Senate for this purpose may be admitted to a *programme* leading to the degree of bachelor on condition that s/he fulfils the requirements of the undergraduate *qualification* within the period stipulated by the faculty concerned. Such fulfilment entitles the applicant to complete exemption from *matriculation*, the NSC or the NC(V).
- An applicant who has passed school Grade 12, but who did not obtain a matriculation exemption, an NSC or an NC(V) to enter university, and who has completed a General Nursing Diploma from a nursing college, registered on SAQA and accredited by the CHE, recognised by the Senate for this purpose may be admitted to a *programme* leading to the degree of bachelor on condition that s/he fulfils the requirements of the undergraduate *qualification* within the period stipulated by the faculty concerned. Such fulfilment entitles the applicant to a Mature Age exemption certificate.

4.10.6 Immigrant conditional exemption

Subject to Rule G4.4, a person who has resided in South Africa for less than five years and who has been issued with a conditional *matriculation* exemption by reason of not having passed a second language at higher grade in the school-leaving *examination* at a South African school, may be admitted to a *programme* leading to the degree of bachelor, on condition that s/he completes a second language course at higher grade or *university* level within the period stipulated by the faculty concerned. The *qualification* cannot be awarded until this condition has been fulfilled.

4.10.7 Foreign conditional exemption

An applicant from a foreign country who has been issued a conditional exemption from the matriculation examination by USAf may be admitted to a programme leading to the degree of bachelor on condition that s/he fulfils the requirements of the undergraduate qualification within the period stipulated by the faculty concerned. Such fulfilment entitles the applicant to complete exemption from the matriculation examination. In the case of a foreign applicant who has not qualified with an NSC or NC(V) for entry to a university, Rule G4.3 will apply.

4.11 Admission to a programme leading to a higher qualification

4.11.1 General requirement for admission to a programme leading to a higher qualification

For admission to a programme leading to a higher qualification the Senate must be satisfied that the candidate is qualified at an appropriate standard to undertake the proposed line of study or research or both.

4.11.2 Admission to a programme leading to a bachelor of honours degree

Subject to Rule G4.11.6, a graduate in an area of study which the Senate considers appropriate of this or another university recognised by the Senate for this purpose may be admitted to a programme leading to the bachelor of honours degree. However, in a case considered by it to be exceptional, the Senate may admit a person who has not satisfied all the requirements for the degree of bachelor, and in such a case, the award of the bachelor of honours degree will not be made until the requirements for the degree of bachelor have been satisfied.

4.11.3 Admission to a postgraduate diploma or certificate

Subject to Rule G4.11.6, a graduate in an area of study which the Senate considers appropriate of this or another university recognised by the Senate for this purpose may be admitted to a programme leading to a postgraduate diploma or certificate. However, in a case considered by it to be exceptional, the Senate may admit as a student a person who has not satisfied all the requirements for the degree of bachelor, and in such a case the award of the postgraduate diploma or certificate will not be made until the requirements for the degree of bachelor have been satisfied.

4.11.4 Admission to a programme leading to the degree of master

Subject to Rule G4.11.6, a graduate of this or another university recognised by the Senate for this purpose may be admitted to a programme leading to the degree of master if s/he holds a qualification in a field considered by the Senate to be appropriate and which can normally only be taken over not less than four years of full-time study; or if s/he holds more than one qualification both or all of which are considered by the Senate to be in an appropriate field, and for which the combined number of years of full-time study is not less than four years. The Senate may require an applicant for registration for a programme leading to the degree of master to attend such courses or pass such examinations, oral or written or both, as it deems necessary before admitting her/him as a candidate for the qualification.

4.11.5 Admission to a programme leading to the degree of Doctor of Philosophy

Subject to Rule G4.11.6, a holder of a degree of master in an appropriate field from this or any other university recognised by the Senate for this purpose may be admitted to a programme leading to the degree of Doctor of Philosophy.

4.11.6 Overriding criteria for admission to a programme leading to the award of a higher qualification

Notwithstanding the criteria specified in Rule G4.11.2 to Rule G4.11.5 above, a person who has demonstrated a level of competence to the Senate's satisfaction by virtue of examples of research, writings, experience, professional standing or reputation or other attainments or qualifications in the discipline or cognate field may be admitted as a *candidate* to a higher *qualification*.

4.11.7 Admission to candidature for a senior doctorate

Any person may be admitted as a *candidate* for the degree of senior doctor if the Senate is satisfied, after consulting with an ad hoc committee of the faculty board concerned which has been convened to peruse the published work submitted, that, on the face of it, a case exists for admitting the *candidate*.

The following qualifications are senior doctorates:

Doctor of Architecture, Doctor of Commerce, Doctor of Economic Science, Doctor of Education, Doctor of Engineering, Doctor of Laws, Doctor of Literature, Doctor of Music, Doctor of Science, Doctor of Science in Architecture, Doctor of Science in Building, Doctor of Science in Business Administration, Doctor of Science in Dentistry, Doctor of Science in Engineering, Doctor of Science in Medicine, Doctor of Science in Quantity Surveying, Doctor of Science in Town and Regional Planning, Doctor of Town and Regional Planning.

4.12 Admission of occasional students

A person, whether matriculated or not, may be permitted by the Senate to register for courses outside a recognised *curriculum* subject to such requirements and conditions as may be determined by the Senate. However, any such courses may not subsequently be granted as credits towards a degree unless the *student* had matriculated before commencing them. A *student* seeking *credit* towards a *qualification* in respect of a *course* taken for non-qualification purposes at this *University* or another institution must satisfy the Senate that:

- a) s/he is eligible for *admission* to the *curriculum* leading to the *qualification*; and
- b) the validity of the *credit/s* has not lapsed.

4.13 Admission of study-abroad/ international occasional students

Students of an institution recognised by the Senate for this purpose may be admitted to courses for non-qualification purposes.

Where an exchange agreement with such an institution exists fees may be waived on the basis of reciprocity.

4.14 Admission – previously excluded students

The Senate may in exceptional circumstances consider the application of a *student* who was previously excluded from the *University*, for having failed to satisfy the minimum degree requirements and exceeding the maximum time (N + 2) for the completion of the degree. In such a case the *student* will have to demonstrate that if s/he is readmitted, s/he will be able to succeed and complete the degree.

G5 Registration

The last day for registration differs among faculties and programmes. It is the responsibility of the student to find out from the relevant faculty office when the last day of registration is for her/his programme and to register on or before that date.

5.1 Registration and renewal of registration

Except with the permission of the Senate no person may attend any course or proceed as a *candidate* for any *qualification* unless s/he is registered as a *student* of the *University* at the material time. Registration is renewable annually or on such shorter period as the Senate may determine. *Students* are required to sign a student contract annually.

Normally, an annual period of registration is from the date of registration in a particular year until the last day of registration in the first quarter of the subsequent year in the relevant faculty.

A student who registers in the first semester for first semester or full year course(s) may with the permission of Senate substitute such course(s) with an equivalent course(s) provided that they do so within the first two weeks of the first semester.

A student who registers in the first semester for a course(s) that commences in the second semester may with the permission of Senate substitute such course(s) with an equivalent course(s) provided that they do so within the first two weeks of the second semester.

5.2 Concurrent registration at other institutions or faculties or for other qualifications

A person who is registered as a *student* for any *qualification* may not be registered as a *student* for any other *qualification* or at any other faculty of the *University* or at any other tertiary education institution except with the approval of the Senate normally given in advance. Such approval will only be granted in circumstances considered exceptional by the Senate.

5.3 Registration as a student prior to registration for a qualification

The Senate may permit or require a person, before being registered for a *qualification*, to register as an occasional *student* and attend courses for such period and pass assessments at the prescribed standard in such courses as the Senate may determine in her/his case.

5.4 Late and Retrospective registrations

Late registration and retrospective registration may be permitted by the Senate in exceptional circumstances. A fee may be charged in both circumstances for such registrations.

5.5 Registration for twelve months for senior doctorate

A *candidate* for a senior doctorate must be registered as a *student* of the *University* for at least twelve months before the *qualification* may be conferred.

5.6 Cancellation of registration due to ill health

5.6.1 An *applicant* for registration in the first or any subsequent year of study may be required to satisfy the Vice-Chancellor that s/he is physically and mentally fit to carry out the work involved in that or any subsequent year of study, and may for this purpose be required to present herself/himself for, and submit to, any medical examination that the Vice-Chancellor may require in her/his case.

5.6.2 The Vice-Chancellor may suspend the registration of any student if s/he is satisfied that this step is warranted because of the *student's* physical or mental ill health. An appeal against such suspension may be made to the Council.

5.6.3 The Council may cancel the registration of any *student* because of her/his physical or mental ill health if it is satisfied after giving the *student* a proper opportunity to make representations (as defined in the Administration of Justice Amendment Act 53 of 2002), that this step is warranted.

5.7 Cancellation of registration as a result of unsatisfactory performance/progress

5.7.1 The Senate may cancel the registration of an undergraduate student in one or more of the courses for which that *student* is registered in that year, if in the opinion of the Senate the *student's* progress is unsatisfactory or if the academic achievement of the *student* is such that s/he will not at the end of the year obtain *credit* in such *course* or *courses*. For this rule to be invoked, the Head of School must ensure the criteria have been published in advance by which progress and/or academic achievement will be judged as the case may be. An appeal against such cancellation may be made in the first instance to the relevant Head of School. If the Head of School is unwilling to reverse her/his original decision, s/he shall forthwith place the *student's* representations and his/her own written comments before the Dean for a decision. In exceptional cases, the Dean may set up an appeal committee composed of two senior faculty members (one from the school concerned) nominated by her/him. The decision of the Dean or the appeal committee, as the case may be, shall be final. Fee implications associated with the cancellation of registrations are outlined in the Schedule of Fees books.

5.7.2 The Senate may cancel the registration of an undergraduate student in the *qualification* for which that *student* is registered in that year and in the opinion of the Senate the *student's* progress is unsatisfactory or the *student* has not met the conditions that was stipulated for her/his *readmission in that year of study.

5.7.3 The Senate may cancel the registration of a *postgraduate* student registered for a *programme* by research if a higher degrees committee (or equivalent), on the recommendation of the relevant supervisor(s) and head of school, has considered the research proposal and/or other milestones of the research of that *student* and has judged the research proposal or the progress towards the milestones to be academically unsatisfactory or, in material aspects, incomplete. The higher degrees committee may appoint a panel comprising one member of the higher degrees committee, the relevant supervisor and the relevant Head of School for the purpose of advising the higher degrees committee. Reasons must be given when such registration is cancelled and an appeal against such cancellation may be made to the Dean of the Faculty, who will then propose membership of an ad hoc committee to review the case. The three-person ad hoc committee will be chaired by the Dean. The Chairperson of the higher degrees committee; the Head of School and/or the Supervisor (or equivalent); may be in attendance. If the ad hoc committee does not permit renewal of registration, the *student* has the right to submit a further appeal to the Deputy Vice-Chancellor (DVC): Research and Innovation who may consult with the Dean. The decision of the DVC: Research and Innovation acting on behalf of the Council, shall be final. Fee implications associated with the cancellation of registrations are outlined in the Schedule of Fees book.

5.7.4 The process set out in Rule G5.7.3 will also apply to a *postgraduate* student registered for a *programme* which includes coursework.

***For readmission procedures, please refer to the "Procedures Relating to the Renewal or Refusal of Registration of Students" booklet.**

5.8 Change of registration

In exceptional circumstances, where a first-year *student* is adjudged by the Senate to be making inadequate progress and the criteria by which such judgment is made have been published in terms of Rule G5.7, the *student* may be permitted or required to alter her/his registration to a special *curriculum* for the same *qualification*.

5.9 Cancellation of registration by student

5.9.1 Date of cancellation of registration for a qualification

Unless in exceptional circumstances the Senate otherwise determines, a *student* who cancels her/his registration for a *qualification* less than one month prior to the commencement of the final examination session in which the assessment for that *qualification* are held, will be deemed to have failed in all the courses for which s/he was registered in that year, except for those courses which s/he has already completed.

5.9.2 Date of cancellation of registration in a particular course

Unless the Senate otherwise determines, a *student* may not cancel her/his registration for a particular *course* less than one month prior to the commencement date of the final examination session in which the assessment for that *course* is held.

5.10 Refusal of permission to register

A *student* who fails to complete a *course* may be refused permission by the Senate to register again for that *course* if *admission* to the *course* is limited or if s/he has registered more than once for that *course*.

G6 Attendance

6.1 Minimum Attendance

The minimum attendance for any *programme* shall be determined by the Faculty Rules in compliance with the HEQSF.

6.2 Failure to attend

Any *student* registered for any *course* who fails to fulfil the attendance requirements prescribed by the faculty for that *course* may be refused permission by the Senate to present herself/himself for assessment in that *course*.

6.3 Outside work, visits, tours, fieldwork, vacation employment, non-examined courses

The requirements for any *qualification* or *course* may include such work or attendance whether within or outside the *University* and during the *academic year* and/or *vacation periods* as the Senate may prescribe. A *student* is required to perform satisfactorily all duties required of her/him in this connection. Failure to comply with these requirements may result in the *student* being refused permission by the Senate to present herself/himself for assessment, to register for the subsequent year of study or any particular year of study thereafter or ineligibility for the conferment of the *qualification*.

6.4 Exemption from attendance

In exceptional circumstances where it is deemed appropriate, the Senate may excuse a *student* from attending all or part of a *course*.

6.5 Attendance requirement for students for qualification

Any *student* for whom attendance is not otherwise prescribed by the rules is required to attend at the *University* for such period and in such manner as may be determined by the Senate. The Senate may waive this requirement in exceptional circumstances.

6.6 Limitation on the activity of a student for reasons of ill health

6.6.1 The Vice-Chancellor is entitled to investigate the physical or mental health of any *student* where s/he considers it necessary in the interest of the *student* or in the interests of the *University*, to that end may require the *student* to obtain a medical report from or to submit to examination by a suitably qualified medical practitioner or psychologist acceptable to the Vice-Chancellor. The *University* is responsible for any costs incurred in the *course* of such investigation.

6.6.2 Whenever the Vice-Chancellor has reasonable grounds to believe that a *student* is or may become a danger to herself/himself or to any other person, or may cause damage to any premises occupied or under the control of the *University*, or may disrupt any of the activities or functions of the *University*, s/he may place limitations on the presence or activities of that *student* on *University* premises and the *student* is required to observe those limitations.

Without prejudice to her/his general powers under this rule, the Vice-Chancellor may prohibit the *student* from –

- entering the precincts of, or any specified part of the *University* including a *University* residence; and/or
- attending any lecture or any specified lectures, laboratory, or other classes or activity whether academic or otherwise.

Any action taken under this rule must be reported to the next meeting of Council or the Executive Committee of Council.

6.6.3 Unless in the opinion of the Vice-Chancellor the urgency of the case or the condition of the *student* concerned makes it inappropriate or impractical to do so, the Vice-Chancellor or any other officer of the *University* designated by the Vice-Chancellor, must interview the *student* concerned before any action is taken under Rule G6.6.2 above and afford her/him a reasonable opportunity to be heard.

6.6.4 Any limitation imposed on a *student* under Rule G6.6.2 above remains in force until the Vice-Chancellor is satisfied that it is no longer necessary. However, the *student* concerned is entitled at any time to make representations to the Vice-Chancellor or to apply to the Council to review any limitations imposed under Rule G6.6.2 above.

6.6.5 The Council may, at any time, investigate the matter and having considered any representations that may have been made by the Vice-Chancellor or the *student* concerned, may confirm, alter or set aside any limitation imposed under G6.6.2 above.

G7 Curricula

7.1 Senate approval of curriculum

A person may not be registered for a *curriculum* leading to a *qualification* in any year of study until her/his *curriculum* for that year has been approved by the Senate. An approved *curriculum* may only be amended with the consent of the Senate.

7.2 Condonation of breach of rules

The Senate may, with retrospective effect, condone any breach of the faculty rules governing a *curriculum* if it is satisfied that the *student* concerned was not at fault and would suffer undue hardship if the breach were not condoned.

7.3 Restriction on choice of courses

In terms of Rule G2.6 wherever the rules for a qualification provide for the selection of courses by a student, such selection may be limited by the timetable of classes, a restriction on the number of students to be registered for a particular course, pre or corequisite and/or insufficient resources.

7.4 Special curricula

The Senate may approve a special cognately consonant *curriculum* for a *student*:

- a) where it considers it necessary for that *student* to proceed on a *curriculum* which extends beyond the minimum period of full-time study. The maximum period of extension is stipulated in the faculty rules; or
- b) where it considers it necessary for that *student* to proceed on foundation and/or additional courses which do not contribute credits towards a *qualification*; or
- c) who has been granted credits or exemptions in terms of Rule G4.7; or
- d) who has interrupted her/his studies at the *University* prior to a change in the rules governing the *curriculum* or *qualification* for which s/he was registered or to whom no *curriculum* is currently applicable; or
- e) who has been permitted to proceed to a subsequent year of study without having obtained *credit* for all the courses prescribed for the previous year of study; or
- f) who has, in circumstances considered by the Senate to be exceptional, been able to give satisfactory evidence of her/his qualifications to proceed to a second or third level course in a subject; or
- g) who, in the opinion of the Senate, suffers or has suffered a disadvantage because of illness or physical disability or because of some other good and sufficient cause; or
- h) who has, in circumstances considered by the Senate to be exceptional, been able to give satisfactory evidence of her/his ability to complete the first course in a subject by part-time study; or
- i) in any other circumstances which it considers academically desirable or necessary. The granting of a special *curriculum* has been delegated by the Senate to the Dean of each faculty, or to the nominee/s of the Dean, in instances where the Dean reports such nomination/s and the period for which each such person will exercise this responsibility, to the Faculty Board.

7.5 Change of rules during a student's registration

If the rules governing a *qualification* are changed, a *student* who registered under the old rules and who has obtained sufficient credits to enable her/him to proceed to the next year of study in terms of those rules, may proceed on the old *curriculum* unless s/he elects to proceed on the new *curriculum*. However where there are, in the opinion of the Senate, compelling reasons for doing so, which may include failure in one or more courses, or where a *student* does not register for the next year of study in the ensuing academic year or where at her/his request, a *student* is permitted by the Senate to register in the ensuing year on a special *curriculum*, that *student* may be required by the Senate to proceed on new rules or on interim rules or on a special *curriculum* laid down for her/him by the Senate.

7.6 Study-abroad component/ foreign electives

A registered student who completes a *study-abroad component* approved by the Senate or, as part of an institutional exchange agreement, completes appropriate credits at an institution which is recognised by the Senate for this purpose in a country other than South Africa, earns credits as defined in the requirements for the *qualification*.

A *student* may not be granted a *credit* more than once in the same *course* within the same *qualification*.

7.7 Credits

Subject to the rules pertaining to a particular *qualification* and any special restrictions on credits in the rules, a *student* obtains *credit* in any *course* that s/he successfully completes. However, even if a *student* obtains such *credit*, s/he may be refused permission to renew her/his registration if s/he fails to comply with the minimum requirements of study prescribed.

A *student* may not be granted a *credit* more than once in the same *course* within the same *qualification*.

7.8 Minimum requirements of study

7.8.1 A *student* who does not meet the minimum requirements of study may be refused permission by the Senate to renew her/his registration. If, however, a *student* is permitted to renew her/his registration after having failed to satisfy the minimum requirements of study, s/he may be required to satisfy further conditions as the Senate may determine in her/his case.

The minimum requirements of study prescribed for students are set out in the faculty rules.

7.8.2 Save in exceptional circumstances, a *student* who fails to meet the minimum requirements of study after s/he has reached or exceeded the maximum time ($N + 2$) for the completion of the degree shall not be permitted by Senate to renew her/his study with the *University*.

Rule 7.8.2 will only apply to undergraduate programmes.

7.9 Withdrawal of, or refusal to grant credits and/or exemptions

The Senate may withdraw or refuse to grant credits and/or exemptions if, in the opinion of the Senate, the time which has elapsed between obtaining the *credit* or *exemption* and completion of the other requirements for the award of a *qualification* is excessive or is excessive in view of the nature of the subject.

Unless otherwise stipulated by the Dean of the Faculty, the shelf life of a course is four years.

7.10 Sub-minimum rule

Unless specified otherwise in a *course* outline, a *student* will not be allowed to obtain *credit* for a *course* unless s/he achieves:

- a final mark of at least 50 percent for that *course*; and
- a sub-minimum of 35 percent in each of the components of that *course* as well as in the summative assessment for that *course*.

Such a sub-minimum criterion applies only to components which contribute 25 percent or more towards a *course*, unless specified otherwise in the *course* outline.

Summative assessment in this instance is assessment that regulates the progression of students by awarding marks at the conclusion of a *course*.

G8 Requirements for Award of Qualification

In addition to the requirements of *admission*, registration, attendance and assessment applicable to the *qualification* for which a *student* is registered, such *student* must meet the requirements for the award of the *qualification* by obtaining *credit* in the courses set in each academic year and/or conducting research approved by the Senate and satisfying such further requirements as may be prescribed by the Senate and which are set out in the faculty rules.

G9 Degree of Master

9.1 General

The Senate may require a *candidate* for the degree of master as a condition of the conferment of the degree to attend such courses or pass such examinations (written or oral) as it deems necessary before conferring the *qualification*.

9.2 The programme of master proceeding by research

Where appropriate a faculty may offer a *programme* leading to the degree of master by advanced study and research normally under the guidance of a supervisor/s appointed by the Senate.

9.3 Programme of master by research report and coursework

Where appropriate a faculty may offer a *programme* leading to the degree of master by *research report* and coursework by attendance, completion of a *curriculum* approved by the Senate and submission of coursework and *research report* on an approved topic by the Senate.

9.4 Conditions for the conferment of the degree of master by research

A person who is admitted as a *candidate* for a degree of master by research must, after consultation with her or his supervisor if there is one, present for the approval of the Senate a *dissertation* on a subject approved by the Senate. The *dissertation* must, in the opinion of the Senate, constitute both an application of the methods of research and a contribution to the advancement of knowledge in the subject chosen.

Consistent with the definition of a *dissertation* in Rule G1.14, a *dissertation* will be an extended piece of written work which may incorporate creative work or publications.

The terms *Dissertation* and *Research Report* are defined in Rule G1.14 and G1.32. Further conditions for the conferment of the degree of master are set out in the faculty rules and the Senate Standing Orders for Higher Degrees.

9.5 Supervision of full-time members of staff

In circumstances considered by it to be exceptional the Senate may dispense with the requirement for supervision in the case of a *candidate* who holds an appointment as a member of the full-time academic staff of the *University* and has held such appointment for such period as is laid down in the faculty rules. In such a case the Senate must appoint an internal and external examiner.

9.6 Abstract and style of Dissertation or Research Report

The *Dissertation or Research Report* prescribed by the Senate must include an abstract and conform as far as possible to the style, length and format recommended in the authorised style guide obtainable from faculty offices.

9.7 Copies of Dissertation or Research Report

A candidate for the degree of master must submit for examination an electronic copy of her/his *dissertation or research report* via email or any other electronic platform designated by the faculty office. In exceptional circumstances the examiner may request a hard copy of the *dissertation or research report*. In such a case, the candidate will be required to provide a bound hard copy or copies, together with the electronic version. Copies must be in a format that, in the opinion of the Senate, is suitable for submission to the examiners.

Prior to graduation, a candidate must submit a final, corrected electronic copy of her/his *dissertation or research report* via the University's electronic platform.

9.8 Formal declaration

Together with her/his *dissertation or research report*, a candidate must submit a formal declaration stating whether –

- it is her/his own unaided work or, if s/he has been assisted, what assistance s/he has received, including the use of any Artificial Intelligence assistance as per the University rules or Faculty practices.
- the substance or any part of it has been submitted in the past or is being or is to be submitted for a *qualification at any other university*;
- the information used in the *dissertation or research report* has been obtained by her/him while employed by, or working under the aegis of, any person or organisation other than the University.

9.9 Acknowledgement of conferment of degree if material is published

A candidate upon whom a degree of master has been conferred by the University and who subsequently publishes or republishes her/his *dissertation or research report* in whole or in part, must indicate on the title page or in the preface or, if this is not appropriate, in a footnote, that such *Dissertation or Research Report* has been approved for that *qualification* by the University.

9.10 Completion of all requirements for the degree of master

Unless the Senate has granted an extension of time, a candidate who has not satisfied all the requirements for the degree of master including submission of a *research report*, if s/he is required to submit one, by the date stipulated in the faculty rules is deemed to have failed. If the Senate grants her/him such extension s/he is required to register for the new academic year.

G10 Degree of Doctor of Philosophy

10.1 Fulfilment of requirements for conferment of the degree of Doctor of Philosophy

When the research is completed a *candidate* must:

- a) present for the approval of the Senate a *thesis*, the research for which is normally conducted under the guidance of a supervisor/s, which must constitute in the opinion of the Senate a substantial contribution to the advancement of knowledge in the subject chosen, and which must be satisfactory as regards literary presentation;

The term thesis is defined in Rule G1.39 Further conditions for the conferment of the degree of Doctor of Philosophy are set out in the faculty rules and the Senate Standing Orders for Higher Degrees.

- b) present her/himself for an oral defense (Viva Voce) as stipulated in the Faculty Standing Orders or Faculty Procedure document.
- c) furnish an abstract with each copy of the *thesis*;
- d) if required by the Senate, present herself/himself for such assessment, or such other requirements as the Senate may determine in respect of the subject of her/his *thesis*.

10.2 Supervision of full-time members of staff

In circumstances considered by it to be exceptional, the Senate may dispense with the requirement for supervision in the case of a *candidate* who holds an appointment as a member of the full-time academic staff of the *University* and has held such appointment for such period as is laid down in the faculty rules. In such a case, the Senate must appoint one internal and two external examiners.

10.3 Copies of thesis

Unless the faculty rules for the *qualification* require otherwise, a *candidate* for the degree of Doctor of Philosophy must submit for examination an electronic copy of her/his *thesis* via email or any other electronic platform designated by the faculty office. In exceptional circumstances, the examiner may request a hard copy of the *thesis*. In such a case, the *candidate* will be required to provide a bound copy of her/his *thesis*, together with the electronic version. The bound copies must be in a format that, in the opinion of the Senate, is suitable for submission to the examiners.

Prior to graduation, a *candidate* must submit a final, corrected electronic copy of her/his *thesis* via the University's electronic platform.

The rules relating to formal declaration (Rule G9.8), acknowledgement of conferment of the *qualification*, (Rule G9.9) and completion of all requirements for the degree of master (Rule G9.10), apply with the appropriate changes.

G9.7, G10.3: A candidate for a higher degree is not entitled to the return of such copies.

G11 Senior Doctorate

11.1 Conditions for the conferment of the degree

A candidate for a senior doctorate must present for the approval of the Senate at least five copies of original published work, or original work accepted for publication, in a field approved by the Senate. Such work must, in the opinion of the Senate, constitute a distinguished contribution to the advancement of knowledge in that field.

11.2 Notice of intention to apply for candidature

A candidate must give notice in writing to the Registrar of her/his intention to present herself/himself as a candidate for the *qualification*, submitting at the same time the title and an outline of the proposed submission.

G12 Conversion of candidature for higher qualifications

12.1 General

Where the requirements for a *higher qualification* allow, a candidate may be permitted or required by Senate under conditions prescribed by it to convert her/his candidature from one higher *qualification* to another within the period of registration. Special conditions for conversion are specified in the faculty rules.

The conditions for conversion are generally applicable for existing *programmes* and *qualifications* prior to 2009, for new *programmes* or *qualifications*, i.e. those which have not existed before 2009, the conditions for conversion are subject to Senate discretion. On conferment of a converted *higher qualification*, the transcript will be endorsed to reflect the conversion.

Conditions for conversion may change in light of the Higher Education Qualifications Sub-Framework.

12.2 Conversion from a programme leading to the degree of master by research to a programme leading to the degree of Doctor of Philosophy

- a) A person who has been admitted as a *candidate* for the degree of master may, in exceptional circumstances, at her/his request and on the recommendation of the supervisor and of the Head of the School concerned, on the basis of work towards the *dissertation* be allowed, by permission of the Senate, to proceed instead to the degree of Doctor of Philosophy. Provided further that the degree of master shall NOT be conferred on her/him in the event of her/his-
 - i) withdrawing her/his candidature for the degree of Doctor of Philosophy; or
 - ii) having her/his candidature for the degree of Doctor of Philosophy cancelled in terms Rule G5.7; or
 - iii) failing to satisfy the requirements for the degree of Doctor of Philosophy.

- b) A person who has completed the requirements for the degree of master, at her/his request and on the recommendation of the Head of the School concerned, may be permitted by the Senate not to have the *qualification* conferred on her/him, but to conduct, for not less than one *academic year* of further full-time study, or not less than two academic years of further part-time study, additional research for the degree of Doctor of Philosophy, which shall be a significant extension of the research already completed by her/him: Provided that the period of additional research may be waived or reduced in a case considered by the Senate to be exceptional. Provided further that the degree of master shall NOT be conferred on her/him in the event of her/his –
 - i) withdrawing her/his candidature for the degree of Doctor of Philosophy; or
 - ii) having her/his candidature for the degree of Doctor of Philosophy cancelled in terms Rule G5.7; or
 - iii) failing to satisfy the requirements for the degree of Doctor of Philosophy.
- c) A person who is permitted to change her/his candidature in terms of (a) or (b) above will be deemed to have been admitted to candidature for the degree of Doctor of Philosophy at the date of her/his *admission* to candidature for the degree of master, or at such later date as the Senate may determine in her/his case, but will be subject, in all other respects, to the rules for the degree of Doctor of Philosophy and such other conditions as the Senate may determine in her/his case.

12.3 Conversion from a programme leading to a degree of master by coursework and research report to a programme leading to the degree of master by research

- a) A person who has been admitted as a *candidate* for the degree of master by coursework and *research report* may, in exceptional circumstances, at her/his request and on the recommendation of the supervisor and of the Head of the School concerned, on the basis of work towards the *research report* be allowed, by permission of the Senate, to proceed instead to the degree of master by research. Provided further that the degree of master by coursework and *research report* shall NOT be conferred on her/him in the event of her/his-
 - i) withdrawing her/his candidature for the degree of master by research; or
 - ii) having her/his candidature for the degree of master by research cancelled in terms Rule G5.7; or
 - iii) failing to satisfy the requirements for the degree of master by research.
- b) A person who has completed the requirements for the degree of master by coursework and *research report*, at her/his request and on the recommendation of the Head of the School concerned, may be permitted by the Senate not to have the degree conferred on her/him, but to conduct, for not less than one *academic year* of further full-time study, or not less than two academic years of further part-time study, additional research for the degree of master by research, which shall be a significant extension of the research already completed by her/him: Provided that the period of additional research may be waived or reduced in a case considered by the Senate to be exceptional. Provided further that the degree of master by coursework and *Research Report* shall be conferred on her/him in the event of her/his –

- i) withdrawing her/his candidature for the degree of master by research; or
- ii) having her/his candidature for the degree of master by research cancelled in terms of Rule G5.7; or
- iii) failing to satisfy the requirements for the degree of master by research.

c) A person who is permitted to change her/his candidature in terms of (a) or (b) above will be deemed to have been admitted to candidature for the degree of master by research at the date of her/his *admission* to candidature for the degree of master by coursework and *research report*, or at such later date as the Senate may determine in her/his case, but will be subject, in all other respects, to the rules for the degree of master by research and such other conditions as the Senate may determine in her/his case.

G13 Assessment

13.1 General

An assessment may be written, practical, electronic, clinical or oral, in project or assignment form or be any other piece of work or any combination thereof as may be specified by the Senate, provided that a student's overall assessment does not consist of an oral assessment alone, except if expressly determined as appropriate by the Senate. Such determination may not be delegated. In all cases the evaluation must be in a form that is suitable for objective assessment by an internal moderator or external examiner. In each case the School must make clear the extent and nature of the work to be assessed and the criteria to be used.

13.2 Examiners

13.2.1 At least one examiner for each course must be a member of the academic staff of the University who has taught the students in the course under assessment unless it is impracticable in any instance because of the death, dismissal, resignation, absence, illness or other incapacity of the member of staff concerned, or for some reason deemed by the Senate to be sufficient.

13.2.2 Each course that is not at the exit level of a programme that accounts for at least 30% of the final mark must be subject to either internal or external examination.

13.2.3 Each course that is at the exit level of a programme, that accounts for at least 30% of the final mark must be subject to external examination.

13.2.4 An internal moderator is normally a member of the academic staff who may be from the same department or school or from another department or school but who has not been involved at all in teaching the course during the relevant academic year. Unless otherwise impracticable or with the approval of the Dean, an internal moderator should not be appointed to examine the same course for more than three consecutive years.

13.2.5 An external examiner is normally appointed from outside the University, preferably from another university, or in the case of professional disciplines, from among experienced members of the professions. In exceptional cases where these options are impracticable, a member of the academic staff may, with the permission of the Dean, be appointed as an external examiner but only if s/he has not been involved at all in teaching the course during the relevant academic year. Unless otherwise impracticable or with the approval of the Dean an external examiner should not be appointed to examine the same course for more than three consecutive years. There should be no reciprocity between external examiners from this and other institutions save in circumstances which the Senate deems exceptional.

13.2.6 An additional requirement with regard to examiners for the degree of Doctor of Philosophy is that the Senate must appoint three examiners of whom two must be external examiners as defined in Rule G13.2.5 above.

13.3 Eligibility for assessment

A student may be disqualified from presenting herself/himself for any assessment if s/he has not satisfied such requirements, including satisfactory participation in the work of the class, as may be prescribed by the Senate.

These requirements include, but are not limited to: attendance, assignments completed, tutorials participated in, practical experiments, clinical work, field work and outside work. It is incumbent on each student to ascertain from the head of school what is required to qualify for presentation for assessment for each course. Disqualification includes being refused permission to complete an assessment or receiving no marks for such assessment.

13.4 Additional oral or other form of assessment

The Senate may require a student to present herself/himself for an oral or other form of assessment if, on the marks obtained by her/him after prescribed assessment/s, s/he is, in the opinion of the Senate, on the borderline of the pass mark or the mark required for a particular class, as defined in the faculty or school standing orders. In such an event the marks obtained in such oral assessment are reported to the Senate in addition to the marks obtained in the prescribed assessment/s. The Senate must then determine the mark to be allocated.

13.5 Supplementary assessments

A student who has failed a course may be permitted by the Senate to present herself/himself for a supplementary assessment where such assessment is permitted by the rules of the faculty which teaches and examines the course, unless otherwise agreed by the faculties concerned. Supplementary assessments may only be deferred in circumstances considered by the Senate to be exceptional.

A supplementary assessment fee may be charged.

13.6 Deferred assessments

13.6.1 Students must apply to write a deferred assessment on the university system within three (3) working days of the date of the assessment. Students applying for a deferred assessment/s on medical grounds must seek medical attention from their doctor on the day of their assessment. Only a valid doctor's certificate is accepted.

13.6.2 If the Dean of the faculty is satisfied that there is sufficient reason, s/he may permit a student to defer her/his assessment/s. The Dean will require the student to submit such evidence to support her/his case as the Dean considers necessary.

A Dean who permits a student to present herself/himself for a deferred assessment may require her/him to do so at such time and subject to such conditions as s/he considers fit and, in particular, may require the student to defer or to repeat (as the case may be) some or all her/his assessments (or some or all the assessments that s/he has not failed) in the year in respect of which her/his application is lodged.

13.6.3 A student who does not present herself/himself for a deferred assessment is not entitled or permitted to have the assessment further deferred unless there are, in the opinion of the Senate, exceptional grounds for permitting her/him to do so.

13.6.4 Unless in the opinion of the Senate, exceptional circumstances exist, a deferred assessment:

- in the first semester, must be completed not later than the first week of the third teaching block;

- b) in the second semester, must be completed before the commencement of the following academic year.

13.7 Re-assessment

Where a *student* has presented herself/himself for assessment and before the results or provisional or unconfirmed results of such assessment are published, the Dean of the faculty, after due consideration of the relevant factors, may permit a *student* to sit for re-assessment if at the time of the assessment owing to illness or her/his mental state, the *student* was unable to bring her/his judgment properly to bear on whether to apply for a deferred assessment in terms of Rule G13.6.1 above and if the Dean considers that the *student* would suffer hardship to an exceptional degree were s/he not allowed to do so.

13.8 Absence from assessment

Unless the *Senate* is satisfied that there was good and sufficient reason, a *student* who is absent from an assessment, in a *course* for which, in accordance with the relevant *curriculum*, s/he is required, permitted or entitled to present herself/himself, fails that course.

G14 Academic Progression

14.1 Completion of courses prescribed for previous year of study

Except as provided in the rules for any *qualification* or by permission of the *Senate*, a *student* may not be admitted to a year of study until s/he has completed the courses prescribed for any preceding year of study and satisfied such further requirements, if any, as are prescribed by the rules.

14.2 Standard required to proceed

A *student* may not include in her/his *curriculum* any *course* at a subsequent level unless s/he has attained in that *course* at the preceding level such standard as is considered by the *Senate* to warrant her/his *admission* to the *course* at the subsequent level and has satisfied the prerequisites for that *course* as determined by the *Senate* from time to time.

14.3 Prerequisite non-credit bearing courses

Where a *student* is required to attend a *course* which does not constitute a *credit* towards the *qualification* for which s/he is registered or to perform any other requirement prescribed for any particular year of study for any *qualification*, her/him failure to attend such *course* or to perform such other requirement may result in her/him being refused permission by the *Senate* to register for the subsequent year of study or any particular year of study thereafter.

14.4 Special curricula for students who cannot proceed to the next year of study

A *student* who has obtained *credit* in some of the courses prescribed for any year of study but who may not in terms of the rules proceed to the following year of study and who has not been excluded in terms of the faculty rules for progression, may be permitted or required by the *Senate* to proceed on a special *curriculum*. In addition to the courses being repeated the *student* may be permitted to include in her/his *curriculum* a *course* or *courses* prescribed for the next year of study and/or such *course* as may enrich the content of her/his *curriculum*.

14.5 Re-attendance requirement for students who cannot proceed to the next year of study

A *student* who is not permitted by the Senate to proceed to the subsequent year of study or to include in her/his *curriculum* for the following academic year a further *course* in a subject in which s/he has obtained *credit*, may be required by the Senate to re-attend and perform to the satisfaction of the Senate the work of the class prescribed for such a repeated *course*, failing which s/he may be refused permission to register for the subsequent year of study or any particular year of study thereafter.

G15 Results

15.1 Publication of results

The final mark obtained by a *student* in a *course* may be published either by way of a percentage mark or as a result decision except where the Senate has, in the case of some supplementary assessments, ruled otherwise.

15.2 Non-publication of results

The final marks obtained by a *student* may not be published and a *qualification* will not be conferred on a *student* unless and until –

- a) s/he has paid all outstanding fees, levies, disbursements, fines and any other monies lawfully owing to the *University*;
- b) any disciplinary proceedings, pending or incomplete, have been completed; and
- c) there has been compliance with any order made against the *student* as a consequence of any disciplinary proceedings.

G16 Conferment of qualification

16.1 Congregation

Qualifications must be conferred by the *University* at a meeting of the Congregation of the *University* convened for this purpose.

16.2 Issuing of a certificate

Degrees are conferred, Diplomas and Certificates are granted at a *University* Graduation ceremony. A degree, diploma or certificate will not be issued to a *student/candidate* prior to her/his name appearing in the official graduation programme.

16.3 Endorsement of certificate

Where a *qualification* is conferred or granted in a specific field, option or branch, the Senate may determine that the certificate attesting to such conferment or granting will bear a statement specifying that field, option or branch. The Senate may determine that where a person who has been granted such a certificate has satisfied the requirements for another field, option or branch, the original certificate be endorsed to reflect this fact.

16.4 Non-conferment of qualification

A *student* who otherwise qualifies for the conferment of a *qualification* may be deemed not to have done so unless and until –

- a) the student has paid all outstanding fees, levies, disbursements, fines and any other monies lawfully owing to the *University*;
- b) any disciplinary proceedings, pending or incomplete, have been completed;
- c) any order made against the *student* as a consequence of any disciplinary proceedings has been complied with; and
- d) in the case of the conversion from one *higher qualification* to another s/he has surrendered the certificate in respect of the former *higher qualification*. Where such surrender is impossible the *Senate* may permit the conferment of the *qualification*.

16.5 Permission to complete a qualification by obtaining credits elsewhere

The *Senate* may, if it considers fit, permit a *student* who has only one or two, or, in a case considered by it to be exceptional, three courses or such number of courses as does not exceed 30 percent of the total number of prescribed courses outstanding for a *qualification* and who satisfies the *Senate* that, by reason of a change of residence, or for some other good and sufficient cause, s/he is unable to continue attending at the *University*, to complete such course or courses at another *university* or at an institution recognised for this purpose by the *Senate* within or outside the Republic of South Africa.

The policy of the faculties on this issue is set out in the standing orders of each faculty.

G17 Conferment of Qualification with Distinction

The *qualification* is awarded with distinction or with distinction in a particular course to a *student* who has obtained the standard laid down by the *Senate* for that purpose.

G18 Honorary Degrees

- 18.1** A proposal to confer an honorary degree may be made either by a member of the Council or of the *Senate* and must be seconded by another member of either of these structures.
- 18.2** The proposal must be communicated in writing to the *University* Registrar.
- 18.3** The proposal must be accompanied by a statement setting out the reasons for making it.
- 18.4** A resolution to confer an honorary degree must be passed in the Council and in the *Senate* by an absolute majority of the members of each structure voting by secret ballot.
- 18.5** A person who sits on both structures is entitled to vote in each election.

G19 Intellectual Property

Students are advised to refer to the University Policy on Intellectual Property.

- 19.1** Any owner's right to intellectual property in any *thesis*, *dissertation*, *research report* or any other work is normally subject to the right of the *University* to make a reproduction of it or parts of it in any medium for a person or institution requiring it for study or research.
- 19.2** Where research includes a patentable invention, the *University* may keep the research confidential for a reasonable period if specifically requested to do so.
- 19.3** Where confidentiality has been agreed in advance the *University* must keep the research confidential for the period agreed.

19.4 Subject to 19.2 and 19.3 the *University* may distribute abstracts or summaries of any *thesis, dissertation, research report* or any other work for publication in indexing and bibliographic periodicals considered by the *University* to be appropriate.

G20 Ethical Clearance

Students who propose to conduct research of any kind on human or animal subjects must apply for ethical clearance from the appropriate *University*'s Ethics Committee/s. In cases where ethical clearance is not required students must apply and obtain an ethics waiver from the relevant University Ethics Committee/s.

SENATE RULES

FOR THE

FACULTY OF SCIENCE

These Rules are subordinate to and should be read in conjunction with the General Rules. The Rules for degrees and diplomas published here are subject to change. They reflect the Rules and Regulations of the University as at 31 July 2025 but may be amended prior to the commencement of the 2026 academic year.

1 Application of Rules

See Rule G3.

2 UNDERGRADUATE

2.1 General Degrees

Qualification Name	Programme Code	NQF Exit Level
Bachelor of Science	SBA00 - General	7
	SBA03 - Actuarial Science	
	SBA04 - Chemistry with Chemical Engineering	
	SBA08 - Mathematical Sciences	
	SBA09 - Geological Sciences	
	SBA10 - Geographical and Archaeological Sciences	
	SBA11 - Biological Sciences	
	SBA12 - Physical Sciences	
	SBA13 - Computer Science	
	SBA15 - Astronomy and Astrophysics	
	SBA20 - Geospatial Sciences	
	SBA21 - Computational and Applied Mathematics	
	SBA22 - Environmental Studies	

2.1.1 Admission Rules

2.1.1.1 Minimum requirements for admission to Fields of Study

Subject to G4.10 and unless otherwise permitted by the Senate, a student may not be admitted to a Field of Study listed below unless s/he has obtained the *National Senior Certificate (NSC)* or other recognised School Leaving Certificate considered by the Senate to be equivalent, or other *pre-university* or *university* requirements.

Description	Firm Offer	Waitlist	Reject
BSc in the field of Actuarial Science	≥ 80% in Mathematics and ≥ 80% in Physical Sciences and ≥ 80% in English and ≥ 42 points	≥ 80% in Mathematics and ≥ 42 points	< 80% in Mathematics and/or < 42 points
BSc in the field of Mathematical Sciences	≥ 80% in Mathematics and ≥ 80% in Physical Sciences and ≥ 80% in English and ≥ 42 points	≥ 80% in Mathematics and ≥ 42 points	< 80% in Mathematics and /or < 42 points
BSc in the field of Chemistry with Chemical Engineering	≥ 70% in Mathematics and ≥ 60% in Physical Sciences ≥ 43 points	≥ 70% in Mathematics and ≥ 60% in Physical Sciences and between 40 and 42 points (inclusive)	< 40 points
BSc in the field of Astronomy and Astrophysics	≥ 70% in Mathematics and ≥ 70% in Physical Sciences ≥ 43 points	≥ 70% in Mathematics and ≥ 70% in Physical Sciences and between 40 and 42 points (inclusive)	< 40 points
BSc in the field of Physical Sciences	≥ 70% in Mathematics and ≥ 60% in Physical Sciences ≥ 42 points	≥ 70% in Mathematics and ≥ 60% in Physical Sciences and 40 - 41 points	< 40 points
BSc in the field of Computer Science	≥ 70% in Mathematics ≥ 44 points	≥ 70% in Mathematics and 41- 43 points	< 41 points
BSc in the field of Computational and Applied Mathematics	≥ 70% in Mathematics ≥ 44 points	≥ 70% in Mathematics and 41- 43 points	< 41 points
BSc in the field of Geological Sciences	≥ 70% in Mathematics and ≥ 60% in Physical Sciences ≥ 42 points	40 - 41 points	< 40 points
BSc in the field of Geographical and Archaeological Sciences	≥ 42 points	40 - 41 points	< 40 points
BSc in the field of Geospatial Sciences	≥ 42 points	40 - 41 points	< 40 points
BSc in the field of Environmental Studies	≥ 42 points	40 - 41 points	< 40 points
BSc in the field of Biological Sciences	≥ 43 points	41-42 points	< 41 points
BSc General	≥ 42 points	40 - 41 points	< 40 points

2.1.1.2 Minimum requirements for admission*

Unless the Senate considers a case to be exceptional, in addition to the requirement of a *National Senior Certificate (NSC)* (for degree studies), *matriculation exemption* or *matriculation endorsement* as defined under *Matriculation* (refer to G1.20) and the entry requirement as stated in the Guide for Applicants, no person shall be admitted as a *student* to study for the degree of Bachelor in the Faculty of Science unless s/he has also satisfied the following minimum requirements:

- a) For admission to the Bachelor of Science – Three Year Programme:
 - NSC requirements – a minimum of 60 percent in Mathematics, a minimum of 60 percent in English and a minimum of 42 points on the Wits *Admission Points Score (APS)*; Pre-NSC requirements – a minimum of 40 percent in Mathematics at higher grade and a minimum of 26 points;
 - b) *National Certificate (Vocational) [NC(V)]* – with a minimum of 80 percent in Mathematics, 80 percent in English and 80 percent in Physical Sciences and a minimum of 42 points on the Wits *APS*; an
 - c) Additional requirements may be imposed for specific fields of study (see 2.1.1.1) and may be imposed for specific courses.

For the purposes of a pass in Mathematics, an *applicant* who has successfully passed a *course* in Mathematics at a *university* or other institution recognised by the Senate for this purpose may be deemed by the *Senate* to have obtained the equivalent of a pass in Mathematics at the Higher Grade or relevant NSC level.

* In addition to the minimum requirements as stipulated in Rule 2.1.1.2, all eligible *applicants* will be required to undertake the National Benchmark Tests.

2.1.1.3 Admission under special conditions

Except where the General and Faculty Rules provide otherwise, the following may be permitted by the Senate to proceed to study for the degree of Bachelor in the Faculty of Science under such special conditions as the Senate considers necessary:

- a) a *student* who has obtained *credit* towards one of the degrees of Bachelor in the Faculty of Science or in another faculty and who wishes to proceed to study for another degree of Bachelor in the Faculty;
- b) a *student* who holds a degree of Bachelor in the Faculty of Science or in another faculty, hereafter referred to as the first degree, and who wishes to proceed to study for a second degree of Bachelor in the Faculty, hereafter referred to as the second degree;
- c) provided that a *student* mentioned in (b) above –
 - i) shall attend and obtain *credit* in a minimum of one-half of the *courses* required for the second degree and shall, by so doing, obtain 216 *credits*, which shall include 72 *credits* derived from any approved 'science' *course/s* at level III;
 - ii) shall not be permitted to complete the requirements for the second degree before two full years or until a minimum of two years of registration for this second degree have elapsed; and
 - iii) shall not obtain *credit* in her/his *programme* for the second degree for more than 84 *credits* in a single major (namely level I and level II – as listed in 2.1.2.2 a) in which s/he has obtained *credit* for the first degree, except by permission of the Senate in a case considered by it to be exceptional.

2.1.2 Curricula

2.1.2.1 Structure of the Degree

2.1.2.1a) Length of Programme

The degree of Bachelor of Science shall extend over not less than three academic years of full-time study: By virtue of the provisions of G7.4, the Senate may require a particular student to proceed on a special programme.

2.1.2.2 Year of Study

2.1.2.2 a) For the purposes of these Rules –

- a) a course at first year level (level I) is denoted by the Roman numeral I following the descriptor and its code number begins with the Arabic numeral 1 (e.g. Chemistry I, CHEM1012A);
- b) a course at second year level (level II) is denoted by the Roman numeral II following the descriptor and its code number begins with the Arabic numeral 2 (e.g. Chemistry II, CHEM2001A); and
- c) a course at third year level (level III) is denoted by the Roman numeral III following the descriptor and its code number begins with the Arabic numeral 3 (e.g. Chemistry III, CHEM3034A).

2.1.2.2 b) A student is deemed to be –

- a) in the first year of study if s/he has 0 credits or obtained credit for courses at level I which make up a total of less than 108 credits;
- b) in the second year of study until s/he has obtained a minimum of 108 credits at level I and 144 credits at level II; and
- c) in the third year of study until s/he has obtained a minimum of 432 credits, at least 144 of which are from level III.

2.1.2.3 Number of course credits in current academic year of study

Unless permitted by the Senate, a student shall include in her/his programme:

- a) for the first year of study, courses for which no more than 144 credits at level I are allocated;
- b) for the second year of study, courses for which no more than 192 credits at level II are allocated; and
- c) for the third year of study, courses for which no more than 192 credits at level III are allocated.

In exceptional cases, the Senate may permit a student in any year of study to register for additional courses.

2.1.2.4 Majors and courses accepted by the Faculty of Science as part of the Bachelor of Science

A student intending to proceed to the Postgraduate Certificate in Education should note that acceptance into certain subject methodology courses is not automatic, as selection procedures may be applied. In particular, a student intending to major in Psychology with a view to registering for Guidance Methodology is advised to include in her/his programme at least all the courses required to complete a recognised major in a third teaching subject up to (and including) level II. In addition, a student intending to proceed to the Postgraduate Certificate in Education is strongly advised to confirm with the Faculty of Humanities that the programme chosen for the degree of Bachelor of Science satisfies the requirements for admission to the Postgraduate Certificate in Education.

2.1.2.4 a) Majors recognised for the Bachelor of Science

From the Faculty of Science a major course consists of a series of courses in a single subject selected from the list below. A minimum of 36 credits are required at level I, 48 credits at level II and 72 credits at level III for a student to be credited with such a major.

Actuarial Science III

Applied Bioinformatics III

Applied Chemistry III

Applied Geology III

Archaeology III

Biodiversity III (Courses in Animal, Plant and Environmental Sciences)

Biochemistry and Cell Biology III
 Chemistry III
 Computational and Applied Mathematics III
 Computational Applications III
 Computer Science III
 Ecology and Conservation III (Courses in Animal, Plant and Environmental Sciences)
 Environmental Studies III
 Genetics and Developmental Biology III
 Geography III
 Geology III
 Geospatial Sciences III
 Materials Science III
 Mathematical Statistics III
 Mathematics III
 Microbiology and Biotechnology III
 Organismal Biology III (Courses in Animal, Plant and Environmental Sciences)
 Physics III

2.1.2.4 b) Majors recognised for the Bachelor of Science from other faculties

The Senate may grant special permission to *students* to register for one major (72 credits) offered in another faculty.

2.1.2.5 Compulsory Mathematics course/s

The *programme* shall include *course/s* in Mathematics yielding a minimum of 36 credits at NQF level 5 (MATH1041A or [MATH1034A and MATH1036A]).

2.1.2.6 List of Approved Courses for the Bachelor of Science (General)

A *student* shall include in her/his *programme* courses selected from the following list to satisfy the requirements of 2.1.2.4. A full complement of courses at level I is equivalent to 36 credits, at level II is equivalent to 48 credits and at level III is equivalent to 72 credits.

This list of courses should be read in conjunction with the BSc General, Other Fields of Study and Syllabuses section.

Course Code	Course Description	NQF Credits	NQF Level
ACCOUNTING (offered in the Faculty of Commerce, Law and Management)			
ACCN1000A	Business Accounting I	36	5
ACTUARIAL SCIENCE			
STAT1002A*	Actuarial Science I	18	5
STAT2008A*	Actuarial Science II	48	6
STAT3021A	Computers and Communications for Actuaries III	18	7
STAT3010A	Life Contingencies III	18	7
STAT3015A	Actuarial Economics III	24	7
STAT3030A	Actuarial Reserving Techniques III	14	7

Course Code	Course Description	NQF Credits	NQF Level
ANATOMICAL SCIENCES (offered in the Faculty of Health Sciences)			
ANAT2021A*	Human and Comparative Biology II	48	6
ANAT3002A*	Human Biology III	72	7
ANAT3011A*	Medical Cell Biology III	72	7
ANIMAL, PLANT AND ENVIRONMENTAL SCIENCES			
Note: Not all elective courses will be offered in every year.			
APES1003A	Introduction to Physiology and Environmental Sciences I PT	18	5
APES2033A	Animal Form and Function II	24	6
APES2038A	Research Methods in Biological Sciences II	12	6
APES2039A	Ecology, Environment, and Conservation IIA	24	6
APES2040A	Ecology, Environment, and Conservation IIB	24	6
APES2041A	Plant Form and Function II	24	6
APES2042A	Life on Earth: Diversity II	24	6
APES2043A	Life on Earth: Evolution II	12	6
APES3023A*	Self-Study Course III	9	7
APES3026A*	Special Topic III	9	7
APES3028A*	Biogeography III	18	7
APES3029A*	Palaeontology III	18	7
APES3044A*	Laboratory Project III	18	7
APES3047A*	Ecological Communities and Biodiversity Conservation III	18	7
APES3057A*	Physiological Entomology III	18	7
APES3073A	Environment and Sustainability III	18	7
APES3067A	Experimental Field Biology III	18	7
APES3066A	Behavioural Ecology III	18	7
APES3065A	Applied Population Ecology III	18	7
APES3064A	Applied Freshwater Ecology and Management III	18	7
APES3070A	People and Conservation Field Course III	18	7
APES3068A	Field Methods in Terrestrial Ecology III	18	7
APES3071A	Service Learning in Biology III	18	7
APES3078A	Biodiversity in a Changing World IIIA: From Process to Pattern	30	7
APES3079A	Biodiversity in a Changing World IIIB: From Animal Physiology to Behaviour	30	7
APES3082A	Applied Ecology and Global Change IIIA: Individuals, Populations and Communities	30	7

Course Code	Course Description	NQF Credits	NQF Level
APES3083A	Applied Ecology and Global Change IIIB: Pattern and Process	30	7
APES3080A	Biodiversity in a Changing World IIIB: Plant Ecophysiology	30	7
APES3081A	Research Methods in Animal, Plant and Environmental Sciences III	12	7
APES3084A	Practical Skills in Animal, Plant and Environmental Sciences III	12	7
APPLIED CHEMISTRY			
CHEM2030A	Applied Chemistry II	48	6
CHEM3033A	Applied Chemistry IIIA	36	7
CHEM3034A	Applied Chemistry IIIB	36	7
CHEM3031A	Undergraduate Research III	9	7
CHEM3007A	Environmental Chemistry III	9	7
APPLIED GEOLOGY			
GEOL2026A*	Applied Geology II	36	6
GEOL2021A	Introduction to Geochemical Techniques II	12	6
GEOL2019A	Geological Mapping Techniques II	24	6
GEOL3050A*	Applied Geology III	72	7
GEOL3042A	Advanced Geological Mapping Techniques III	18	7
GEOL3044A	Hydrogeology & Water Resource Management III	18	7
GEOL3045A	Exploration Methods III	18	7
GEOL3048A	Geographical Information Systems & Remote Sensing III	18	7
ARCHAEOLOGY			
ARCL1011A	Archaeology I	36	5
ARCL1008A	World Hunter-Gatherers I	9	5
ARCL1007A	A Guide to Human Evolution I	9	5
ARCL1009A	Origins of Civilisation I	9	5
ARCL1010A	The Neolithic Revolution I	9	5
ARCL2002A	Archaeology II	48	6
ARCL2009A	World Rock Art II	12	6
ARCL2004A	Earlier and Middle Stone Age II	12	6
ARCL2005A	Archaeology of the Last 2000 Years II	12	6
ARCL2006A	Osteoarchaeology II	12	6
ARCL2007A	Space and Time in Archaeology II	12	6
ARCL3002A	Archaeology III	72	7
ARCL3006A	Southern African Rock Art III	18	7

Course Code	Course Description	NQF Credits	NQF Level
ARCL3008A	The Archaeology of Death III	18	7
ARCL3004A	History of Archaeological Thought III	18	7
ARCL3010A	Experimental Archaeology III	18	7
ARCL3011A	Heritage Matters III	18	7
ARCL3012A	Archaeobotany III	18	7
BIOLOGICAL SCIENCES			
BIOL1035A*	Introductory Life Sciences I	36	5
BIOL1008A	Molecular and Cellular Biology I	9	5
BIOL1009A	Principles and Applications of Microbiology I	9	5
BIOL1025A	Life in its Diversity I	18	5
CHEMICAL AND METALLURGICAL ENGINEERING (offered in the Faculty of Engineering and the Built Environment)			
CHMT2011A	Computing for Process Engineering II	15	6
CHMT2021A	Process Engineering Fundamentals A (CHEM)	20	6
CHMT2023A	Process Engineering Fundamentals B (CHEM)	20	6
CHEMISTRY			
CHEM1012A	Chemistry I	36	5
CHEM1049A	Chemistry I (Auxiliary) PT	15	5
CHEM2038A*	Chemistry IIA (Major)	24	6
CHEM2039A*	Chemistry IIB (Major)	24	6
CHEM2029A*	Environmental Chemistry II	12	6
CHEM3002A	Chemistry IIIA (Major)	36	7
CHEM3003A	Chemistry IIIB (Major)	36	7
COMPUTATIONAL AND APPLIED MATHEMATICS			
APPM1026A*	Mathematical Methods and Modelling I	12	5
APPM1027A*	Mathematical Methods and Modelling I PT	12	5
APPM1028A*	Mechanics I	12	5
APPM1029A*	Mechanics I PT	12	5
APPM1030A*	Scientific Computing I	12	5
APPM1031A*	Scientific Computing I PT	12	5
APPM2021A	Mathematical Methods and Modelling II	16	6
APPM2022A	Mathematical Methods and Modelling II PT	16	6
APPM2023A	Mechanics II	16	6
APPM2024A	Mechanics II PT	16	6
APPM2025A	Scientific Computing II	16	6
APPM2026A	Scientific Computing II PT	16	6

Course Code	Course Description	NQF Credits	NQF Level
APPM3038A	Mathematical Methods and Modelling III	24	7
APPM3041A	Mathematical Methods and Modelling III PT	24	7
APPM3039A	Mechanics III	24	7
APPM3042A	Mechanics III PT	24	7
APPM3040A	Scientific Computing III	24	7
APPM3043A	Scientific Computing III PT	24	7
COMPUTATIONAL APPLICATIONS III			
COMS3007A	Machine Learning III	18	7
COMS3024A	Machine Learning III PT	18	7
COMS3006A	Computer Graphics and Visualisation III	18	7
COMS3025A	Computer Graphics and Visualisation III PT	18	7
COMS3008A	Parallel Computing III	18	7
COMS3026A	Parallel Computing III PT	18	7
COMS3011A	Software Design Project III	18	7
COMS3027A	Software Design Project III PT	18	7
COMPUTER SCIENCE			
COMS1015A	Basic Computer Organisation I	9	5
COMS1019A	Basic Computer Organisation I PT	9	5
COMS1018A	Introduction to Algorithms and Programming I	9	5
COMS1022A	Introduction to Algorithms and Programming I PT	9	5
COMS1017A	Introduction to Data Structures and Algorithms I	9	5
COMS1021A	Introduction to Data Structures and Algorithms I PT	9	5
COMS1016A	Discrete Computational Structures I	9	5
COMS1020A	Discrete Computational Structures I PT	9	5
COMS1025A	Auxiliary Computer Science and Programming IA	9	5
COMS1026A	Auxiliary Computer Science and Programming IB	9	5
COMS2002A	Database Fundamentals II	12	6
COMS2018A	Database Fundamentals II PT	12	6
COMS2013A	Mobile Computing II	12	6
COMS2019A	Mobile Computing II PT	12	6
COMS2014A	Computer Networks II	12	6
COMS2020A	Computer Networks II PT	12	6
COMS2015A	Analysis of Algorithms II	12	6
COMS2021A	Analysis of Algorithms II PT	12	6
COMS2017A	Auxiliary Database Systems II	12	6
COMS3002A ¹	Software Engineering III	18	7

Course Code	Course Description	NQF Credits	NQF Level
COMS3019A ¹	Software Engineering III PT	18	7
COMS3003A	Formal Languages and Automata III	18	7
COMS3021A	Formal Languages and Automata III PT	18	7
COMS3005A	Advanced Analysis of Algorithms III	18	7
COMS3022A	Advanced Analysis of Algorithms III PT	18	7
COMS3009A ¹	Software Design III	18	7
COMS3028A ¹	Software Design III PT	18	7
COMS3010A	Operating Systems and System Programming III	18	7
COMS3023A	Operating Systems and System Programming III PT	18	7

¹A student may select either Software Engineering (COMS3002A/COMS3019A) or Software Design (COMS3009A/COMS3028A), but not both.

ECONOMIC AND BUSINESS SCIENCES (Offered in the Faculty of Commerce, Law and Management)

FINE2000A	Corporate Finance II	24	6
FINE2010A	Investment II	24	6
BUSE2006A	Insurance and Risk Management IIA	24	6
BUSE2008A	Insurance and Risk Management IIB	24	6
BUSE3003A	Insurance and Risk Management III*	72	7
FINE3018A	Portfolio Theory and Asset Valuation III	18	7
FINE3019A	Capital Budgeting III	18	7
FINE3020A	Derivative Securities and Portfolio Management III	18	7
FINE3021A	International Finance and Capital Structure III	18	7
ECON1012A	Economics IA Microeconomics	18	5
ECON1014A	Economics IB Macroeconomics	18	5
ECON1016A	Economic Theory IA Microeconomics	18	5
ECON1018A	Economic Theory IB Macroeconomics	18	5
ECON2000A	Economics IIA	24	6
ECON2001A	Economics IIB	24	6
ECON3015A	Microeconomics III	12	7
ECON3016A	Macroeconomics III	12	7
ECON3018A	Econometrics III	12	7
ECON3019A	Mathematical Economics III	12	7
ECON3021A	South African Development Issues III	12	7
ECON3023A	International Economics III	12	7
ECON3025A	History of Economic Thought III	12	7
ECON3026A	Public Economics III	12	7
ECON3027A	Health Economics III	12	7
ECON3028A	Topics in Economic Policy III	12	7

Course Code	Course Description	NQF Credits	NQF Level
ECON3029A	Topics in Macroeconomic Theory III	12	7
ECON3030A	Topics in Contemporary Economics III	12	7
ECON3031A	Topics in Applied Economics III	12	7
ECON3034A	Labour Economics III	12	7
INFO1000A* or INFO1004A	Information Systems IA or Fundamentals in Information Systems I	18 18	5 5
INFO1003A*	Information Systems IB	18	5
INFO2000A	Information Systems IIA	24	6
INFO2001A	Information Systems IIB	24	6
INFO3002A*	Management and Application of Information Systems III	72	7
INFO3003A*	Capstone Project in Information Systems III	24	7
ELECTRICAL AND INFORMATION ENGINEERING (offered in the Faculty of Engineering and the Built Environment)			
ELEN2000A*	Electrical Engineering II	18	6
ENVIRONMENTAL STUDIES			
GAES2000A	People and the Environment in Africa II	24	6
GAES2001A	Nature, Climate and Society II	24	6
GAES3000A	Theory and Practice in Sustainability Science and Sustainable Development III	18	7
GAES3001A	Political Ecology and Environmental Justice III	18	7
GAES3002A	Communicating Environmental Issues III	18	7
GAES3003A	Human Biometeorology III	18	7
GAES3004A	Heritage Resources Management III	18	7
GAES3005A	Contemporary Environmental Issues in Southern Africa III	18	7
GEOGRAPHY			
GEOG1000A*	Geography I	36	5
GEOG2010A	Earth and Atmospheric Processes II	12	6
GEOG2012A	Environmental Governance: From Local to Global II	12	6
GEOG2013A	Methods, Models and Geographical Information Systems II	12	6
GEOG2014A	Conservation Biogeography II	12	6
GEOG2015A	Thinking Geographically: Concepts and Practices in Human Geography II	12	6
GEOG2018A	Principles of Geospatial Database Systems	12	6
GEOG2019A	Fundamentals of Geospatial Programming	12	6
GEOG2020A	Physical Fundamentals of Remote Sensing	12	6

Course Code	Course Description	NQF Credits	NQF Level
GEOG3019A	Economic Geography III	18	7
GEOG3020A	Climate and Environmental Change III	18	7
GEOG3021A	Advanced Atmospheric Sciences III	18	7
GEOG3023A	Theory and Practice in Sustainability Science and Sustainable Development III	18	7
GEOG3024A	Environmental Monitoring and Modelling III	18	7
GEOG3025A	Urban Futures: The Political-Economy of Population and Scarcity III	18	7
GEOG3026A	Food: Security, Politics and Culture III	18	7
GEOG3029A	Geospatial Data Design and Management III	18	7
GEOG3030A	Project Management in Geospatial Science III	18	7
GEOG3032A	Spatial Data Analysis and Modelling III	18	7
GEOG3033A	Remote Sensing and Photogrammetry III	18	7
GEOG3034A	Geospatial Sciences for Natural Resources Management	18	7
GEOG3035A	Geospatial Science for Risk and Disaster Modeling	18	7
GEOG3036A	Research Design and Professional Practices in Geospatial Science	18	7
GEOG3037A	Machine Learning for Geospatial Data Processing	18	7
GEOG3038A	Geospatial Capstone Project	30	7
GEOLOGY			
GEOL1000A*	Geology I	36	5
GEOL2025A*	Geology II	48	6
GEOL2024A	Sedimentology, Stratigraphy, and Palaeontology II	12	6
GEOL2020A	Igneous Petrology & Processes II	12	6
GEOL2023A	Mineralogy & Optical Mineralogy II	12	6
GEOL2022A	Metamorphic Petrology & Processes II	12	6
GEOL3049A*	Geology III	72	7
GEOL3043A	Advanced Petrology III	18	7
GEOL3046A	Economic Geology & Ore Petrology III	18	7
GEOL3047A	Structural Geology III	18	7
GEOL3041A	Tectonics of the Earth III	18	7
MATERIALS SCIENCE			
CHEM2007A*	Materials Science II	48	6
CHEM3037A*	Materials Science III	75	7
MATHEMATICAL STATISTICS			
STAT1003A*	Mathematical Statistics I	18	5
STAT2005A	Mathematical Statistics II	48	6

Course Code	Course Description	NQF Credits	NQF Level
STAT2012A	Introduction to Mathematical Statistics II	8	6
STAT2015A	Introduction to Mathematical Statistics II PT	8	6
STAT2013A	Basic Statistics for the Natural Sciences II	12	6
STAT2014A	Basic Statistics for the Natural Sciences II PT	12	6
STAT3031A	Multivariate Data Analysis III	14	7
STAT3032A	Risk Theory III	14	7
STAT3033A	Statistical Elements of Machine Learning III	14	7
STAT3034A	Stochastic Processes III	14	7
STAT3035A	Survival Analysis III	14	7
STAT3036A	Time Series III	14	7
STAT3037A	Introduction to Spatial Statistics III	18	7
MATHEMATICS			
MATH1034A	Algebra I	15	5
MATH1044A	Algebra I PT	15	5
MATH1036A	Calculus I	21	5
MATH1045A	Calculus I PT	21	5
MATH1041A	Auxiliary Mathematics I	36	5
MATH1048A	Engineering Mathematics 1A	15	5
MATH1049A	Engineering Mathematics 1B	15	5
MATH2001A	Basic Analysis II	8	6
MATH2029A	Basic Analysis II PT	8	6
MATH2003A	Differential Equations II	8	6
MATH2028A	Differential Equations II PT	8	6
MATH2007A	Multivariable Calculus II	8	6
MATH2032A	Multivariable Calculus II PT	8	6
MATH2015A	Abstract Mathematics II	8	6
MATH2028A	Abstract Mathematics II PT	8	6
MATH2016A	Advanced Analysis II	8	6
MATH2033A	Advanced Analysis II PT	8	6
MATH2019A	Linear Algebra II	8	6
MATH2031A	Linear Algebra II PT	8	6
MATH2035A*	Mathematics II (Engineering)	24	6
MATH3001A	Number Theory III	12	7
MATH3003A	Coding and Cryptography III	12	7
MATH3004A	Complex Analysis III	12	7
MATH3006A	Group Theory III	12	7

Course Code	Course Description	NQF Credits	NQF Level
MATH3009A	Rings and Fields III	12	7
MATH3010A	Topology III	12	7
MATH3047A	Advanced Real Analysis III	12	7
MATH3048A	Real Analysis III	12	7
MATH3049A	Positive Linear Systems III	12	7
MOLECULAR AND CELL BIOLOGY			
MCBG1001A	Introduction to Molecular and Cell Biology I PT	18	5
MCBG2038A*	Molecular and Cell Biology IIA: Molecular Processes II	48	6
MCBG2039A*	Molecular and Cell Biology IIB: Cells and Organisms II	48	6
MCBG2037A*	Molecular and Cell Biology IIC: Applications II	48	6
MCBG3004A*	Biochemistry and Cell Biology III	72	7
MCBG3033A*	Applied Bioinformatics III	72	7
MCBG3034A*	Genetics and Developmental Biology III	72	7
MCBG3035A*	Microbiology and Biotechnology III	72	7
PHYSICS			
PHYS1000A*	Physics I (Major)	36	5
PHYS1001A	Physics I (Auxiliary)	36	5
PHYS1026A	Introduction to Astronomy I	18	5
PHYS1027A	Modern Astrophysics I	18	5
PHYS1031A	Physics I PT	18	5
PHYS1034A	Applied Physics I	12	5
PHYS2001A*	Physics IIA (Major)	24	6
PHYS2002A*	Physics IIB (Major)	24	6
PHYS2011A*	Introduction to Reactor Physics II	12	6
PHYS2012A*	Basic Nuclear Physics II	12	6
PHYS2015A	Modern Radio and Gamma-ray Astronomy II	12	6
PHYS2016A	Relativity: The Basis of Cosmology and Astrophysics II	12	6
PHYS3000A	Quantum Mechanics III	11	7
PHYS3001A	Applications of Quantum Mechanics III	11	7
PHYS3002A	Statistical Physics III	11	7
PHYS3003A	Waves and Modern Optics III	11	7
PHYS3004A	Introduction to Geophysics III	11	7
PHYS3006A	Advanced Experimental Physics and Project III	28	7
PHYS3010A	Advanced Astrophysics III	36	7
PHYS3011A	Cosmology: The Origin and Evolution of the Universe III	36	7

Course Code	Course Description	NQF Credits	NQF Level
PHYSIOLOGY (offered in the Faculty of Health Sciences)			
PHSL2000A*	Physiology II	48	6
PHSL3002A*	Applied and Experimental Physiology III	72	7
PHSL3006A*	Human Physiology III	72	7
PSYCHOLOGY (See Schedule 2.1.6 (c)) (offered in the Faculty of Humanities)			
PSYC1009A	Psychology I	36	5
PSYC2020A	Psychology II	48	6
PSYC2005A*	Psychological Research Design and Analysis IIA	24	6
PSYC2006A	Psychological Research Design and Analysis IIB	24	6
PSYC3001A	Abnormal Psychology III	18	7
PSYC3013A	Cognitive Neuropsychology III	18	7
PSYC3015A	Health Psychology III	18	7
PSYC3016A	Community Psychology III	18	7
PSYC3017A	Psychotherapeutic Interventions III	18	7
PSYC3018A	Child and Adolescent Psychology III	18	7
PSYC3019A	Critical Social Psychology III	18	7
PSYC3020A	Organisational Behaviour III	18	7
PSYC3022A	Employment Relations III	18	7
PSYC3023A	Organisational Effectiveness III	18	7
PSYC3033A	Select Topic in Psychology III	18	7
PSYC3034A	Cognitive Studies III	18	7
PSYC3039A	Career Psychology	18	7
SOCIAL SCIENCES (offered in the Faculty of Humanities, not all courses will be offered in every year)			
AFRL1005A	Elementary Sesotho Language and Culture IA	18	5
AFRL1003A	Elementary IsiZulu Language and Culture IA	18	5
INTR1010A	The International Relations of South Africa and Africa I	18	5
POLS1007A	Introduction to Political Studies I	18	5
SOCL1013A	Southern Africa in the Era of Globalisation I	18	5
SOCL1014A	Identity and Society I	18	5
PHIL1002A	Introduction to Ethics I	18	5
PHIL1003A	Introduction to Philosophy – Knowledge and Reality I	18	5
HIST1011A	Global Encounters and Contemporary Realities IA	18	5
HIST1012A	Global Encounters and Contemporary Realities IB	18	5
HIST1013A	Global Encounters and Contemporary Realities IC	18	5
HIST1015A	Global Encounters and Contemporary Realities ID	18	5
PHIL2005A	Philosophy of Mind and Psychology II	24	6

Course Code	Course Description	NQF Credits	NQF Level
PHIL2009A	Social and Political Philosophy II	24	6
ENGINEERING COURSES (offered in the Faculty of Engineering and the Built Environment)			
FEBE1000A	Introduction to the Engineering Profession I	12	5
FEBE1002A	Engineering Analysis and Design IA	12	5
FEBE1004A	Engineering Analysis and Design IB	12	5
MINN2016A	Engineering Surveying	16	6

***Admission to this course is restricted and subject to a selection process at the discretion of the Senate.**

2.1.2.7 BSc General Degree and Other Fields of Study

1) BSc General

Programme Code: SBA00	NQF Exit Level: 7
Plan Code: SMAGEN00	Total NQF Credits: 432

Course Code	Course Description	NQF Credits	NQF Level
-------------	--------------------	-------------	-----------

Year of Study I:			
MATH1041A or Mathematics I: MATH1034A MATH1036A	Auxiliary Mathematics I Algebra I Calculus I	36 15 21	5 5 5

Additional courses yielding a minimum of 108 level I credits as listed in 2.1.2.6.

Registration for the BSc General also restricts a student from accessing the following fields of study: Computer Science, Actuarial Science, Biological Sciences, Chemistry with Chemical Engineering, Astronomy and Astrophysics, Mathematical Sciences, Computational and Applied Mathematics, and the restricted courses associated with these fields of study.

Year of Study II:

Any combination yielding a minimum of three recognised majors at level II, as listed in 2.1.2.6 and depending on prerequisite and corequisite rules. One of the majors must be in the Faculty of Science.

Year of Study III:

Any combination yielding a minimum of two recognised majors at level III, as listed in 2.1.2.6, and depending on prerequisite and corequisite rules. One of the majors must be in the Faculty of Science.

The curricula for the different fields of study for the Bachelor of Science degree are listed below as options 2 to 14.

2) Bachelor of Science in the field of Chemistry with Chemical Engineering

A student who completes a Bachelor of Science containing the courses listed below may apply for entry to the third year of the Bachelor of Science in Engineering (Chemical Engineering) in the Faculty of Engineering and the Built Environment (EBE) or the Bachelor of Science Honours in the Faculty of Science in the field of Chemistry. *Admission* is at the discretion of the Senate:

Programme Code: SBA04	NQF Exit Level: 7		
Plan Code: SMAGEN04	Total NQF Credits: 460		
Course Code	Course Description	NQF Credits	NQF Level
Year of Study I:			
CHEM1012A	Chemistry I	36	5
Mathematics I:			
MATH1034A	Algebra I	15	5
MATH1036A	Calculus I	21	5
PHYS1000A	Physics I (Major)	36	5
FEBE1002A	Engineering Analysis and Design IA	12	5
FEBE1004A	Engineering Analysis and Design IB	12	5
Any elective course from the list below:			
AFRL1005A	Elementary Sesotho Language and Culture IA	18	5
AFRL1003A	Elementary IsiZulu Language and Culture IA	18	5
INTR1010A	The International Relations of South Africa and Africa I	18	5
POLS1007A	Introduction to Political Studies I	18	5
SOCL1013A	Southern Africa in the Era of Globalisation I	18	5
SOCL1014A	Identity and Society I	18	5
Year of Study II:			
ECON1002A	Economic Concepts IA	18	5
CHEM2038A	Chemistry IIA (Major)	24	6
CHEM2039A	Chemistry IIB (Major)	24	6
ELEN2000A	Electrical Engineering	18	6
CHMT2011A	Computing for Process Engineering II	15	6
CHMT2021A	Process Engineering Fundamentals A (CHEM)	20	6
MATH2035A	Mathematics II (Engineering)	24	6
Year of Study III:			
CHMT2023A	Process Engineering Fundamentals B (CHEM)	20	6
CHEM3002A	Chemistry IIIA (Major)	36	7
CHEM3003A	Chemistry IIIB (Major)	36	7
CHEM3033A	Applied Chemistry IIIA	36	7
CHEM3034A	Applied Chemistry IIIB	36	7

3) Bachelor of Science in the field of Mathematical Sciences

Programme Code: SBA08		NQF Exit Level: 7	
Plan Code: SMAGEN08		Total NQF Credits: 444	
Course Code	Course Description	NQF Credits	NQF Level
Year of Study I:			
Mathematics I: MATH1034A MATH1036A	Algebra I Calculus I	15 21	5 5
Computational and Applied Mathematics I: APPM1026A APPM1028A APPM1030A	Mathematical Methods and Modelling I Mechanics I Scientific Computing I	12 12 12	5 5 5
STAT1003A	Mathematical Statistics I	18	5
Additional courses yielding a minimum of 54 level I credits as listed in 2.1.2.6			
Year of Study II:			
Mathematics II: MATH2001A MATH2003A MATH2007A MATH2015A MATH2016A MATH2019A	Basic Analysis II Differential Equations II Multivariable Calculus II Abstract Mathematics II Advanced Analysis II Linear Algebra II	8 8 8 8 8 8	6 6 6 6 6 6
STAT2005A	Mathematical Statistics II	48	6
Computational and Applied Mathematics II: APPM2021A APPM2023A APPM2025A	Mathematical Methods and Modelling II Mechanics II Scientific Computing II	16 16 16	6 6 6
Year of Study III:			
Mathematical Statistics III: STAT3031A STAT3032A STAT3033A STAT3034A STAT3035A STAT3036A	Multivariate Data Analysis III Risk Theory III Statistical Elements of Machine Learning III Stochastic Processes III Survival Analysis III Time Series III	14 14 14 14 14 14	7 7 7 7 7 7
Any major course yielding a minimum of 72 credits as listed below:			

Course Code	Course Description	NQF Credits	NQF Level
Computational and Applied Mathematics III: APPM3038A APPM3039A APPM3040A	Mathematical Methods and Modelling III Mechanics III Scientific Computing III	24 24 24	7 7 7
OR			
Mathematics III:			
MATH3001A or MATH3010A	Number Theory III or Topology III	12 12	7 7
and			
MATH3006A	Group Theory III	12	7
and			
MATH3048A	Real Analysis III	12	7
and			
MATH3003A or MATH3047A	Coding and Cryptography III or Advanced Real Analysis III	12 12	7 7
and			
MATH3009A or MATH3049A	Rings and Fields III or Positive Linear Systems III	12 12	7 7
and			
MATH3004A	Complex Analysis III	12	7

4) Bachelor of Science in the field of Biological Sciences

Programme Code: SBA11	NQF Exit Level: 7		
Plan Code: SMAGEN11	Total NQF Credits: 432		
Course Code	Course Description	NQF Credits	NQF Level
Year of Study I:			
BIOL1035A	Introductory Life Sciences I	36	5
CHEM1012A	Chemistry I	36	5
MATH1041A or Mathematics I: MATH1034A MATH1036A	Auxiliary Mathematics I Algebra I Calculus I	36 15 21	5 5 5
One additional course yielding a minimum of 36 level I credits as listed in 2.1.2.6			

Course Code	Course Description	NQF Credits	NQF Level
Year of Study II:			
Any combination yielding a minimum of three recognised majors from Anatomical Sciences or Physiology, Chemistry, Animal, Plant & Environmental Sciences and Molecular & Cell Biology at level II, as listed in 2.1.2.6 and depending on prerequisite and corequisite Rules. One of the majors must be in the Faculty of Science.			
Year of Study III:			
Any combination yielding a minimum of two recognised majors from Anatomical Sciences or Physiology, Chemistry, Animal, Plant & Environmental Sciences and Molecular & Cell Biology at level III, as listed in 2.1.2.6, and depending on prerequisite and corequisite Rules. One of the majors must be in the Faculty of Science.			

5) Bachelor of Science in the field of Geological Sciences

Programme Code: SBA09		NQF Exit Level: 7	
Plan Code: SMAGEN09		Total NQF Credits: 432	
Course Code	Course Description	NQF Credits	NQF Level
Year of Study I:			
GEOL1000A	Geology I	36	5
CHEM1012A	Chemistry I	36	5
Mathematics I: MATH1034A MATH1036A	Algebra I Calculus I	15 21	5 5
One additional course yielding a minimum of 36 level I credits as listed in 2.1.2.6			
Year of Study II:			
GEOL2025A or [GEOL2024A GEOL2020A GEOL2023A GEOL2022A]	Geology II or [Sedimentology, Stratigraphy, and Palaeontology II Igneous Petrology & Processes II Mineralogy & Optical Mineralogy II Metamorphic Petrology & Processes II]	48 12 12 12 12	6 6 6 6 6
GEOL2026A or [GEOL2021A GEOL2019A]	Applied Geology II or [Introduction to Geochemical Techniques II Geological Mapping Techniques II]	36 12 24	6 6 6
STAT2013A	Basic Statistics for Natural Scientists II	12	6
One major yielding a minimum of 48 level II credits as listed in 2.1.2.6			
Year of Study III:			
GEOL3049A or [GEOL3043A GEOL3047A GEOL3041A GEOL3046A]	Geology III or [Advanced Petrology III Structural Geology III Tectonics of the Earth III Economic Geology & Ore Petrology III]	72 18 18 18 18	7 7 7 7 7

Course Code	Course Description	NQF Credits	NQF Level
GEOL3050A or [GEOL3042A* GEOL3044A GEOL3045A GEOL3048A]	Applied Geology III or [Advanced Geological Mapping Techniques III Hydrogeology & Water Resource Management III Exploration Methods III Geographical Information Systems & Remote Sensing III]	72 18 18 18 18	7 7 7 7 7

*This course is an additional prerequisite for entry into the BSc Honours in the field of Geology.

6) Bachelor of Science in the field of Actuarial Science

Programme Code: SBA03	NQF Exit Level: 7		
Plan Code: SMAGEN03	Total NQF Credits: 446		
Course Code	Course Description	NQF Credits	NQF Level
Year of Study I:			
Mathematics I: MATH1034A MATH1036A	Algebra I Calculus I	15 21	5 5
Economics I: ECON1016A ECON1018A	Economic Theory IA Microeconomics Economic Theory IB Macroeconomics	18 18	5 5
ACCN1000A	Business Accounting I	36	5
STAT1003A	Mathematical Statistics I	18	5
STAT1002A	Actuarial Science I	18	5
Year of Study II:			
STAT2008A	Actuarial Science II	48	6
STAT2005A	Mathematical Statistics II	48	6
Mathematics II: MATH2001A MATH2003A MATH2007A MATH2015A MATH2016A MATH2019A	Basic Analysis II Differential Equations II Multivariable Calculus II Abstract Mathematics II Advanced Analysis II Linear Algebra II	8 8 8 8 8 8	6 6 6 6 6 6
Year of Study III:			
Actuarial Science III: STAT3021A STAT3010A STAT3015A STAT3030A	Computers and Communications for Actuaries III Life Contingencies III Actuarial Economics III Actuarial Reserving Techniques III	18 18 24 14	7 7 7 7

Course Code	Course Description	NQF Credits	NQF Level
Mathematical Statistics III: STAT3031A	Multivariate Data Analysis III	14	7
STAT3032A	Risk Theory III	14	7
STAT3033A	Statistical Elements of Machine Learning III	14	7
STAT3034A	Stochastic Processes III	14	7
STAT3035A	Survival Analysis III	14	7
STAT3036A	Time Series III	14	7

7) Bachelor of Science in the field of Computer Science

Programme Code: SBA13	NQF Exit Level: 7
Plan Code: SMAGEN13	Total NQF Credits: 432

Course Code	Course Description	NQF Credits	NQF Level
Year of Study I:			
Mathematics I: MATH1034A MATH1036A	Algebra I Calculus I	15 21	5 5
Computer Science I: COMS1015A COMS1016A COMS1017A COMS1018A	Basic Computer Organisation I Discrete Computational Structures I Introduction to Data Structures and Algorithms I Introduction to Algorithms and Programming I	9 9 9 9	5 5 5 5
Computational and Applied Mathematics I: APPM1026A APPM1028A APPM1030A	Mathematical Methods and Modelling I Mechanics I Scientific Computing I	12 12 12	5 5 5
One additional course yielding a minimum of 36 level I credits as listed in 2.1.2.6			

Course Code	Course Description	NQF Credits	NQF Level
Year of Study II:			
Computer Science II: COMS2002A COMS2013A COMS2015A COMS2014A	Database Fundamentals II Mobile Computing II Analysis of Algorithms II Computer Networks II	12 12 12 12	6 6 6 6
Mathematics II: MATH2001A MATH2007A MATH2015A MATH2016A MATH2019A STAT2012A	Basic Analysis II Multivariable Calculus II Abstract Mathematics II Advanced Analysis II Linear Algebra II Introduction to Mathematical Statistics II	8 8 8 8 8 8	6 6 6 6 6 6

Course Code	Course Description	NQF Credits	NQF Level
Computational and Applied Mathematics II:			
APPM2021A	Mathematical Methods and Modelling II	16	6
APPM2023A	Mechanics II	16	6
APPM2025A	Scientific Computing II	16	6
Year of Study III:			
Computer Science III:			
COMS3005A	Analysis of Advanced Algorithms III	18	7
COMS3003A	Formal Languages and Automata III	18	7
[COMS3009A or COMS3002A]	[Software Design III]	18	7
COMS3010A	or Software Engineering III]	18	7
	Operating Systems and System Programming III	18	7
Computational Applications III:			
COMS3007A	Machine Learning III	18	7
COMS3006A	Computer Graphics and Visualisation III	18	7
COMS3008A	Parallel Computing III	18	7
COMS3011A	Software Design Project III	18	7

8) Bachelor of Science in the field of Computational and Applied Mathematics

Programme Code: SBA21	NQF Exit Level: 7		
Plan Code: SMACAMS11	Total NQF Credits: 432		
Course Code	Course Description	NQF Credits	NQF Level
Year of Study I:			
Computational and Applied Mathematics I:			
APPM1026A	Mathematical Methods and Modelling I	12	5
APPM1028A	Mechanics I	12	5
APPM1030A	Scientific Computing I	12	5
Mathematics I:			
MATH1034A	Algebra I	15	5
MATH1036A	Calculus I	21	5
Two elective courses yielding a minimum of 72 level I credits as listed in 2.1.2.6			
Year of Study II:			
Computational and Applied Mathematics II:			
APPM2021A	Mathematical Methods and Modelling II	16	6
APPM2023A	Mechanics II	16	6
APPM2025A	Scientific Computing II	16	6

Course Code	Course Description	NQF Credits	NQF Level
Mathematics II:			
MATH2001A	Basic Analysis II	8	6
MATH2007A	Multivariable Calculus II	8	6
MATH2016A	Advanced Analysis II	8	6
MATH2015A	Abstract Mathematics II	8	6
MATH2019A	Linear Algebra II	8	6
STAT2012A	Introduction to Mathematical Statistics II	8	6

One elective course yielding a minimum of 48 credits depending on courses completed at level I:

Year of Study 3:

Computational and Applied Mathematics III:			
APPM3038A	Mathematical Methods and Modelling III	24	7
APPM3039A	Mechanics III	24	7
APPM3040A	Scientific Computing III	24	7

One elective course yielding a minimum of 72 credits depending on courses completed at level II

9) Bachelor of Science in the field of Geographical and Archaeological Studies

Programme Code: SBA10	NQF Exit Level: 7
Plan Code: SMAGEN10	Total NQF Credits: 432

Course Code	Course Description	NQF Credits	NQF Level
Year of Study I:			
GEOG1000A	Geography I	36	5
ARCL1011A	Archaeology I	36	5
MATH1041A or Mathematics I:	Auxiliary Mathematics I	36	5
MATH1034A	Algebra I	15	5
MATH1036A	Calculus I	21	5

One additional course yielding a minimum of 36 level I credits as listed in 2.1.2.6

Year of Study II:

Any three courses yielding 48 level II credits each as listed below and/or as listed in 2.1.2.6

Geography II:

Select four courses from the list below yielding 48 credits

GEOG2010A [GEOG2012A or GEOG2014A] GEOG2013A GEOG2015A	Earth and Atmospheric Processes II [Environmental Governance: From Local to Global II or Conservation Biogeography II] Methods, Models and Geographical Information Systems II Thinking Geographically: Concepts and Practices in Human Geography II	12 12 12 12	6 6 6 6
---	---	----------------------	------------------

Course Code	Course Description	NQF Credits	NQF Level
<i>and</i>			
Any two elective <i>courses</i> yielding a minimum of 48 <i>credits</i> each depending on <i>courses</i> completed at level I. It is recommended that Archaeology II be taken .			
Year of Study III:			
Any two <i>courses</i> yielding 72 level III <i>credits</i> each as listed below or as listed in 2.1.2.6			
Geography III:			
Select four courses from the list below yielding 72 <i>credits</i> .			
GEOG3033A	Remote Sensing and Photogrammetry III	18	7
GEOG3019A	Economic Geography III	18	7
GEOG3020A	Climate and Environmental Change III	18	7
GEOG3021A	Advanced Atmospheric Sciences III	18	7
GEOG3023A	Theory and Practice in Sustainability Science and Sustainable Development III	18	7
GEOG3024A	Environmental Monitoring and Modelling III	18	7
GEOG3025A	Urban Futures: The Political-Economy of Population and Scarcity III	18	7
GEOG3026A	Food: Security, Politics & Culture III	18	7
<i>and</i>			
Any one elective <i>course</i> yielding a minimum of 72 <i>credits</i> depending on <i>courses</i> completed at level II.			

10) Bachelor of Science in the field of Geospatial Sciences

Programme Code: SBA20	NQF Exit Level: 7		
Plan Code: SMAGEN20	Total NQF Credits: 480		
Course Code	Course Description	NQF Credits	NQF Level
Year of Study I:			
PHYS1000A or PHYS1001A	Physics I (Major) or Physics I (Auxiliary)	36 36	5 5
MATH1041A or Mathematics I: MATH1034A MATH1036A	Auxiliary Mathematics I or Algebra I Calculus I	36 15 21	5 5 5
Any two courses yielding a minimum of 72 <i>credits</i> as listed in 2.1.2.6. It is preferable for <i>courses</i> to be taken from disciplines such as Geographical Sciences, Archeological Sciences, Environmental Sciences, Earth Sciences, Geosciences and Physical Sciences			
Year of Study II:			
Geospatial Sciences II: MINN2016A GEOG2018A GEOG2019A GEOG2020A	Engineering Surveying Principles of Geospatial Database Systems Fundamentals of Geospatial Programming Physical Fundamentals of Remote Sensing	16 12 12 12	6 6 6 6

Course Code	Course Description	NQF Credits	NQF Level
STAT2013A	Basic Statistics for Natural Sciences II	12	6
Geography II: GEOG2013A	Geographic Information Systems, Science and Mapping Systems II	12	6
<i>and</i>			
Any two courses yielding a minimum of 68 level II credits as listed in 2.1.2.6 depending on courses completed at level I			
Year of Study III:			
Geospatial Sciences III			
GEOG3029A	Geospatial Data Design and Management III	18	7
GEOG3030A	Project Management in Geospatial Science III	18	7
GEOG3032A	Spatial Data Analysis and Modelling III	18	7
STAT3037A	Introduction to Spatial Statistics III	18	7
GEOG3033A	Remote Sensing and Photogrammetry III	18	7
Geospatial Sciences III (Second Major)			
GEOG3034A	Geospatial Sciences for Natural Resources Management	18	7
GEOG3035A	Geospatial Sciences for Risk and Disaster Modeling	18	7
GEOG3036A	Research Design and Professional Practices in Geospatial Science	18	7
GEOG3037A	Machine Learning for Geospatial Data Processing	18	7
GEOG3038A	Geospatial Capstone Project	30	7

11) Bachelor of Science in the field of Environmental Studies

Programme Code: SBA22	NQF Exit Level: 7		
Plan Code: SMAEVST10	Total NQF Credits: 432		
Course Code	Course Description	NQF Credits	NQF Level
Year of Study I:			
MATH1041A or Mathematics I: MATH1034A MATH1036A	Auxiliary Mathematics I Algebra I Calculus I	36 15 21	5 5 5
Any three courses yielding a minimum of 108 level I credits as listed in 2.1.2.6			
Year of Study II:			
Environmental Studies II: GAES2000A GAES2001A	People and the Environment in Africa II Nature, Climate and Society II	24 24	6 6
Any two elective courses yielding a minimum of 96 level II credits as listed in 2.1.2.6			

Course Code	Course Description	NQF Credits	NQF Level
Year of Study III:			
Compulsory courses:			
Environmental Studies III: GAES3000A	Theory and Practice in Sustainability Science and Sustainable Development III	18	7
GAES3005A	Contemporary Environmental Issues in Southern Africa III	18	7
Any two courses yielding 18 credits each as listed below:			
GAES3001A	Political Ecology and Environmental Justice III	18	7
GAES3002A	Communicating Environmental Issues III	18	7
GAES3003A	Human Biometeorology III	18	7
GAES3004A	Heritage Resources Management III	18	7
Any elective course yielding a minimum of 72 credits as listed in 2.1.2.6.			

12) Bachelor of Science in the field of Physical Sciences

Programme Code: SBA12	NQF Exit Level: 7		
Plan Code: SMAGEN12	Total NQF Credits 432		
Course Code	Course Description	NQF Credits	NQF Level
Year of Study I:			
MATH1034A	Algebra I	15	5
MATH1036A	Calculus I	21	5
PHYS1000A	Physics I (Major)	36	5
CHEM1012A	Chemistry I	36	5
One additional course yielding 36 level I credits as listed in 2.1.2.6			
Year of Study II*:			
MATH2001A	Basic Analysis II	8	6
MATH2003A	Differential Equations II	8	6
MATH2007A	Multivariable Calculus II	8	6
MATH2015A	Abstract Mathematics II	8	6
MATH2016A	Advanced Analysis II	8	6
MATH2019A	Linear Algebra II	8	6
and/or			
CHEM2038A	Chemistry IIA (Major)	24	6
CHEM2039A	Chemistry IIB (Major)	24	6
and/or			
PHYS2001A	Physics IIA (Major)	24	6
PHYS2002A	Physics IIB (Major)	24	6

Course Code	Course Description	NQF Credits	NQF Level
*Any combination yielding a minimum of three recognised majors at level II, as listed in 2.1.2.6			
Year of Study III**			
**Any combination yielding a minimum of two recognised majors at level III, as listed in 2.1.2.6			

13) Bachelor of Science in the field of Astronomy and Astrophysics

Programme Code: SBA15	NQF Exit Level: 7		
Plan Code: SMAGEN15	Total NQF Credits: 432		
Course Code	Course Description	NQF Credits	NQF Level
Year of Study I:			
Mathematics I: MATH1034A MATH1036A	Algebra I Calculus I	15 21	5 5
PHYS1000A	Physics I (Major)	36	5
Computational and Applied Mathematics I: APPM1026A APPM1028A APPM1030A	Mathematical Methods and Modelling I Mechanics I Scientific Computing I	12 12 12	5 5 5
PHYS1026A	Introduction to Astronomy I	18	5
PHYS1027A	Modern Astrophysics I	18	5
Year of Study II:			
Physics II: PHYS2001A PHYS2002A	Physics IIA (Major) Physics IIB (Major)	24 24	6 6
MATH2007A	Multivariable Calculus II	8	6
STAT2012A	Introduction to Mathematical Statistics II	8	6
MATH2019A	Linear Algebra II	8	6
Computational and Applied Mathematics II: APPM2021A APPM2023A APPM2025A	Mathematical Methods and Modelling II Mechanics II Scientific Computing II	16 16 16	6 6 6
PHYS2015A	Modern Radio and Gamma – ray Astronomy II	12	6
PHYS2016A	Relativity: The Basis of Cosmology and Astrophysics II	12	6
Recommended additional courses*:			
MATH2015A	Abstract Mathematics II	8	6
MATH2016A	Advanced Analysis II	8	6
Year of Study III:			

Course Code	Course Description	NQF Credits	NQF Level
Physics III: PHYS3000A	Quantum Mechanics III	11	7
PHYS3001A	Applications of Quantum Mechanics III	11	7
PHYS3002A	Statistical Physics III	11	7
PHYS3003A	Waves and Modern Optics III	11	7
PHYS3006A	Advanced Experimental Physics and Project III	28	7
PHYS3010A	Advanced Astrophysics III	36	7
PHYS3011A	Cosmology: The Origin and Evolution of the Universe III	36	7

***Recommended additional courses do not count towards the obtaining of credits for the BSc in the field of Astronomy and Astrophysics. The additional courses may be registered for to enhance the learning experience.**

2.1.2.8 Bachelor of Science Degree together with courses offered by other Faculties of this University

Note: see the appropriate Faculty's Rules and Syllabuses book for prerequisites.

In exceptional circumstances, a student may, by permission of the Senate, include in her/his programme one or more courses not listed in 2.1.2.6. The choice of courses is subject to the limitations imposed by the timetable of classes, the maximum sizes of classes and the completion of prerequisite courses.

The programme of a student who has been permitted to proceed in terms of this Rule shall be subject to the Rules governing the degree of Bachelor of Science but, in addition, shall comply with any special provisions contained in the Rules for the other Faculty in which the course is undertaken or in the Syllabuses for the course. Students who select this option must ensure that they gain a credit in a recognised Science major (2.1.2.4 a) up to and including level III.

2.1.3 Progression Rules

2.1.3.1 Admission to courses at level II and level III

Notwithstanding anything contained in these Rules, a student who has passed and obtained credit for all courses at a particular level may be refused permission by the Senate to proceed to a course or courses in the succeeding level in that course if:

- the Council, after consultation with the Senate, has limited the number of students who may be permitted to register for such a course and such a student has not been selected for registration therefore; and
- if s/he has passed a course but has not been permitted to proceed.

2.1.3.2 Additional requirements for admission to courses at level II

Subject to the provisions of 2.1.2.4 and 2.1.2.6 a student shall not include in her/his programme any course at level II unless s/he has obtained a credit in a course at level I which leads to an approved Science major (selected from the list in 2.1.2.4 a).

2.1.3.3 Sub-minimum Rule

Where a major (refer to 2.1.2.4 a) is made up of component courses a student must obtain an overall average of 50 percent and not less than 35 percent in any of the component courses that contribute to that major.

2.1.3.4 Minimum requirements of study

The minimum requirements of study prescribed for *students* are set out below. *Credits* awarded for courses are detailed in 2.1.2.6. A *student* who does not meet the minimum requirements of study may be refused permission by the Senate to renew her/his registration. If, however, a *student* is permitted to renew her/his registration after having failed to satisfy the minimum requirements of study, s/he may be required to satisfy these and further conditions as the Senate may determine in her/his case.

	Year of Study I	Year of Study II	Year of Study III
At first attempt, a <i>student</i> must complete courses which yield a minimum total of:	108 credits and provided that <i>students</i> have satisfied the prerequisites for three major courses at level II (<i>students</i> who have completed courses which yield a total between 72 - 107 credits will be allowed to repeat the first year of study)	48 credits at level II excluding credits previously obtained	72 credits (one major course) at level III excluding credits previously obtained
Repeating <i>students</i> must have obtained the following cumulative credit total across all years of study:	144 credits at level I and provided that <i>students</i> have satisfied the prerequisites for three major courses at level II	288 credits including 144 credits at level II	432 credits including 144 credits at level III
	(Part-time <i>students</i> must complete their first year of study over a period of two years of registration.)	(Part-time <i>students</i> must complete their second year of study over a period of two years of registration.)	(Part-time <i>students</i> must complete their degree in a maximum of six years of registration.)

Notwithstanding anything contained above, a *student* registering for a Bachelor of Science three year degree (full-time) may not take longer than four years to complete the requirements. Only in exceptional circumstances, with the permission of the Senate, may this be extended by a further year.

A *student* registering for a Bachelor of Science (part-time) degree may not take longer than six years to complete the requirements. Only in exceptional circumstances and with the permission of the Senate, may this be extended by a further year.

2.1.4 Completion Rules

In order to qualify for the degree of Bachelor of Science, a *student* will be required to obtain a minimum of 432 credits. A minimum of 144 of these credits must be obtained from level III and a minimum of 144 of these credits from level II. Courses must be selected from the list in 2.1.2.4 a) (Science courses) and, by permission of the Senate, may include courses as specified in 2.1.2.4 b) from another faculty. A minimum of 72 of the 144 credits must be derived from any approved science major at level III (selected from the list in 2.1.2.4 a).

a) Conferment of Qualification with Distinction:

- i) all of the prescribed courses in the qualification must have been passed at first attempt;
- ii) the qualification must have been completed in the minimum period of time;

- iii) all prescribed courses are passed with a minimum weighted average of 75 percent, and obtain a subminimum of 60 percent in each of the relevant courses; and
- iv) each major course (or suite of courses that make up the major) at exit level (third year level) is passed with a minimum weighted average of 75 percent;
- v) any additional courses registered for will not be considered when calculating the minimum weighted average of 75 percent for each major.

2.1.5 Restriction on admission to courses: Pre- and corequisite rules

Subject to G7.9 and G14 and to the *qualifications* set out in the Schedule to 2.1.5 below, unless by permission of the Senate, a student shall not be admitted to a course listed in column A below unless s/he has obtained *credit in*, or been exempted from, the corresponding prerequisite listed in column B below. Courses listed in column C must be taken concurrently with the corresponding course listed under column A. A student shall not be permitted to register for any course unless s/he has satisfied such requirements as the Senate may consider appropriate in her/his case.

A. Course	B. Prerequisite	C. Corequisite
ACTUARIAL SCIENCE		
Actuarial Science I (STAT1002A)		Algebra I (MATH1034A) and Calculus I (MATH1036A) and Mathematical Statistics I (STAT1003A)
Actuarial Science II (STAT2008A)	Actuarial Science I (STAT1002A) and Mathematical Statistics I (STAT1003A) and Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A)	Basic Analysis II (MATH2001A) and Multivariable Calculus II (MATH2007A) and Abstract Mathematics II (MATH2015A) and Linear Algebra II (MATH2019A) and Differential Equations II (MATH2003A) and Advanced Analysis II (MATH2016A)
Computers and Communications for Actuaries III (STAT3021A) Life Contingencies III (STAT3010A) Actuarial Economics III (STAT3015A) Actuarial Reserving Techniques III (STAT3030A)	Actuarial Science II (STAT2008A) and Mathematical Statistics II (STAT2005A) and Differential Equations II (MATH2003A) and Multivariable Calculus II (MATH2007A) and Linear Algebra II (MATH2019A)	

A. Course	B. Prerequisite	C. Corequisite
ANATOMICAL SCIENCES		
Human and Comparative Biology II (ANAT2021A)	Introductory Life Sciences I (BIOL1000A) <i>and</i> Chemistry I (CHEM1012A) <i>and</i> [Physics I (Auxiliary) (PHYS1001A) <i>or</i> Physics I (Major) (PHYS1000A) <i>or</i> Auxiliary Mathematics I (MATH1041A) <i>or</i> Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A)	
Human Biology III (ANAT3002A)	Human and Comparative Biology II (ANAT2021A) <i>or</i> By permission of the Senate	
Medical Cell Biology III (ANAT3011A)	Human and Comparative Biology II (ANAT2021A) <i>or</i> By permission of the Senate	
ANIMAL, PLANT AND ENVIRONMENTAL SCIENCES		
Animal Form and Function II (APES2033A)	Introductory Life Sciences (BIOL1000A) <i>and</i> Chemistry 1 (CHEM1012A) <i>and</i> Auxiliary Mathematics I (MATH1041A) <i>or</i> Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A)	Basic Statistics for the Natural Sciences (STAT2013A) <i>and</i> Plant Form and Function II (APES2041A) <i>and</i> Life on Earth: Diversity II (APES2042A) <i>and</i> Life on Earth: Evolution II (APES2043A)
Research Methods in Biological Sciences II (APES2038A)	Introductory Life Sciences (BIOL1000A) <i>and</i> Chemistry 1 (CHEM1012A) <i>and</i> Auxiliary Mathematics I (MATH1041A) <i>or</i> Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A)	

A. Course	B. Prerequisite	C. Corequisite
Ecology, Environment, and Conservation IIA (APES2039A)	Introductory Life Sciences (BIOL1000A) <i>and</i> Chemistry 1 (CHEM1012A) <i>and</i> Auxiliary Mathematics I (MATH1041A) <i>or</i> Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A)	Basic Statistics for the Natural Sciences (STAT2013A) <i>and</i> Ecology, Environment, and Conservation IIB (APES2040A) <i>and</i> Life on Earth: Diversity II (APES2042A) <i>and</i> Life on Earth: Evolution II (APES2043A)
Ecology, Environment, and Conservation IIB (APES2040A)	Introductory Life Sciences (BIOL1000A) <i>and</i> Chemistry 1 (CHEM1012A) <i>and</i> Auxiliary Mathematics I (MATH1041A) <i>or</i> Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A)	Basic Statistics for the Natural Sciences (STAT2013A) <i>and</i> Ecology, Environment, and Conservation IIA (APES2039A) <i>and</i> Life on Earth: Diversity II (APES2042A) <i>and</i> Life on Earth: Evolution II (APES2043A)
Plant Form and Function II (APES2041A)	Introductory Life Sciences (BIOL1000A) <i>and</i> Chemistry 1 (CHEM1012A) <i>and</i> Auxiliary Mathematics I (MATH1041A) <i>or</i> Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A)	Basic Statistics for the Natural Sciences (STAT2013A) <i>and</i> Animal Form and Function II (APES2033A) <i>and</i> Life on Earth: Diversity II (APES2042A) <i>and</i> Life on Earth: Evolution II (APES2043A)
Life on Earth: Diversity II (APES2042A)	Introductory Life Sciences (BIOL1000A) <i>and</i> Chemistry 1 (CHEM1012A) <i>and</i> Auxiliary Mathematics I (MATH1041A) <i>or</i> Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A)	Basic Statistics for the Natural Sciences (STAT2013A) <i>and</i> Life on Earth: Evolution II (APES2043A)

A. Course	B. Prerequisite	C. Corequisite
Life on Earth: Evolution II (APES2043A)	Introductory Life Sciences (BIOL1000A) <i>and</i> Chemistry 1 (CHEM1012A) <i>and</i> Auxiliary Mathematics I (MATH1041A) <i>or</i> Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A)	Basic Statistics for the Natural Sciences (STAT2013A) <i>and</i> Life on Earth: Diversity II (APES2042A)
Applied Freshwater Ecology and Management (APES3064A)	Basic Statistics for the Natural Sciences (STAT2013A/ STAT2014A) <i>and</i> APES courses yielding a minimum of 48 NQF credits on level 6	
Applied Population Ecology III (APES3065A)	Basic Statistics for the Natural Sciences (STAT2013A/ STAT2014A) <i>and</i>	Third year field trip or laboratory project by selecting one of the following: Applied Freshwater Ecology and Management (APES3064A) <i>or</i>
	APES courses yielding a minimum of 24 NQF credits on level 6 <i>and</i> Fundamentals of Ecology II (APES2036A)	Experimental Field Biology (APES3067A) <i>or</i> Field Methods in Terrestrial Ecology (APES3068A) <i>or</i> People and Conservation Field Course (APES3070A) <i>or</i> Microscopy (APES3048A) <i>or</i> Service Learning in Biology (APES3071A)

A. Course	B. Prerequisite	C. Corequisite
Behavioural Ecology III (APES3066A)	Basic Statistics for the Natural Sciences (STAT2013A/STAT2014A) <i>and</i> APES courses yielding a minimum of 24 NQF credits on level 6 <i>and</i> Fundamentals of Ecology II (APES2036A) with a minimum of 60%	Third year field trip or laboratory project by selecting one of the following: Applied Freshwater Ecology and Management (APES3064A) <i>or</i> Experimental Field Biology (APES3067A) <i>or</i> Field Methods in Terrestrial Ecology (APES3068A) <i>or</i> People and Conservation Field Course (APES3070A) <i>or</i> Microscopy (APES3048A) <i>or</i> Service Learning in Biology (APES3071A)
Field Methods in Terrestrial Ecology (APES3068A)	Basic Statistics for the Natural Sciences (STAT2013A/STAT2014A) <i>and</i> APES courses yielding a minimum of 24 NQF credits on level 6 <i>and</i> Fundamentals of Ecology II (APES2036A)	
Biodiversity in a Changing World IIIA: From Process to Pattern (APES3078A)	Basic Statistics for the Natural Sciences II (STAT2013A/STAT2014A) Animal Form and Function II (APES2033A)	Biodiversity in a Changing World IIIB: From Animal Physiology to Behaviour (APES3079A) <i>or</i>
	Plant Form and Function II (APES2041A) Life on Earth: Diversity II (APES2042A) <i>and</i> Life on Earth: Evolution II (APES2043A)	Biodiversity in a Changing World IIIB: Plant Ecophysiology (APES3080A) <i>and</i> Research Methods in Animal, Plant and Environmental Sciences III (APES3081A)

A. Course	B. Prerequisite	C. Corequisite
Biodiversity in a Changing World IIIB: From Animal Physiology to Behaviour (APES3079A)	Basic Statistics for the Natural Sciences II (STAT2013A/STAT2014A) Animal Form and Function II (APES2033A) Plant Form and Function II (APES2041A) Life on Earth: Diversity II (APES2042A) <i>and</i> Life on Earth: Evolution II (APES2043A)	Biodiversity in a Changing World IIIA: From Process to Pattern (APES3078A) <i>and</i> Research Methods in Animal, Plant and Environmental Sciences III (APES3081A)
Applied Ecology and Global Change IIIA: Individuals, Populations and Communities (APES3082A)	Basic Statistics for the Natural Sciences II (STAT2013A/STAT2014A) Ecology, Environment, and Conservation IIA (APES2039A) <i>and</i> Ecology, Environment, and Conservation IIB (APES2040A) <i>and</i> Life on Earth: Diversity II (APES2042A) <i>and</i> Life on Earth: Evolution II (APES2043A)	Applied Ecology and Global Change IIIB: Pattern and Process (APES3083A) <i>and</i> Practical Skills in Animal, Plant and Environmental Sciences III (APES3084A)
Applied Ecology and Global Change IIIB: Pattern and Process (APES3083A)	Basic Statistics for the Natural Sciences II (STAT2013A/STAT2014A) Ecology, Environment, and Conservation IIA (APES2039A) <i>and</i> Ecology, Environment, and Conservation IIB (APES2040A) <i>and</i> Life on Earth: Diversity II (APES2042A) <i>and</i> Life on Earth: Evolution II (APES2043A)	Applied Ecology and Global Change IIIA: Individuals, Populations and Communities (APES3082A) <i>and</i> Practical Skills in Animal, Plant and Environmental Sciences III (APES3084A)

A. Course	B. Prerequisite	C. Corequisite
Biodiversity in a Changing World IIIB: Plant Ecophysiology (APES3080A)	Basic Statistics for the Natural Sciences II (STAT2013A/STAT2014A) Animal Form and Function II (APES2033A) Plant Form and Function II (APES2041A) Life on Earth: Diversity II (APES2042A) <i>and</i> Life on Earth: Evolution II (APES2043A)	Biodiversity in a Changing World IIIA: From Process to Pattern (APES3078A) <i>and</i> Research Methods in Animal, Plant and Environmental Sciences III (APES3081A)
Research Methods in Animal, Plant and Environmental Sciences III (APES3081A)	Basic Statistics for the Natural Sciences II (STAT2013A/STAT2014A) Animal Form and Function II (APES2033A) Plant Form and Function II (APES2041A) Life on Earth: Diversity II (APES2042A) <i>and</i> Life on Earth: Evolution II (APES2043A)	Biodiversity in a Changing World IIIA: From Process to Pattern (APES3078A) <i>and</i> Biodiversity in a Changing World IIIB: From Animal Physiology to Behaviour (APES3079A) <i>or</i> Biodiversity in a Changing World IIIB: Plant Ecophysiology (APES3080A)
Practical Skills in Animal, Plant and Environmental Sciences III (APES3084A)	Basic Statistics for the Natural Sciences II (STAT2013A/STAT2014A) Ecology, Environment, and Conservation IIA (APES2039A) <i>and</i> Ecology, Environment, and Conservation IIB (APES2040A) Life on Earth: Diversity II (APES2042A) <i>and</i> Life on Earth: Evolution II (APES2043A)	Applied Ecology and Global Change IIIA: Individuals, Populations and Communities (APES3082A) <i>and</i> Applied Ecology and Global Change IIIB: Pattern and Process (APES3083A)
ARCHAEOLOGY		
Archaeology II (ARCL2002A)	Archaeology I (ARCL1011A)	
Archaeology III (ARCL3002A)	Archaeology II (ARCL2002A)	
APPLIED CHEMISTRY		
Applied Chemistry II (CHEM2030A)	Chemistry I (CHEM1012A) with a minimum of 60% [Save by permission of the Senate, a student on a prescribed curriculum may gain automatic entry by passing Chemistry I (CHEM1012A) <i>and</i>	Chemistry IIA (Major) (CHEM2038A) <i>and</i> Chemistry IIB (Major) (CHEM2039A)

A. Course	B. Prerequisite	C. Corequisite
	Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A) <i>or</i> Auxiliary Mathematics I (MATH1041A)	
Applied Chemistry IIIA (CHEM3033A) Applied Chemistry IIIB (CHEM3034A)	Chemistry IIA (Major) (CHEM2001A) <i>and</i> Chemistry IIB (Major) (CHEM2002A)	
Undergraduate Research III (CHEM3031A)	Permission is required from the Senate. Only students with a minimum of 70% in Chemistry II will be eligible to apply	Chemistry IIIA (Major) (CHEM3002A) <i>and</i> Chemistry IIIB (Major) (CHEM3003A)
APPLIED GEOLOGY		
Applied Geology II (GEOL2026A) Introduction to Geochemical Techniques II (GEOL2021A) Geological Mapping Techniques II (GEOL2019A)	Geology I (GEOL1000A) with a minimum of 55% [Save by permission of the Senate a student may gain entry by passing Geology I (GEOL1001A) <i>and</i> Chemistry I (CHEM1012A)]	Geology II (GEOL2025A) <i>and</i> Basic Statistics for the Natural Sciences (STAT2013A)
Applied Geology III (GEOL3050A) <i>or</i> [Advanced Geological Mapping Techniques III (GEOL3042A) Hydrogeology & Water Resource Management III (GEOL3044A) Exploration Methods III (GEOL3045A) Geographical Information Systems & Remote Sensing III] (GEOL3048A)]	[Introduction to Geochemical Techniques II (GEOL2021A) Geological Mapping Techniques II (GEOL2019A)] <i>and</i> Basic Statistics for the Natural Sciences (STAT2013A/2014A) <i>and</i> Geology II (GEOL2025A) <i>or</i> an equivalent course at the discretion of the Senate	Geology III (GEOL3049A)
BIOLOGICAL SCIENCES		
Introductory Life Sciences (BIOL1035A)		Chemistry 1 (CHEM1012A) <i>and</i> Auxiliary Mathematics I (MATH1041A) <i>or</i> Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A)

A. Course	B. Prerequisite	C. Corequisite
CHEMISTRY		
Chemistry I (CHEM1012A)		Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A) or Auxiliary Mathematics I (MATH1041A)
Chemistry IIA (Major) (CHEM2038A) Chemistry IIB (Major) (CHEM2039A)	Chemistry I (CHEM1012A) with a minimum of 60% [Save by permission of the Senate, a student on a prescribed curriculum may gain entry by passing Chemistry I (CHEM1012A) and Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A) or Auxiliary Mathematics I (MATH1041A)]	
Chemistry IIIA (Major) (CHEM3002A) Chemistry IIIB (Major) (CHEM3003A)	Chemistry IIA (Major) (CHEM2001A) and Chemistry IIB (Major) (CHEM2002A)	
COMPUTATIONAL AND APPLIED MATHEMATICS		
Computational and Applied Mathematics I: Mathematical Methods and Modelling I (APPM1026A) Mechanics I (APPM1028A) Scientific Computing I (APPM1030A)		Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A)
Computational and Applied Mathematics II: Mathematical Methods and Modelling II (APPM2021A) Mechanics II (APPM2023A) Scientific Computing II (APPM2025A)	Computational and Applied Mathematics I: Mathematical Methods and Modelling I (APPM1026A) Mechanics I (APPM1028A) Scientific Computing I (APPM1030) and	Basic Analysis II (MATH2001A) and Multivariable Calculus II (MATH2007A) and Abstract Mathematics II (MATH2015A) and Linear Algebra II (MATH2019A) and

A. Course	B. Prerequisite	C. Corequisite
	Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A)	Introduction to Mathematical Statistics II (STAT2012A) (If Statistics I was passed, students must register for Differential Equations II (MATH2003A) <i>and</i> Advanced Analysis II (MATH2016A))
Computational and Applied Mathematics III: Mathematical Methods and Modelling III (APPM3038A) Mechanics III (APPM3039A) Scientific Computing III (APPM3040A)	Computational and Applied Mathematics II (APPM2007A) <i>or</i> Computational and Applied Mathematics II: Mathematical Methods and Modelling II (APPM2021A) Mechanics II (APPM2023A) Scientific Computing II (APPM2025A) <i>and</i> Basic Analysis II (MATH2001A) <i>and</i> Multivariable Calculus II (MATH2007A) <i>and</i> Abstract Mathematics II (MATH2015A) <i>and</i> Linear Algebra II (MATH2019A) <i>and</i> Differential Equations II (MATH2003A) <i>or</i> Introduction to Mathematical Statistics II (STAT2012A) <i>and</i> Advanced Analysis II (MATH2016A)	
COMPUTER SCIENCE		
Computer Science I Basic Computer Organisation I (COMS1015A) Discrete Computational Structures I (COMS1016A) Introduction to Algorithms and Programming I (COMS1018A) Introduction to Data Structures and Algorithms I (COMS1017A)		Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A)

A. Course	B. Prerequisite	C. Corequisite
Auxiliary Computer Science and Programming IA (COMS1025A) Auxiliary Computer Science and Programming IB (COMS1026A)	Minimum of 60% in <i>National Senior Certificate (NSC)</i> or other Senate recognised school leaving certificate in Mathematics (excluding Mathematical Literacy)	Auxiliary Mathematics I (MATH1041A) <i>or</i> Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A)
Mobile Computing II (COMS2013A)	Introduction to Algorithms and Programming I (COMS1018A) <i>and</i> Introduction to Data Structures and Algorithms I (COMS1017A)	Database Fundamentals II (COMS2002A)
Database Fundamentals II (COMS2002A)	Introduction to Data Structures and Algorithms I (COMS1017A)	
Computer Networks II (COMS2014A)	Basic Computer Organisation I (COMS1015A) <i>and</i> Introduction to Algorithms and Programming I (COMS1018A) <i>and</i> Introduction to Data Structures and Algorithms I (COMS1017A)	
Analysis of Algorithms II (COMS2015A)	Basic Computer Organisation I (COMS1015A) <i>and</i> Discrete Computational Structures I (COMS1016A) <i>and</i> Introduction to Data Structures and Algorithms I (COMS1017A) <i>and</i> Introduction to Algorithms and Programming I (COMS1018A) <i>and</i> Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A)	Abstract Mathematics (MATH2015A) <i>and</i> Multivariable Calculus II (MATH2007A) <i>and</i> Linear Algebra II (MATH2019A) <i>and</i> Introduction to Mathematical Statistics II (STAT2012A)
Auxiliary Database Systems II (COMS2017A)	Auxiliary Mathematics I (MATH1041A) with a minimum of 65% <i>or</i> Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A)	
Formal Languages and Automata III (COMS3003A)	Discrete Computational Structures I (COMS1016A) <i>and</i> Analysis of Algorithms II (COMS2015A) <i>and</i>	

A. Course	B. Prerequisite	C. Corequisite
	Abstract Mathematics (MATH2015A) <i>and</i> Multivariable Calculus II (MATH2007A) <i>and</i> Introduction to Mathematical Statistics II (STAT2012A) <i>and</i> Linear Algebra II (MATH2019A)	
Software Engineering III (COMS3002A)	Database Fundamentals II (COMS2002A) <i>and</i> Multivariable Calculus II (MATH2007A) <i>and</i> Introduction to Mathematical Statistics II (STAT2012A) <i>and</i> Linear Algebra II (MATH2019A)	
Software Design III (COMS3009A)	Database Fundamentals II (COMS2002A) <i>and</i> Computer Networks II (COMS2014A) <i>and</i> Analysis of Algorithms II (COMS2015A) <i>and</i> Linear Algebra II (MATH2019A)	
Computer Graphics and Visualisation III (COMS3006A)	Analysis of Algorithms II (COMS2015A) <i>and</i> Linear Algebra II (MATH2019A) <i>and</i> Multivariable Calculus II (MATH2007A)	
Machine Learning III (COMS3007A)	Analysis of Algorithms II (COMS2015A) <i>and</i> Linear Algebra II (MATH2019A) <i>and</i> Introduction to Mathematical Statistics II (STAT2012A)	
Parallel Computing III (COMS3008A)	Computer Networks II (COMS2014A) <i>and</i> Analysis of Algorithms II (COMS2015A)	

A. Course	B. Prerequisite	C. Corequisite
Advanced Analysis of Algorithms III (COMS3005A)	Analysis of Algorithms II (COMS2015A) <i>and</i> Linear Algebra II (MATH2019A) <i>and</i> Introduction to Mathematical Statistics II (STAT2012A) <i>and</i> Multivariable Calculus II (MATH2007A)	
Operating Systems and System Programming (COMS3010A)	Mobile Computing II (COMS2013A) <i>and</i> Computer Networks II (COMS2014A) <i>and</i> Analysis of Algorithms II (COMS2015A) <i>and</i> Linear Algebra II (MATH2019A) <i>and</i> Multivariable Calculus II (MATH2007A) <i>and</i> Abstract Mathematics II (MATH2015A) <i>and</i> Introduction to Mathematical Statistics II (STAT2012A)	
Software Design Project III (COMS3011A)	Database Fundamentals II (COMS2002A) <i>and</i> Analysis of Algorithms II (COMS2015A) <i>and</i> Linear Algebra II (MATH2019A)	

SCHOOL OF ECONOMIC AND BUSINESS SCIENCES

Corporate Finance II (FINE2000A)	[Economic Theory IA - Microeconomics for Economists (ECON1016A) <i>and</i> Economic Theory IB - Macroeconomics for Economists (ECON1018A)] <i>or</i> [Economics IA – Microeconomics (ECON1012A) <i>and</i> Economics IB - Macroeconomics (ECON1014A)] <i>and</i>	
----------------------------------	---	--

A. Course	B. Prerequisite	C. Corequisite
	<p>[Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A)] <i>or</i> [Computational Mathematics I (APPM1004A) <i>and</i> Business Statistics I (STAT1000A) /STAT1004A)]</p>	
Investment II (FINE2010A)	<p>[Economic Theory IA - Microeconomics for Economists (ECON1016A) <i>and</i> Economic Theory IB - Macroeconomics for Economists (ECON1018A)] <i>or</i> [Economics IA – Microeconomics (ECON1012A) <i>and</i> Economics IB - Macroeconomics (ECON1014A)] <i>and</i> [Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I MATH1036A)] <i>or</i> [Computational Mathematics I (APPM1004A) <i>and</i> Business Statistics I (STAT1000A) /STAT1004A)] <i>and</i> Corporate Finance II (FINE2000A)</p>	
Portfolio Theory and Asset Valuation III (FINE3018A) Capital Budgeting III (FINE3019A) Derivative Securities and Portfolio Management III (FINE3020A) International Finance and Capital Structure III (FINE3021A)	Corporate Finance II (FINE2000A) <i>and</i> Investment II (FINE2010A)	
Insurance and Risk Management IIA (BUSE2006A)	Economics IA - Microeconomics (ECON1012A) <i>or</i> Economic Theory IA - Microeconomics for Economists ECON1016A)	Economics IB – Macroeconomics (ECON1014A) <i>or</i> Economic Theory IB – Macroeconomics for Economists (ECON1018A)

A. Course	B. Prerequisite	C. Corequisite
Insurance and Risk Management IIB (BUSE2008A)	<p>[Economic Theory IA - Microeconomics for Economists (ECON1016A) <i>and</i> Economic Theory IB - Macroeconomics for Economists (ECON1018A)]</p> <p><i>or</i></p> <p>[Economics IA – Microeconomics (ECON1012A) <i>and</i> Economics IB - Macroeconomics (ECON1014A)]</p>	Insurance and Risk Management IIA (BUSE2006A)
Insurance and Risk Management III* (BUSE3003A)	<p>Insurance and Risk Management IIA (BUSE2006A)</p> <p><i>and</i></p> <p>Insurance and Risk Management IIB (BUSE2008A)</p>	
Economic Theory IB Macroeconomics for Economists (ECON1018A)	Economic Theory IA Microeconomics for Economists (ECON1016A)	
Economics IB Macroeconomics (ECON1014A)	Economics IA Microeconomics (ECON1012A)	
Economics IIA (ECON2000A)	<p>[Economic Theory IA Microeconomics (ECON1016A) <i>and</i> Economic Theory IB Macroeconomics (ECON1018A)]</p> <p><i>or</i></p> <p>[Economics IA Microeconomics (ECON1012A) with a minimum of 65% <i>and</i> Economics IB Macroeconomics (ECON1014A) with a minimum of 65%]</p> <p><i>or</i></p> <p>[Economics IA Microeconomics (ECON1012A) <i>and</i> Economics IB Macroeconomics (ECON1014A) with a combined average of 70%]</p>	
Economics IIB (ECON2001A)	Economics IIA (ECON2000A)	
Economic Science III: Microeconomics III (ECON3015A) Macroeconomics III (ECON3016A) Econometrics III (ECON3018A)	<p>Economics IIA (ECON2000A)</p> <p><i>and</i></p> <p>Economics IIB (ECON2001A)</p>	

A. Course	B. Prerequisite	C. Corequisite
<p>Mathematical Economics III (ECON3019A)</p> <p>South African Development Issues III (ECON3021A)</p> <p>International Economics III (ECON3023A)</p> <p> Economic Theory III: Macroeconomics III (ECON3016A) and Econometrics III (ECON3018A) and</p> <p>Mathematical Economics III (ECON3019A) and South African Development Issues III (ECON3021A) and International Economics III (ECON3023A) or History of Economic Thought III (ECON3025A) or Public Economics III (ECON3026A) or Health Economics III (ECON3027A) or Topics in Economic Policy III (ECON3028A) or Topics in Macroeconomic Theory III (ECON3029A) or Topics in Contemporary Economics III (ECON3030A) or Topics in Applied Economics III (ECON3031A) or Labour Economics III (ECON3034A)</p>		
Information Systems IB (INFO1003A)	<p>Information Systems IA (INFO1000A)</p> <p>or</p> <p>Fundamentals of Information Systems (INFO1004A)</p>	
Information System IIA (INFO2000A)	<p>[Information Systems IA (INFO1000A)</p> <p>or</p> <p>Fundamentals of Information Systems (INFO1004A)]</p> <p>and</p> <p>Information Systems IB (INFO1003A)</p>	
Information Systems IIB (INFO2001A)	Information Systems IIA (INFO2000A)	

A. Course	B. Prerequisite	C. Corequisite
Management and Application of Information Systems (INFO3002A)	Information Systems IIA (INFO2000A) <i>and</i> Information Systems IIB (INFO2001A)	In order to be considered an Information Systems major, students must complete both Management and Application of Information Systems (INFO3002A) <i>and</i> Information Systems Development Project (INFO3003A).
Information Systems Development Project (INFO3003A)	Information Systems IIA (INFO2000A) <i>and</i> Information Systems IIB (INFO2001A)	
Environmental Studies		
People and the Environment in Africa II (GAES2000A) Nature, Climate and Society II (GAES2001A)	Permission required from the Senate <i>and 108 level I credits</i>	
Theory and Practice in Sustainability Science and Sustainable Development III (GAES3000A) Political Ecology and Environmental Justice III (GAES3001A) Communicating Environmental Issues III (GAES3002A) Human Biometeorology III (GAES3003A) Heritage Resources Management III (GAES3004A) Contemporary Environmental Issues in Southern Africa III (GAES3005A)	People and the Environment in Africa II (GAES2000A) Nature, Climate and Society II (GAES2001A)	
Geography		
Geographic Information Systems, Science and Mapping II (GEOG2013A)	Auxiliary Mathematics I (MATH1041A) Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A) Physics I (Major) PHYS1000A Physics I (Auxiliary) PHYS1001A	

A. Course	B. Prerequisite	C. Corequisite
Principles of Geospatial Database Systems (GEOG2018A)	Auxiliary Mathematics I (MATH1041A) Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A) Physics I (Major) PHYS1000A Physics I (Auxiliary) PHYS1001A	
Fundamentals of Geospatial Programming (GEOG2019A)	Auxiliary Mathematics I (MATH1041A) Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A) Physics I (Major) PHYS1000A Physics I (Auxiliary) PHYS1001A	
Physical Fundamentals of Remote Sensing (GEOG2020A)	Auxiliary Mathematics I (MATH1041A) Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A) Physics I (Major) PHYS1000A Physics I (Auxiliary) PHYS1001A	
Economic Geography III (GEOG3019A) Urban Futures: The Political-Economy of Population and Scarcity (GEOG3025A)	Geography I (GEOG1000A) <i>or</i> Environmental Governance (GEOG2012A) <i>or</i> equivalent	
Climate and Environmental Change III (GEOG3020A) Advanced Atmospheric Sciences III (GEOG3021A) Environmental Monitoring and Modelling III (GEOG3024A)	Earth and Atmospheric Processes II (GEOG2010A) <i>or</i> Geology II (GEOL2025A) <i>or</i> equivalent	
Theory and Practice in Sustainability Science and Sustainable Development (GEOG3023A)	Any of the level II courses in Geography, Biology, Chemistry, Geology or equivalent	
Geospatial Data Design and Management III (GEOG3029A) Project Management in Geospatial Science III (GEOG3030A) Geospatial Data Design and Visualisation III (GEOG3031) Spatial Data Analysis and Modelling III (GEOG3032A)	Methods, Models and Geographical Information Systems II (GEOG2013A)	

A. Course	B. Prerequisite	C. Corequisite
Remote Sensing and Photogrammetry III (GEOG3033A)	Methods, Models and Geographical Information Systems (GEOG2013A) or Geology II (GEOL2025A) or equivalent	
Geospatial Sciences for Natural Resources Management (GEOG3034A)	Geographic Information Systems, Science and Mapping II (GEOG2013A) Principles of Geospatial Database Systems (GEOG2018A) Fundamentals of Geospatial Programming (GEOG2019A)	
Geospatial Sciences for Risk and Data Modeling (GEOG3035A)	Geographic Information Systems, Science and Mapping II (GEOG2013A) Principles of Geospatial Database Systems (GEOG2018A) Fundamentals of Geospatial Programming (GEOG2019A)	
Research Design and Professional Practices in Geospatial Science (GEOG3036A)	Geographic Information Systems, Science and Mapping II (GEOG2013A) Principles of Geospatial Database Systems (GEOG2018A) Fundamentals of Geospatial Programming (GEOG2019A)	
Machine Learning for Geospatial Data Processing (GEOG3037A)	Geographic Information Systems, Science and Mapping II (GEOG2013A) Principles of Geospatial Database Systems (GEOG2018A) Fundamentals of Geospatial Programming (GEOG2019A)	
Geospatial Capstone Project (GEOG3038A)	Geographic Information Systems, Science and Mapping II (GEOG2013A) Principles of Geospatial Database Systems (GEOG2018A) Fundamentals of Geospatial Programming (GEOG2019A)	

A. Course	B. Prerequisite	C. Corequisite
GEOLOGY		
Geology I (GEOL1000A)		Chemistry I (CHEM1012A) <i>and</i> Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A) <i>or</i> Auxiliary Mathematics I (MATH1041A)
Geology II (GEOL2025A) Sedimentology, Stratigraphy, and Palaeontology II (GEOL2024A) Igneous Petrology & Processes II (GEOL2020A) Mineralogy & Optical Mineralogy II (GEOL2023A) Metamorphic Petrology & Processes II (GEOL2022A)	Geology I (GEOL1000A) with a minimum of 55% [Save by permission of the Senate a student may gain entry by passing Geology I (GEOL1001A) <i>and</i> Chemistry I (CHEM1012A)]	
Geology III (GEOL3049A) <i>or</i> [Advanced Petrology III (GEOL3043A) Economic Geology & Ore Petrology III (GEOL3046A) Structural Geology III (GEOL3047A) Tectonics of the Earth III (GEOL3041A)]	Geology II (GEOL2025A) <i>or</i> [Sedimentology, Stratigraphy, and Palaeontology II (GEOL2024A) Igneous Petrology & Processes II (GEOL2020A) Mineralogy & Optical Mineralogy II (GEOL2023A) Metamorphic Petrology & Processes II (GEOL2022A)]	
MATERIALS SCIENCE		
Materials Science II (CHEM2007A)	Chemistry I (CHEM1012A) with a minimum of 60% [Save by permission of the Senate, a student on a prescribed curriculum may gain entry by passing Chemistry I (CHEM1012A)] <i>and</i> Mathematics I: Algebra I (MATH1034A) <i>and</i> Calculus I (MATH1036A) <i>and</i> Physics I (Major)(PHYS1000A)]	
Materials Science III (CHEM3037A)	Materials Science II (CHEM2007A)	

A. Course	B. Prerequisite	C. Corequisite
MATHEMATICAL STATISTICS		
Mathematical Statistics I (STAT1003A)		Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A)
Introduction to Mathematical Statistics II (STAT2012A)	Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A)	
Mathematical Statistics II (STAT2005A)	Mathematical Statistics I (STAT1003A) and Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A)	Basic Analysis II (MATH2001A) and Multivariable Calculus II (MATH2007A) and Abstract Mathematics II (MATH2015A) and Linear Algebra II (MATH2019A) and Differential Equations II (MATH2003A) and Advanced Analysis II (MATH2016A)
Basic Statistics for the Natural Sciences II (STAT2013A/STAT2014A)	Auxiliary Mathematics I (MATH1041A)	
Multivariate Data Analysis III (STAT3031A) Risk Theory III (STAT3032A) Statistical Elements of Machine Learning III (STAT3033A) Stochastic Processes III (STAT3034A) Survival Analysis III (STAT3035A) Time Series III (STAT3036A)	Mathematical Statistics II (STAT2005A) and Differential Equations II (MATH2003A) and Multivariable Calculus II (MATH2007A) and Linear Algebra II (MATH2019A)	
Introduction to Spatial Statistics (STAT3037A)	Basic Statistics for Natural Sciences (STAT2013A/STAT2014A)	
MATHEMATICS		
Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A)	Minimum of 70% in <i>National Senior Certificate (NSC)</i> or other Senate recognised school leaving certificate in Mathematics (excluding Mathematical Literacy)	
Engineering Mathematics IA (MATH1048A)		Engineering Mathematics IB (MATH1049A)
Engineering Mathematics IB (MATH1049A)		Engineering Mathematics IA (MATH1048A)

A. Course	B. Prerequisite	C. Corequisite
Basic Analysis II (MATH2001A) Multivariable Calculus II (MATH2007A) Linear Algebra II (MATH2019A)	Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A) or Mathematics I (Engineering): (MATH1042A and MATH1043A) with a minimum of 60%	
Abstract Mathematics II (MATH2015A) Differential Equations II (MATH2003A) Advanced Analysis II (MATH2016A)	Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A) or Mathematics I (Engineering): (MATH1042A and MATH1043A)	Basic Analysis II (MATH2001A) and Multivariable Calculus II (MATH2007A) and Linear Algebra II (MATH2019A)
Mathematics II (Engineering) (MATH2035A)	Engineering Mathematics IA (MATH1042A/MATH1048A) Engineering Mathematics IB (MATH1043A/MATH1049A)	
Coding and Cryptography III (MATH3003A)	Abstract Mathematics II (MATH2015A)	
Number Theory III (MATH3001A) Group Theory III (MATH3006A)	Basic Analysis II (MATH2001A) and Abstract Mathematics II (MATH2015A) and Linear Algebra II (MATH2019A)	
Topology III (MATH3010A)	Basic Analysis II (MATH2001A) and Abstract Mathematics II (MATH2015A) and Linear Algebra II (MATH2019A)	
Complex Analysis (MATH3004A)	Basic Analysis II (MATH2001A) and Multivariable Calculus II (MATH2007A) and Abstract Mathematics II (MATH2015A) and Linear Algebra II (MATH2019A)	
Rings and Fields III (MATH3009A)	Basic Analysis II (MATH2001A) and Multivariable Calculus II (MATH2007A) and Abstract Mathematics II (MATH2015A) and	

A. Course	B. Prerequisite	C. Corequisite
	Linear Algebra II (MATH2019A) <i>and</i> Advanced Analysis II (MATH2016A) <i>and</i> [Differential Equations II (MATH2003A) <i>or</i> Introduction to Mathematical Statistics II (STAT2012A)]	
Advanced Real Analysis III (MATH3047A)	Basic Analysis II (MATH2001A)	
Real Analysis III (MATH3048A)	Basic Analysis II (MATH2001A) <i>and</i> Multivariable Calculus II (MATH2007A) <i>and</i>	
	Abstract Mathematics II (MATH2015A) <i>and</i> Linear Algebra II (MATH2019A) <i>and</i> Advanced Analysis II (MATH2016A) <i>and</i> [Differential Equations II (MATH2003A) <i>or</i> Introduction to Mathematical Statistics II (STAT2012A)]	
Positive Linear Systems (MATH3049A)	Multivariable Calculus II (MATH2007A) <i>and</i> Linear Algebra II (MATH2019A)	

MOLECULAR AND CELL BIOLOGY

Molecular and Cell Biology IIA: Molecular Processes II (MCBG2038A) Molecular and Cell Biology IIB: Cells and Organisms II (MCBG2039A) Molecular and Cell Biology IIC: Applications (MCBG2037A)	Introductory Life Sciences I (BIOL1000A) <i>and</i> Chemistry I (CHEM1012A) with a minimum of 55% <i>and</i> Auxiliary Mathematics I (MATH1041A) <i>or</i> Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A)	Molecular and Cell Biology IIA: Molecular Processes II (MCBG2038A) Molecular and Cell Biology IIB: Cells and Organisms II (MCBG2039A)
--	---	--

A. Course	B. Prerequisite	C. Corequisite
Biochemistry and Cell Biology III (MCBG3004A) Genetics and Developmental Biology III (MCBG3034A) Microbiology and Biotechnology III (MCBG3035A)	Molecular and Cell Biology IIA: Molecular Processes II (MCBG2038A) and Molecular and Cell Biology IIB: Cells and Organisms II (MCBG2039A) and Molecular and Cell Biology IIC: Applications (MCBG2037A) or a 48 credit course at the discretion of the Senate	
Applied Bioinformatics III (MCBG3033A)	Molecular and Cell Biology IIA: Molecular Processes II (MCBG2038A) Molecular and Cell Biology IIB: Cells and Organisms II (MCBG2039A] and [Molecular and Cell Biology IIC: Applications (MCBG2037A)	

PHYSICS

Physics I (Major) (PHYS1000A)	Minimum of 60% in Physical Sciences and a minimum of 70% in Mathematics <i>National Senior Certificate (NSC)</i> or equivalent	Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A)
Modern Astrophysics (PHYS1027A)		Physics I (Major) (PHYS1000A) Introduction to Astronomy (PHYS1026A)
Introduction to Reactor Physics (PHYS2011A) Basic Nuclear Physics (PHYS2012A)	At the discretion of the Senate	
Physics IIA (Major) (PHYS2001A) Physics IIB (Major) (PHYS2002A)	Physics I (Major) (PHYS1000A) and Mathematics I: Algebra I (MATH1034A) and Calculus I (MATH1036A) or Auxiliary Mathematics I (MATH1041A) with a minimum of 60%	[Multivariable Calculus II (MATH2007A) and Differential Equations II (MATH2003A) and Advanced Analysis II (MATH2016A) and Linear Algebra II (MATH2019A)] or Mathematics II (Eng) (MATH2011A)

A. Course	B. Prerequisite	C. Corequisite
Modern Radio and Gamma – ray Astronomy II (PHYS2015A) Relativity: The Basis of Cosmology and Astrophysics II (PHYS2016A)	Introduction to Astronomy (PHYS1026A) <i>and</i> Modern Astrophysics (PHYS1027A)	Physics IIA (Major) (PHYS2001A) <i>and</i> Physics IIB (Major) (PHYS2002A)
Waves and Modern Optics III (PHYS3003A) Quantum Mechanics III (PHYS3000A) Statistical Physics III (PHYS3002A) Introduction to Geophysics (PHYS3004A)	Physics IIA (Major) (PHYS2001A) <i>and</i> Physics IIB (Major) (PHYS2002A) <i>and</i>	
	[Multivariable Calculus II (MATH2007A) <i>and</i> Differential Equations II (MATH2003A) <i>and</i> Advanced Analysis II (MATH2016A) <i>and</i> Linear Algebra II (MATH2019A)] <i>or</i> Mathematics II (Eng) (MATH2011A)	
Advanced Experimental Physics and Project III (PHYS3006A)	Physics IIA (Major) (PHYS2001A) <i>and</i> Physics IIB (Major) (PHYS2002A) <i>and</i> [Multivariable Calculus II (MATH2007A) <i>and</i> Differential Equations II (MATH2003A) <i>and</i> Advanced Analysis II (MATH2016A) <i>and</i> Linear Algebra II (MATH2019A)] <i>or</i> Mathematics II (Eng) (MATH2011A)	Waves and Modern Optics III (PHYS3003A) <i>and</i> Quantum Mechanics III (PHYS3000A) <i>and</i> Statistical Physics III (PHYS3002A) <i>and</i> [Introduction to Geophysics (PHYS3004A) <i>or</i> Quantum Mechanics and its Applications III (PHYS3001A)]

A. Course	B. Prerequisite	C. Corequisite
Quantum Mechanics and its Applications III (PHYS3001A)	Physics IIA (Major) (PHYS2001A) <i>and</i> Physics IIB (Major) (PHYS2002A) <i>and</i> [Multivariable Calculus II (MATH2007A) <i>and</i> Differential Equations II (MATH2003A) <i>and</i> Advanced Analysis II (MATH2016A) <i>and</i> Linear Algebra II (MATH2019A)] <i>or</i> Mathematics II (Eng) (MATH2011A)	Quantum Mechanics III (PHYS3000A)
Advanced Astrophysics (PHYS3010A)	Physics IIA (Major) (PHYS2001A) <i>and</i> Physics IIB (Major) (PHYS2002A) <i>and</i> Modern Radio and Gamma-ray Astronomy II (PHYS2015A) <i>and</i> Relativity: The Basis of Cosmology and Astrophysics II (PHYS2016A)	Quantum Mechanics III (PHYS3000A) <i>and</i> Quantum Mechanics and its Applications III (PHYS3001A) <i>and</i> Statistical Physics III (PHYS3002A) <i>and</i> Waves and Modern Optics III (PHYS3003A) <i>and</i> Advanced Experimental Physics and Project III (PHYS3006A)
Cosmology: The Origin and Evolution of the Universe (PHYS3011A)	Physics IIA (Major) (PHYS2001A) <i>and</i> Physics IIB (Major) (PHYS2002A) <i>and</i> Modern Radio and Gamma-ray Astronomy II (PHYS2015A) <i>and</i> Relativity: The Basis of Cosmology and Astrophysics II (PHYS2016A)	Quantum Mechanics III (PHYS3000A) <i>and</i> Quantum Mechanics and its Applications III (PHYS3001A) <i>and</i> Statistical Physics III (PHYS3002A) <i>and</i> Advanced Experimental Physics and Project III (PHYS3006A)

PHYSIOLOGY (offered in the Faculty of Health Sciences)

Physiology II (PHSL2000A)	Introductory Life Sciences I (BIOL1000A) <i>with a minimum of 55%</i> <i>and</i>	
---------------------------	---	--

A. Course	B. Prerequisite	C. Corequisite
	Chemistry I (CHEM1012A) and [Physics I (Auxiliary) (PHYS1001A) or Auxiliary Mathematics I (MATH1041A)]	
Applied and Experimental Physiology III (PHSL3002A) Human Physiology III (PHSL3006A)	Physiology II (PHSL2000A)	
PSYCHOLOGY (offered in the Faculty of Humanities)		
Psychology II (PSYC2020A)	Psychology I (PSYC1009A)	
Psychological Research Design and Analysis IIA (PSYC2005A)	Psychology I (PSYC1009A)	
Psychological Research Design and Analysis IIB (PSYC2006A)		Psychological Research Design and Analysis IIA (PSYC2005A)
Abnormal Psychology III (PSYC3001A) Cognitive Neuropsychology III (PSYC3013A) Health Psychology III (PSYC3015A) Community Psychology III (PSYC3016A) Psychotherapeutic Interventions III (PSYC3017A) Child and Adolescent Psychology III (PSYC3018A) Critical Social Psychology III (PSYC3019A) Organisational Behaviour III (PSYC3020A) Employee Relations III (PSYC3022A) Organisational Effectiveness III (PSYC3023A)	Psychology II (PSYC2020A) and Psychological Research Design and Analysis IIA (PSYC2005A)	
SOCIAL SCIENCES (offered in the Faculty of Humanities)		
Philosophy of Mind and Psychology II (PHIL2005A) Social and Political Philosophy II (PHIL2009A)	Introduction to Ethics I (PHIL1002A) Introduction to Philosophy – Knowledge and Reality I (PHIL1003A)	

2.1.6 Restriction on obtaining credits

a) Unless specifically stated otherwise, the prerequisite course may be either the auxiliary or the major course.

b) A student may not obtain credits for more than one of the courses in each of the groups of courses listed below:

Students are referred to the requirements of 2.1.3.4 and 2.1.8.

Course Description	Course Code
Group A	
Ancillary Statistics I	STAT1005A
Business Statistics I	STAT1000A
Mathematical Statistics I	STAT1003A
Basic Statistics for the Natural Sciences II	STAT2013A/ STAT2014A
Group B	
Chemistry 1A	CHEM1013A
Chemistry I	CHEM1012A
Chemistry Auxiliary I PT	CHEM1049A
Group C	
Ancillary Mathematics I	MATH1008A
Ancillary Mathematics and Statistics I	MATH1010A
Auxiliary Mathematics I	MATH1041A
Mathematics I: Algebra I and Calculus I	MATH1034A and MATH1036A
Group D	
Physics I (Major)	PHYS1000A
Physics I (Auxiliary)	PHYS1001A
Group E	
Mathematical Statistics I	STAT1003A
Introduction to Mathematical Statistics II	STAT2012A

c) Psychology (refer to Rule 2.1.2.4 b)

A student who majors in Psychology needs to be credited with courses at levels II and III from the list below; yielding a total of between 144 and 168 credits:

Course Description	Course Code	NQF Credits	NQF Level
Year of Study II			
Compulsory courses			
Psychological Research Design and Analysis IIA	PSYC2005A	24	6
Psychology II	PSYC2020A	48	6
Elective course			
Psychological Research Design and Analysis IIB	PSYC2006A	24	6
Year of Study III			
Courses from the list below yielding a total value of 72 credits:			
Abnormal Psychology III	PSYC3001A	18	7
Cognitive Neuropsychology III	PSYC3013A	18	7
Health Psychology III	PSYC3015A	18	7
Community Psychology III	PSYC3016A	18	7

Course Description	Course Code	NQF Credits	NQF Level
Psychotherapeutic Interventions III	PSYC3017A	18	7
Child and Adolescent Psychology III	PSYC3018A	18	7
Critical Social Psychology III	PSYC3019A	18	7
Organisational Behaviour III	PSYC3020A	18	7
Employment Relations III	PSYC3022A	18	7
Organisational Effectiveness III	PSYC3023A	18	7

Any combination making up 72 credits at level III in Psychology will result in a student receiving a major in Psychology.

2.1.7 Lapsing of credits or exemptions

An exemption will normally be granted in respect of a credit previously obtained but could be refused if, in the opinion of the Senate, the Syllabuses have changed in substantial or important respects or if four years have elapsed between the time when the credit was obtained and when the exemption was sought.

2.1.8 Repeating of courses

A student who fails to meet the pass requirement in a course in any particular year of study may be refused permission by the Senate to repeat the course and the student will be deemed as Fail May Not Repeat (FNR) for that course if:

- a) s/he has repeated the course more than once; or
- b) the course is restricted. To note which courses are restricted refer to 2.1.2.6.

The decision of FNR is endorsed by the Faculty Board of Examiners. In the event of readmission (WRCI/WRCII) the Senate retains the discretion to allow the student to proceed with all the courses except for the course/s with a decision of FNR.

3 POSTGRADUATE

3.1 Diplomas

Qualification Name	Programme Code	NQF Exit Level
Postgraduate Diploma in Science	SXA01	8

3.1.1 Application of Rules

See Rule G3.

3.1.2 Admission Rules

Any one of the following may be admitted by the Senate for the Postgraduate Diploma in Science if the Senate is satisfied that s/he is qualified to undertake the line of study required for it. (In exercising its discretion the Senate will take into account the academic standard achieved by the applicant in any course or the nature and standard of any postgraduate work, or both, done by her/him.)

- a) a Bachelor of Science of this or another university;
- b) a graduate of this or another university who holds a degree in another faculty; and

c) a person other than a graduate who has in any other manner satisfied the Senate that s/he is so qualified.

3.1.3 Curricula

3.1.3.1 Length of Programme

The programme extends over not less than one academic year of full-time study or two academic years of part-time study.

3.1.3.2 Programme Details

1) Postgraduate Diploma in Science in the field of Data Science

An applicant must have $\geq 60\%$ in Mathematics National Senior Certificate or equivalent. A candidate must successfully complete the following courses to obtain a Postgraduate Diploma in Science in the field of Data Science.

Programme Code: SXA01	NQF Exit Level: 8
Plan Code: SFADATS50	Total NQF Credits: 120

Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
COMS5022A	Programming for Data Scientists	15	8
COMS5021A	Mathematics and Statistical Foundations of Data Science	15	8
COMS5026A	Applied Machine Learning	15	8
COMS5020A	Data Science in Practice	15	8
Any five elective courses from the list below:			
SLLS5027A	Social Media Analysis in and for the Global South	12	8
SOSS5036A	Visualising African Societies with Data	12	8
COMS5025A	Data-intensive Computing	12	8
COMS5024A	Applications of Machine Learning in Chemistry	12	8
COMS5023A	Data Science in Education	12	8
COMS5027A	Health Analytics for Data Science	12	8
GEOL5013A	Spatio-temporal Data Analytics	12	8

Note: Not all elective courses will be offered in every year.

Elective courses may be selected with the permission of the Senate.

2) Postgraduate Diploma in Science in the field of Innovation and Entrepreneurship

Admission to this Postgraduate Diploma in the field of Innovation and Entrepreneurship will require a candidate to have a qualification at NQF Level 7 in a field related to Science, Health Sciences or Engineering. A candidate must successfully complete the following courses to obtain a Postgraduate Diploma in Science in the field of Innovation and Entrepreneurship.

Programme Code: SXA01	NQF Exit Level: 8
Plan Code: SFAINEN51	Total NQF Credits: 120

Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
PHYS5049A	Innovation and Research Commercialisation	30	8
FEBE5001A	Design Thinking for Innovation	20	8
BUSA5299A	Venture Creation for Innovators	10	8
BUSE5006A	Basics of Business for Innovators	10	8
FEBE5000A	Communicating Innovation	10	8
PHYS5050A	Research Project in Innovation and Entrepreneurship	40	8

3) Postgraduate Diploma in Science in the field of Applied Biosciences

Admission to the Postgraduate Diploma in Science in the field of Applied Biosciences will require a candidate to have a BSc *qualification*, or equivalent at NQF level 7, in a field related to Biological Sciences, including Health Sciences and with an average mark of $\geq 55\%$.

A candidate must successfully complete the following courses to obtain a Postgraduate Diploma in Science in the field of Applied Biosciences, which will not extend beyond one calendar year of full-time study:

Programme Code: SXA01	NQF Exit Level: 8
Plan Code: SFAAPLBS50	Total NQF Credits: 120

Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
MCBG5017A	Professional Skills in Industry Practice	10	8
MCBG5018A	Microbial Food Safety and Quality Control	20	8
MCBG5019A	Bioanalytical Techniques	40	8
MCBG5020A	Molecular Analysis and Diagnostics	20	8
MCBG5021A	Chemical Analysis for Industry	15	8
MCBG5022A	Enzyme Technology for Industrial Applications	15	8

3.1.3.3 Credits for Courses

In exceptional circumstances, the Senate may grant a *candidate credit* in respect of some of the requirements of 3.1.3 if s/he has obtained *credit* in the same courses or topics at this or another *university* approved by the Senate for this purpose: Provided that every *candidate* must complete *courses* yielding a minimum of 60 *credits* while registered for the diploma at this *University*.

3.1.4 Completion Rules

- A *candidate* must successfully complete the prescribed *courses* to obtain a Postgraduate Diploma in Science.
- Conferment of *Qualification* with Distinction:

- i) all of the prescribed courses taken in the *qualification* must have been passed at first attempt;
- ii) the *qualification* must have been completed in the minimum period of time;
- iii) all courses are passed with a minimum weighted average of 75 percent;;
- iv) the research component is passed with a minimum of 75 percent, if applicable.
- v) Any additional courses registered for will not be considered when calculating the minimum weighted average of 75 percent.

3.1.5 Cancellation of Registration

A *candidate* shall be required to obtain *credit* in courses yielding a minimum of 60 *credits* at the first attempt of full-time study or 30 *credits* at the first attempt of part-time study.

Provided that the *Senate* may permit a *candidate* to repeat *courses* the next time they are offered: Provided further that if the *candidate* again fails any *course*, her/his registration will be cancelled. By permission of the *Senate*, a *candidate* who fails a *course* may substitute an alternative *course*, in which event the *course* must be passed at first attempt, failing which her/his registration will be cancelled.

3.2 Degree of Bachelor of Science Honours

Qualification Name	Programme Code	NQF Exit Level
Bachelor of Science Honours	SHA00	8

3.2.1 Application of Rules

See Rule G3.

3.2.2 Admission Rules

- a) Subject to the provisions of 3.2.3, the Honours subject/field of study selected by a *candidate* shall, save by permission of the *Senate*, be one in which s/he passed the relevant major *course/s* (refer to 2.1.2.4 a) at this *University* or any other *university* whose *programme* has been approved by the *Senate*.
- b) A person may not normally be admitted as a *candidate* for Honours in a subject unless s/he has attained a minimum of 60 percent average in the final undergraduate *course/s*; but, in special circumstances, a *student* may be given permission by the *Senate* to be admitted as a *candidate* if s/he has a *qualification* that the *Senate* considers adequate for the purpose of *admission*.
- c) Any one of the following may be admitted by the *Senate* as a *candidate* for the degree of Bachelor of Science Honours:
 - i) a Bachelor of Science of the *University*: Provided that, by special permission of the *Senate*, a person who has obtained *credit* in all but one of the *courses* contained in her/his *programme* for the degree of Bachelor of Science may be admitted as a *candidate* for the degree of Bachelor of Science Honours and be registered concurrently for the degree of Bachelor of Science: Provided further that such *candidate* shall not be eligible to qualify for the degree of the Bachelor of Science Honours until s/he has obtained *credit* in the *course* outstanding for the degree of Bachelor of Science;
 - ii) a Bachelor of Science of any other *university* or equivalent; or
 - iii) a graduate of the *University* who holds a degree of Bachelor in another faculty, if the *Senate* has determined that the academic discipline in which the degree was obtained is relevant to the Honours subject for which s/he wishes to register.

Note: normally this standard is a minimum of 60 percent as set out in 3.2.2.

The Senate may require a person to attend and pass a course, or courses offered for the Bachelor of Science, or more than one such course either before being admitted as a candidate for the degree of Honours or while s/he is registered for it.

3.2.2.2 Requirements for admission to particular subjects

The following requirements are prescribed for *admission* to particular courses. Except with the permission of the Senate, a candidate shall not be admitted as a candidate for the degree of Honours in the courses listed under A unless s/he has obtained *credit* in a course or courses listed under B, or equivalent as acceptable to Senate.

A. Field of Study	B. Subject Requirements
Actuarial Science	Actuarial Science III with the appropriate exemptions or has passed the equivalent courses in the professional examinations or has obtained credit at <i>another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Animal, Plant and Environmental Sciences	Animal, Plant and Environmental Sciences courses or has obtained credit at <i>another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Applied Bioinformatics	Introduction to Bioinformatics III, and two other 18 credit MCB III courses, or equivalent as determined by the Senate.
Archaeology	Archaeology III, or has obtained credit at <i>another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Computational and Applied Mathematics	Computational and Applied Mathematics III, or has obtained credit at <i>another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Biochemistry and Cell Biology	Biochemistry and Cell Biology III, or has obtained credit at <i>another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Chemistry	Chemistry III, or has obtained credit at <i>another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard. A second course in Mathematics may be a prerequisite for some options offered in the Honours degree.
Computer Science	Computer Science III, a Higher Diploma in Computer Science, or has obtained credit at <i>another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Cybersecurity	Cybersecurity: Computer Science III and Mathematics II, or has obtained credit at <i>another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Environmental Studies	Environmental Studies III or any course in a cognate discipline in Science, Social Science or Humanities.
Genetics and Developmental Biology	Genetics and Developmental Biology III, or has obtained credit at <i>another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Geochemistry	Geology III or has obtained credit at <i>another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Geography	Geography III, or has obtained credit at <i>another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.

A. Field of Study	B. Subject Requirements
Geography, Archaeology and Environmental Studies	Geography III and Archaeology III, or has obtained <i>credit at another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Geographic Information System and Remote Sensing	Geography III, Environmental Studies III, Data Science III, Surveying III or any cognate discipline in Science with a background in GIS and Remote Sensing.
Geology	Geology III or has obtained <i>credit at another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Geophysics	Geology I, Mathematics II (or Computational and Applied Mathematics II) and Physics II and any two of the following: Geology III, Mathematics III, Computational and Applied Mathematics III and/or Physics III or has obtained <i>credit at another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Mathematics	Mathematics III (Major) or has obtained <i>credit at another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Mathematical Statistics	Mathematical Statistics III and Mathematics II or has passed the equivalent courses or has obtained <i>credit at another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Microbiology and Biotechnology	Microbiology and Biotechnology III, or has obtained <i>credit at another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Palaeontology	Animal, Plant and Environmental Sciences courses, Archaeology III, Anatomical Sciences III, Geology III or Geography III or its equivalent or has obtained <i>credit at another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Palaeontology and Geology	Geology III and either Plant Sciences III or Zoology III or its equivalent or has obtained <i>credit at another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.
Physics	Physics III or its equivalent or has obtained <i>credit at another university</i> in a course which, in the opinion of the Senate represents an equivalent standard.
Psychology	Psychological Research Design and Analysis IIA and a major in Psychology III or its equivalent or has obtained <i>credit at another university</i> in a course which, in the opinion of the Senate, represents an equivalent standard.

3.2.3 Curricula

3.2.3.1 Length of programme

Unless permitted or required otherwise by the Senate, the Honours programme extends over one academic year of full-time study or two academic years of part-time study.

3.2.3.2 Programme details for various fields of study

1) School of Animal, Plant and Environmental Sciences – Honours in the field of Animal, Plant and Environmental Sciences

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Animal, Plant and Environmental Sciences.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAAPES40	Total NQF Credits: 120		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
APES4030A	Research Project IV	52	8
APES4021A	Enabling Skills IV	17	8
Any three elective courses from the list below:			
APES4015A	Animal Behaviour and Ecology IV	17	8
APES4016A	Animal, Plant and Environment Sciences Honours Special Topic IV	17	8
APES4017A	Biocontrol IV	17	8
APES4018A	Biogeography IV	17	8
APES4019A	Ecological Engineering and Phytoremediation IV	17	8
APES4020A	Ecophysiology IV	17	8
APES4022A	Entomology IV	17	8
APES4023A	Ethnoecology IV	17	8
APES4026A	Freshwater Science – Field and Laboratory approaches IV	17	8
APES4027A	Global Change Impacts on Soil, Plants, Animals and Humans in Southern Africa IV	17	8
APES4028A	Plant Variation and Nomenclature IV	17	8
APES4029A	Pollination Ecology IV	17	8
APES4034A	Population Conservation IV	17	8
APES4035A	Climate Change - Exploring Science with Society IV	17	8
APES4036A	Global Change Impacts on Medicinal Plants IV	17	8
APES4037A	Analysis of Wildlife Populations IV	17	8
APES4038A	Transitions in Environmental Sustainability IV	17	8

Note: Not all elective courses will be offered in every year.

With prior permission of the Senate, a candidate may substitute one of the elective courses with a course or courses from another discipline yielding a minimum of 17 NQF level 8 credits.

2) School of Chemistry – Honours in the field of Chemistry

This programme is designed for candidates intending to graduate as professional chemists. A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Chemistry.

Programme Code: SHA00	NQF Exit Level: 8
Plan Code: SFACHEM40	Total NQF Credits: 120

Course Code	Course Description	NQF Credits	NQF Level
CHEM4012A	Research Projects in Chemistry IV	36	8
CHEM4007A	Analytical Chemistry IV	12	8
CHEM4008A	Contemporary Topics in Chemistry IV	30	8
CHEM4009A	Inorganic Chemistry IV	12	8
CHEM4010A	Organic Chemistry IV	12	8
CHEM4011A	Physical Chemistry IV	18	8

3) School of Computer Science and Applied Mathematics – Honours in the field of Computational and Applied Mathematics

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Computational and Applied Mathematics.

Programme Code: SHA00	NQF Exit Level: 8
Plan Code: SFACAMS41	Total NQF Credits: 132

Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
APPM4076A	Research Project: Computational and Applied Mathematics IV	30	8
COMS4057A	Introduction to Research Methods IV	6	8
APPM4054A	Mathematical Modelling IV	12	8
APPM4055A	Partial Differential Equations IV	12	8
APPM4056A	Symmetry Methods for Differential Equations IV	12	8
APPM4057A	Computational Differential Equations IV	12	8
APPM4059A	Continuum Mechanics IV	12	8
APPM4065A	Global Optimization IV	12	8

Any two elective courses from the list below:

APPM4058A	Digital Image Processing IV	12	8
APPM4060A	Galaxies and the Determination of Cosmological Parameters IV	12	8
APPM4061A	Studies in Applied Mathematics IV	12	8
APPM4062A	Studies in Mechanics IV	12	8
APPM4063A	Studies in Computational Mathematics IV	12	8
APPM4064A	Optimal Control Theory IV	12	8
COMS4062A	Probabilistic Graphical Models IV	12	8

Note: Not all elective courses will be offered in every year.

With prior permission of the Senate, a candidate may substitute not more than two of the elective courses with a course/s from another discipline yielding a minimum of 12 NQF level 8 credits.

Course Code	Course Description	NQF Credits	NQF Level
	An exemption will normally be granted in respect of a <i>credit</i> previously obtained but could be refused if, in the opinion of the Senate, the syllabus has changed in important respects or if two years have lapsed between the time the <i>credit</i> was obtained and the <i>exemption</i> is sought. If a candidate receives a mark of less than 40% for any <i>course</i> , the <i>course</i> is failed.		
	A candidate will be allowed to repeat a <i>course/s</i> within a two year period. A <i>course</i> may not be repeated more than once. Failed compulsory <i>course/s</i> must be repeated. Failed elective <i>course/s</i> in the first semester may be substituted with elective <i>course/s</i> offered in the second semester. A candidate must pass the Research Project with a minimum of 50% at the first attempt.		
4)	School of Computer Science and Applied Mathematics – Honours in the field of Computer Science		

A candidate must successfully complete the following *courses* to obtain a Bachelor of Science Honours in the field of Computer Science.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFACSCI41	Total NQF Credits: 120		
Course Code	Course Description	NQF Credits	NQF Level
<i>Compulsory courses:</i>			
COMS4059A	Research Project: Computer Science IV	30	8
COMS4057A	Introduction to Research Methods IV	6	8
<i>Any seven elective courses from the list below:</i>			
COMS4030A	Adaptive Computation and Machine IV	12	8
COMS4032A	Applications of Algorithms IV	12	8
COMS4033A	Artificial Intelligence IV	12	8
COMS4034A	Compilers IV	12	8
COMS4035A	Computational Molecular Biology IV	12	8
COMS4036A	Computer Vision IV	12	8
COMS4037A	Database IV	12	8
COMS4040A	High Performance Computing and Scientific Data Management IV	12	8
COMS4041A	Human Computer Interaction IV	12	8
COMS4043A	Multi-agent Systems IV	12	8
COMS4045A	Robotics IV	12	8
COMS4047A	Special Topics in Computer Science IV	12	8
COMS4048A	Data Analysis and Exploration IV	12	8
COMS4050A	Discrete Optimisation IV	12	8
COMS4054A	Natural Language Processing IV	12	8
COMS4055A	Mathematical Foundations of Data Science IV	12	8

Course Code	Course Description	NQF Credits	NQF Level
COMS4058A	Data Image Processing IV	12	8
COMS4060A	Introduction to Data Visualisation and Exploration IV	12	8
COMS4061A	Reinforcement Learning IV	12	8
COMS4062A	Probabilistic Graphical Models IV	12	8
COMS4064A	Cybersecurity IV	12	8
COMS4065A	Cryptography IV	12	8
COMS4068A	Data Privacy and Ethics IV	12	8
COMS4069A	Computational Intelligence IV	12	8
COMS4070A	Computational Neuroscience IV	12	8

Note: Not all elective courses will be offered in every year.

With prior permission of the Senate, a candidate may substitute one of the elective courses with a course/s from another discipline yielding a minimum of 12 NQF level 8 credits.

5) School of Computer Science and Applied Mathematics – Honours in the field of Computer Science (Part-time)

Entrance to Bachelor of Science Honours in the field of Computer Science on a part-time basis over a maximum of two years is at the discretion of the Senate and is subject to satisfying the entrance criteria as set by the Senate.

6) School of Computer Science and Applied Mathematics – Honours in the field of Big Data Analytics

Unless permitted or required otherwise by the Senate, the Honours programme extends over one academic year of full-time study.

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Big Data Analytics.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFABDAA41	Total NQF Credits: 120		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
COMS4058A	Research Project: Big Data Analytics IV	30	8
COMS4057A	Introduction to Research Methods IV	6	8
COMS4030A	Adaptive Computation and Machine Learning IV	12	8
COMS4048A	Data Analysis and Exploration IV	12	8
COMS4050A	Discrete Optimisation IV	12	8
COMS4060A	Introduction to Data Visualisation and Exploration IV	12	8
Any three elective courses from the list below:			
COMS4032A	Applications of Algorithms IV	12	8
COMS4033A	Artificial Intelligence IV	12	8
COMS4036A	Computer Vision IV	12	8

Course Code	Course Description	NQF Credits	NQF Level
COMS4040A	High Performance Computing and Scientific Data Management IV	12	8
COMS4047A	Special Topics in Computer Science IV	12	8
COMS4054A	Natural Language Processing IV	12	8
COMS4055A	Mathematical Foundations of Data Science IV	12	8
COMS4061A	Reinforcement Learning IV	12	8
COMS4062A	Probabilistic Graphical Models IV	12	8
COMS4068A	Data Privacy and Ethics IV	12	8

Note: Not all elective courses will be offered in every year.

With prior permission of the Senate, a candidate may substitute one of the elective courses with a course/s from another discipline yielding a minimum of 12 NQF level 8 credits.

7) School of Computer Science and Applied Mathematics – Honours in the field of Cybersecurity

Unless permitted or required otherwise by the Senate, the Honours programme extends over one academic year of full-time study.

Applicants must hold a BSc degree in Computer Science or an equivalent NQF Level 7 qualification, with demonstrable knowledge of core computing principles. This includes a background in programming, software engineering, networks, operating systems, algorithms, complexity analysis, as well as foundational knowledge in calculus, linear algebra, probability, and statistics. A minimum average of 70 percent in the NQF Level 7 qualification is required. Admission will be based on academic performance, capacity constraints, and the alignment of the applicant's background with the programme's technical focus.

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Cybersecurity.

Programme Code: SHA00	NQF Exit Level: 8
Plan Code: SFACYBS40	Total NQF Credits: 120

Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
COMS4030A	Adaptive Computation and Machine Learning IV	12	8
COMS4032A	Applications of Algorithms IV	12	8
COMS4057A	Introduction to Research Method IV	6	8
COMS4063A	Research Project: Cybersecurity IV	30	8
COMS4064A	Cybersecurity IV	12	8
COMS4065A	Cryptography IV	12	8
COMS4066A	Secure Systems Design and Analysis IV	12	8
COMS4067A	Offensive Security and Ethical Hacking IV	12	8
COMS4068A	Data Privacy and Ethics IV	12	8

8) School of Geography, Archaeology and Environmental Studies – Honours in the field of Archaeology

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Archaeology.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAARCH40	Total NQF Credits: 120		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
ARCL4025A	Research Project: Archaeology IV	40	8
ARCL4016A	Archaeology in the Field / Laboratory IV	20	8
ARCL4027A	Theory of Archaeology IV	20	8
Any two elective courses from the list below:			
ARCL4018A	Archaeometry IV	20	8
ARCL4019A	Archaeology of Food Production IV	20	8
ARCL4020A	Geoarchaeology IV	20	8
ARCL4021A	Historical Archaeology IV	20	8
ARCL4023A	Rock Art Management IV	20	8
ARCL4024A	Rock Art of Africa IV	20	8
ARCL4026A	Stone Age Archaeology IV	20	8
ARCL4028A	Classification in Archaeology IV	20	8

Note: Not all elective courses will be offered in every year.

With prior permission of the Senate, a candidate may substitute one of the elective courses with a course/s from another discipline yielding a minimum of 20 NQF level 8 credits.

Candidates will be required to spend a minimum of one month participating in fieldwork as approved by the Senate; credit for this fieldwork will be awarded through Archaeology in the Field / Laboratory (ARCL4016A).

9) School of Geography, Archaeology and Environmental Studies – Honours in the field of Geography

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Geography.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAGEOG40	Total NQF Credits: 120		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory course:			
GEOG4038A	Research Project: Geography IV	40	8
Any four elective courses from the list below:			
GEOG4015A	Geographic Information Systems IV	24	8

Course Code	Course Description	NQF Credits	NQF Level
GEOG4034A	Environmental Management: Water Challenges in South Africa IV	20	8
GEOG4052A	Politics of the Green Economy IV	20	8
GEOG4041A	Understanding Cities in Africa IV	20	8
GEOG4044A	Global Atmospheric Change IV	20	8
GEOG4045A	Disaster Risk and Geohazards IV	20	8
GEOG4046A	Nature and Society IV	20	8
GEOG4047A	Air Pollution and Health Impacts IV	20	8
GEOG4049A	Advanced Remote Sensing of Environment IV	20	8

Note: Not all elective courses will be offered in every year.

With prior permission of the Senate, a candidate may substitute one of the elective courses with a course/s from another discipline yielding a minimum of 20 NQF level 8 credits.

10) School of Geography, Archaeology and Environmental Studies – Honours in the field of Geography, Archaeology and Environmental Studies

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Geography, Archaeology and Environmental Studies.

Programme Code: SHA00		NQF Exit Level: 8	
Plan Code: SFAGAES40		Total NQF Credits: 120	
Course Code	Course Description	NQF Credits	NQF Level
Compulsory course:			
GEOG4036A	Research Project: Geography, Archaeology and Environmental Studies IV	40	8
Any four elective courses from the list below:			
ARCL4016A	Archaeology in the Field / Laboratory IV	20	8
ARCL4018A	Archaeometry IV	20	8
ARCL4019A	Archaeology of Food Production IV	20	8
ARCL4020A	Geoarchaeology IV	20	8
ARCL4021A	Historical Archaeology IV	20	8
ARCL4023A	Rock Art Management IV	20	8
ARCL4024A	Rock Art of Africa IV	20	8
ARCL4026A	Stone Age Archaeology IV	20	8
ARCL4027A	Theory of Archaeology IV	20	8
ARCL4028A	Classification in Archaeology IV	20	8
GEOG4015A	Geographic Information Systems IV	24	8
GEOG4034A	Environmental Management: Water Challenges in Southern Africa IV	20	8

Course Code	Course Description	NQF Credits	NQF Level
GEOG4052A	Politics of the Green Economy IV	20	8
GEOG4041A	Understanding Cities in Africa IV	20	8
GEOG4044A	Global Atmospheric Change IV	20	8
GEOG4045A	Disaster Risk and Geohazards IV	20	8
GEOG4047A	Air Pollution and Health Impacts IV	20	8
GEOG4049A	Advanced Remote Sensing of Environment IV	20	8

Note: Not all elective courses will be offered in every year.

With prior permission of the Senate, a candidate may substitute one of the elective courses with a course/s from another discipline yielding a minimum of 20 NQF level 8 credits.

11) School of Geography, Archaeology and Environmental Studies – Honours in the field of Geographic Information System and Remote Sensing

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Geographic Information System and Remote Sensing.

Programme Code: SHA00	NQF Exit Level: 8
Plan Code: SFAGEIS40	Total NQF Credits: 124

Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
GEOG4048A	Research Project: Geospatial IV	40	8
GEOG4015A	Geographic Information Systems IV	24	8
GEOG4049A	Advanced Remote Sensing of Environment IV	20	8
GEOG4051A	Geospatial Programming IV	20	8
Any one elective course from the list below:			
GEOG4034A	Environmental Management: Water Challenges in South Africa IV	20	8
GEOG4045A	Disaster Risk and Geohazards IV	20	8
GEOG4050A	Advanced Selected Topics in Remote Sensing and Geographic Information System IV	20	8

Note: Not all elective courses will be offered in every year.

With prior permission of the Senate, a candidate may substitute one of the elective courses with a course/s from another discipline yielding a minimum of 20 NQF level 8 credits.

12) School of Geography, Archaeology and Environmental Studies – Honours in the field of Environmental Studies

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Environmental Studies.

Programme Code: SHA00	NQF Exit Level: 8
Plan Code: SFAENVS40	Total NQF Credits: 120

Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
GAES4002A	Research Project: Environmental Studies IV	40	8
GAES4003A	Research Methods in Environmental Studies IV	20	8
GAES4001A	Environmental Policy and Practice IV	20	8
GAES4000A	Integrated Environmental Management IV	20	8
Any one elective course from the list below:			
ARCL4018A	Archaeometry IV	20	8
ARCL4019A	Archaeology of Food Production IV	20	8
ARCL4020A	Geoarchaeology IV	20	8
ARCL4021A	Historical Archaeology IV	20	8
ARCL4023A	Rock Art Management IV	20	8
ARCL4024A	Rock Art of Africa IV	20	8
ARCL4026A	Stone Age Archaeology IV	20	8
ARCL4027A	Theory of Archaeology IV	20	8
ARCL4028A	Classification of Archaeology IV	20	8
GEOG4015A	Geographic Information Systems IV	24	8
GEOG4047A	Air Pollution and Health Impacts IV	20	8
GEOG4034A	Environmental Management: Water Challenges in South Africa IV	20	8
GEOG4052A	Politics of the Green Economy IV	20	8
GEOG4041A	Understanding Cities in Africa IV	20	8
GEOG4044A	Global Atmospheric Change IV	20	8
GEOG4045A	Disaster Risk and Geohazards IV	20	8

Note: Not all elective courses will be offered in every year.

13) School of Geosciences – Honours in the field of Geology

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Geology.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAGEOL41	Total NQF Credits: 120		
Course Code	Course Description	NQF Credits	NQF Level
GEOL4029A	Research Project: Geology IV	40	8
GEOP4009A	Geophysics for Geologists IV	10	8
GEOL4014A	Hydrogeology IV	10	8
GEOL4025A	Advanced Petrology and Geochemistry IV	10	8

Course Code	Course Description	NQF Credits	NQF Level
GEOL4026A	Earth Evolution and Global Tectonics IV	10	8
GEOL4027A	Exploration, Mining, Economics, and Entrepreneurship IV	10	8
GEOL4028A	Geographic Information Systems and Remote Sensing in Geology IV	10	8
GEOL4030A	Structural Geology and Mineralisation Processes IV	20	8

14) School of Geosciences – Honours in the field of Geochemistry

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Geochemistry.

Programme Code: SHA00	NQF Exit Level: 8
Plan Code: SFAGECH41	Total NQF Credits: 120

Course Code	Course Description	NQF Credits	NQF Level
GEOL4029A	Research Project: Geology IV	40	8
GEOP4009A	Geophysics for Geologists IV	10	8
GEOL4014A	Hydrogeology IV	10	8
GEOL4024A	Surficial Geochemistry IV	10	8
GEOL4025A	Advanced Petrology and Geochemistry IV	10	8
GEOL4028A	Geographic Information Systems and Remote Sensing in Geology IV	10	8
GEOL4030A	Structural Geology and Mineralisation Processes IV	20	8
GEOL4031A	Solid Earth Geochemistry and Geoanalysis IV	10	8

15) School of Geosciences – Honours in the field of Geophysics

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Geophysics.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAGEOP40	Total NQF Credits: 120		
Course Code	Course Description	NQF Credit	NQF Level
GEOP4008A	Research Project: Geophysics IV	30	8
GEOP4004A	Mathematical and Computational Geophysics IV	16	8
GEOP4005A	Advanced Potential Theory IV	16	8
GEOP4006A	Seismology IV	16	8
GEOP4007A	Electrical and Electromagnetic Methods IV	16	8
GEOP4010A	Global Geophysics IV	16	8
GEOP4011A	Africa Array Field School IV	10	8

16) School of Geosciences – Honours in the field of Palaeontology

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Palaeontology.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAPALE40	Total NQF Credits: 120		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
PALP4024A	Research Project: Palaeontology IV	40	8
PALP4010A	Comparative Osteology, Quantitative Methods and Field Techniques IV	10	8
PALP4011A	Phylogenetics IV	10	8
PALP4012A	Statistics and Geometric Morphometrics IV	10	8
PALP4016A	Taphonomy and Biostratigraphy IV	10	8
Any four elective courses from the list below:			
PALP4013A	Hominid Evolution and Osteology IV	10	8
PALP4014A	Invertebrate Palaeontology IV	10	8
PALP4015A	Terrestrial and Marine Micropalaeontology IV	10	8
PALP4017A	Archosaurs Evolution IV	10	8
PALP4018A	Synapsid Evolution IV	10	8
PALP4019A	Evolution of Terrestrial Ecosystems IV	10	8
PALP4020A	Evolution of Mammals IV	10	8
PALP4026A	Plio-Pleistocene Palaeoecology IV	10	8
Note: Not all elective courses will be offered in every year.			

17) School of Geosciences – Honours in the field of Palaeontology and Geology

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Palaeontology and Geology.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAPAAG42	Total NQF Credits: 120		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
PALP4025A	Research Project: Palaeontology and Geology IV	40	8
PALP4016A	Taphonomy and Biostratigraphy IV	10	8
GEOL4026A	Earth Evolution and Global Tectonics IV	10	8
GEOL4018A	Sedimentary Basin Analysis IV	10	8
GEOL4030A	Structural Geology and Mineralisation Processes IV	20	8
Any three elective courses from the list below:			

Course Code	Course Description	NQF Credits	NQF Level
GEOL4014A	Hydrogeology IV	10	8
PALP4010A	Comparative Osteology, Quantitative Methods and Field Techniques IV	10	8
PALP4011A	Phylogenetics IV	10	8
PALP4013A	Hominid Evolution and Osteology IV	10	8
PALP4014A	Invertebrate Palaeontology IV	10	8
PALP4015A	Terrestrial and Marine Micropalaeontology IV	10	8
PALP4017A	Archosaurs Evolution IV	10	8
PALP4018A	Synapsid Evolution IV	10	8
PALP4019A	Evolution of Terrestrial Ecosystems IV	10	8
PALP4020A	Evolution of Mammals IV	10	8
PALP4026A	Plio-Pleistocene Palaeontology IV	10	8

Note: Not all elective courses will be offered in every year.

18) School of Human and Community Development – Honours in the field of Psychology

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Psychology.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAPSYC40	Total NQF Credits: 122		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
PSYC4045A	Research Methods in Psychology	23	8
PSYC4044A	Research Essay on an approved topic	30	8
Any three elective courses from the list below:			
PSYC4034A	Psychological Assessment: Theory and Research	23	8
PSYC4042A	Qualitative and Programme Evaluation Techniques	23	8
PSYC4026A	Mind, Brain and Behaviour	23	8
PSYC4007A	Cognitive Neuroscience	23	8
PSYC4046A	Social Psychology	23	8
PSYC4009A	Community Psychology	23	8
PSYC4057A	Health Psychology	23	8
PSYC4035A	Psychological Interventions	23	8
PSYC4029A	Personality and Psychopathology	23	8
PSYC4032A	Psychoanalytic Theory	23	8
PSYC4058A	Developmental Psychology	23	8
PSYC4066A	Selected Topic in Psychology	23	8

Course Code	Course Description	NQF Credits	NQF Level
PSYC4070A	Inclusive Education - Learning Support	23	8
PSYC4072A	Everyday Life and Social Interaction	23	8
PSYC4073A	Narratives of Youth Identity	23	8
PSYC4074A	Gender in Psychology	23	8

Note: With prior permission of the Senate, a candidate may substitute one of the elective courses with a course/s from another discipline yielding a minimum of 23 NQF level 8 credits.

19) School of Mathematics – Honours in the field of Mathematics

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Mathematics.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAMATH40	Total NQF Credits: 120		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
MATH4026A	Research Project: Mathematics IV	36	8
MATH4016A	Algebra IV	12	8
MATH4021A	Functional Analysis IV	12	8
MATH4025A	Measure Theory IV	12	8
MATH4027A	Topology IV	12	8
Any three elective courses from the list below:			
MATH4017A	Asymptotics/Approximation Theory IV	12	8
MATH4018A	Calculus Variations IV	12	8
MATH4019A	Combinatorics IV	12	8
MATH4020A	Complex Analysis IV	12	8
MATH4022A	Geometry and Algebraic Topology IV	12	8
MATH4023A	Graph Theory IV	12	8
MATH4024A	Number Theory IV	12	8
MATH4028A	Mathematical Logic IV	12	8

Note: Not all elective courses will be offered in every year.

With prior permission of the Senate, a candidate may substitute two of the elective courses with a course/s from another discipline yielding a minimum of 12 NQF level 8 credits.

School of Molecular and Cell Biology

Candidates will complete theoretical topics and research in the field of molecular and cellular biology, biotechnology and applied bioinformatics. The purpose of these programmes are to encourage and guide candidates to critically examine and develop an appreciation of the integrative nature of biology, especially in its application through biotechnology, and to give candidates exposure to the range of experimental and analytical techniques fundamental to research at the molecular and cellular level.

Candidates are grounded in the research process, from conceptualisation and design of the project to its execution and dissemination and discussion of its findings. The programme enables candidates to become independent researchers and develop professional attitudes and skills.

20) School of Molecular and Cell Biology – Honours in the field of Biochemistry and Cell Biology

A candidate must complete the following courses to qualify for a Bachelor of Science Honours in the field of Biochemistry and Cell Biology.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFABACB41	Total NQF Credits: 120		
Course Code	Course Description	NQF Credits	NQF Level
MCBG4029A	Research Project: Biochemistry and Cell Biology IV	60	8
MCBG4027A	Current Topics in Molecular and Cell Biology IV	24	8
MCBG4028A	Laboratory Techniques in Molecular and Cell Biology IV	36	8

21) School of Molecular and Cell Biology – Honours in the field of Genetics and Developmental Biology

A candidate must complete the following courses to qualify for a Bachelor of Science Honours in the field of Genetics and Developmental Biology.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAGADB41	Total NQF Credits: 120		
Course Code	Course Description	NQF Credits	NQF Level
MCBG4031A	Research Project: Genetics and Developmental Biology IV	60	8
MCBG4027A	Current Topics in Molecular and Cell Biology IV	24	8
MCBG4028A	Laboratory Techniques in Molecular and Cell Biology IV	36	8

22) School of Molecular and Cell Biology – Honours in the field of Microbiology and Biotechnology

A candidate must complete the following courses to qualify for a Bachelor of Science Honours in the field of Microbiology and Biotechnology.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAMABI41	Total NQF Credits: 120		
Course Code	Course Description	NQF Credits	NQF Level
MCBG4032A	Research Project: Microbiology and Biotechnology IV	60	8
MCBG4027A	Current Topics in Molecular and Cell Biology IV	24	8
MCBG4028A	Laboratory Techniques in Molecular and Cell Biology IV	36	8

23) School of Molecular and Cell Biology – Honours in the field of Applied Bioinformatics

A candidate must complete the following courses to qualify for a Bachelor of Science Honours in the field of Applied Bioinformatics.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAABIO41	Total NQF Credits: 120		
Course code	Course Description	NQF Credits	NQF Level
MCBG4030A	Research Project: Applied Bioinformatics IV	60	8
MCBG4027A	Current Topics in Molecular and Cell Biology IV	24	8
MCBG4028A	Laboratory Techniques in Molecular and Cell Biology IV	36	8

24) School of Physics – Honours in the field of Physics

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Physics.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAPHYS40	Total NQF Credits: 121		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
PHYS4018A	Research Project: Physics IV	30	8
PHYS4011A	Quantum Mechanics IV	13	8
PHYS4012A	Statistical Physics IV	13	8
PHYS4014A	Nuclear Physics I IV	13	8
PHYS4015A	Electrodynamics IV	13	8
PHYS4016A	Solid State I IV	13	8
Any two elective courses from the list below:			
PHYS4013A	Physics of Nano systems IV	13	8
PHYS4017A	Solid State Physics II IV	13	8
PHYS4019A	Mathematical Methods for Physics IV	13	8
PHYS4020A	Astrophysical Fluid Mechanics IV	13	8
PHYS4021A	General Relativity IV	13	8
PHYS4022A	Experimental Physics Techniques IV	13	8
PHYS4023A	Introduction to Cosmology IV	13	8
PHYS4024A	Introduction to Computational Materials Science IV	13	8
PHYS4025A	Introduction to the Standard Model IV	13	8
PHYS4026A	Nuclear Physics II IV	13	8
PHYS4027A	Physical Cosmology IV	13	8
PHYS4028A	Introduction to Quantum Field Theory IV	13	8
PHYS4029A	Introduction to Experimental Particle Physics IV	13	8

Course Code	Course Description	NQF Credits	NQF Level
Note: Not all elective courses will be offered in every year.			
With prior permission of the Senate, a candidate may substitute one of the elective courses with a course/s from another discipline yielding a minimum of 13 NQF level 8 credits.			
Applicants from other universities may be required to take additional topics and/or laboratory components, to be specified by the Senate. This may in some cases require an 18 or 24 month registration for Honours.			

25) School of Physics – Honours in the field of Physics (Part-time)

Entrance to Bachelor of Science Honours in Physics on a part-time basis over a maximum of two years is at the discretion of the Senate and is subject to satisfying the entrance criteria as set by the Senate.

26) School of Statistics and Actuarial Science – Honours in the field of Mathematical Statistics

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Mathematical Statistics.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAMSTA40	Total NQF Credits: 120		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
STAT4113A	Research Project: Mathematical Statistics IV	36	8
STAT4117A	Advanced Multivariate Methods IV	12	8
STAT4120A	Bayesian Methods IV	12	8
STAT4126A	Statistical Simulations IV	12	8
Any four elective courses from the list below:			
STAT4038A	Selected Topics in Mathematical Statistics	12	8
STAT4102A	Applied Sampling IV	12	8
STAT4104A	Extreme Value Theory IV	12	8
STAT4107A	Spatial Statistics IV	12	8
STAT4111A	Reliability and Maintenance Theory IV	12	8
STAT4116A	Operations Research Techniques IV	12	8
STAT4118A	Advanced Probability Theory IV	12	8
STAT4119A	Advanced Statistical Elements of Machine Learning IV	12	8
STAT4121A	Biostatistics IV	12	8
STAT4122A	Advanced Time Series IV	12	8
STAT4123A	Modern Non-Parametric Methods IV	12	8
STAT4124A	Statistical Information Theory and Coding IV	12	8
STAT4125A	Statistical Methods for Reliability Analysis IV	12	8

Note: Not all elective courses will be offered in every year.

With prior permission of the Senate, a candidate may substitute one of the elective courses with a course/s from another discipline yielding a minimum of 12 NQF level 8 credits.

27) School of Statistics and Actuarial Science – Honours in the field of Mathematical Statistics (Part-time)

Entrance to Bachelor of Science Honours in Mathematical Statistics on a part-time basis over a maximum of two years is at the discretion of the Senate and is subject to satisfying the entrance criteria as set by the Senate.

28) School of Statistics and Actuarial Science – Honours in the field of Actuarial Science

A candidate must successfully complete the following courses to obtain a Bachelor of Science Honours in the field of Actuarial Science.

Programme Code: SHA00	NQF Exit Level: 8		
Plan Code: SFAACSI40	Total NQF Credits: 138		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses: **			
STAT4095A	Research Project: Actuarial Science IV	35	8
STAT4092A	Actuarial Liability Management IV	15	8
STAT4093A	Actuarial Marketing and Product Development IV	20	8
STAT4094A	Investment and Asset Management IV	20	8
Any two elective courses from the list below:**			
STAT4097A	Actuarial Practice in Life Assurance IV	24	8
STAT4099A	Actuarial Practice in General Insurance IV *	24	8
STAT4100A	Actuarial Financial Theory and Application IV	24	8
STAT4127A	Actuarial Practice in Banking IV**	24	8
STAT4128A	Actuarial Practice in Health, Social and Employee Benefits IV	24	8

*Actuarial Science III and Mathematical Statistics III are prerequisites.

**Actuarial Science III or the equivalent professional course is a prerequisite.

Note: Not all elective courses will be offered in every year.

With prior permission of the Senate, a candidate may substitute one of the elective courses with a course/s from the Schools of Economic and Business Science or from Mathematical Sciences yielding a minimum of 24 NQF level 8 credits.

3.2.4 Progression Rules

A candidate who has not satisfied all the requirements for the Bachelor of Science Honours Programme, which include passing the Research Project associated with the field of study for which s/he is registered, shall be deemed to have failed, unless the Senate grants her/him an extension of time. If the Senate grants her/him an extension of time s/he shall be required to register for the ensuing academic year.

3.2.4.1 Repeating of courses and re-examination

A candidate who fails an Honours examination or part of an examination may be permitted by the Senate to present herself/himself for the examination again or that part of it at such time as the Senate may determine. Such a candidate may be required to re-attend the course or such parts of the course as the Senate may determine prior to such re-examination.

3.2.5 Completion Rules

A *candidate* shall qualify for the award of the degree when s/he has:

- a) obtained *credit* in all the prescribed courses in accordance with 3.2.3.2; and
- b) attained a standard in her/his Research Project considered by the Senate to be satisfactory in accordance with 3.2.4.
- c) Conferment of *Qualification* with Distinction:
 - i) all the prescribed courses in the *qualification* must have been passed at the first attempt;
 - ii) the *qualification* must have been completed in the minimum period of time (one year full-time and two years part-time);
 - iii) all prescribed courses are passed with a minimum weighted average of 75 percent and a subminimum of 60 percent in each of the relevant courses; and
 - iv) the research component is passed with a minimum of 75 percent.
 - v) Any additional *courses* registered for will not be considered when determining if a *student* qualifies with distinction.

3.3 Degree of Master of Science (MSc)

Qualification Name	Programme Code	NQF Exit Level
MSc by Coursework and Research Report	SCA00	9
MSc by Research	SRA00	9

3.3.1 Application of Rules

See Rule G3.

A person who wishes to be admitted as a *candidate* for the degree must apply online or submit her/his application to the Student Enrolment Centre (SEnC), and must indicate the line of research which s/he wishes to conduct.

3.3.2 Admission Rules

Any of the following may be admitted by the Senate as a *candidate* for the degree of Master of Science if the Senate is satisfied that the *applicant* is qualified to undertake the line of study or research proposed (or both):

- a) a Bachelor of Science Honours of this or *another university*;
- b) a graduate of this or *another university* who holds a degree in another faculty whose *curriculum* has ordinarily extended over not less than four academic years of full-time study;
- c) a person other than a graduate who has in any other manner satisfied the Senate that s/he is so qualified; and
- d) a person who has been accepted as a *candidate* for the degree of Master of Science by virtue of having obtained at *any other university* or institution such *qualification* as is, in the opinion of the Senate, equivalent to or higher than the degree of Bachelor of Science Honours in the *University*.

3.3.3 Curricula

3.3.3.1 Length of programme

The *curriculum* for the degree shall extend over a period of not less than one *academic year* of study.

3.3.3.2 Methods of study

A person who wishes to be admitted as a *candidate* for the award of Master of Science may elect to:

- a) conduct research, or
- b) attend and by examination complete a *programme* of advanced study and submit a *Research Report*.

3.3.3.3 Conditions for the degree of Master of Science

A) MSc by Research (SRA00)

- a) i) A *candidate* for the degree of Master of Science by research shall conduct during not less than one *academic year* advanced study or research, or both, under the guidance of a supervisor appointed by the Senate either in the *University* or in an institution deemed by the Senate to be part of the *University* for this purpose;

Provided that a person admitted under 3.3.3.1 shall be deemed to have commenced this period of advanced study or research at the date of her/his *admission* as a *candidate* for the degree of Master of Science or such later date as the Senate may determine in her/his case.

- ii) For the purposes of 3.3.3.3A a) i) above study or research "in the *University*" means study or research under the control of an academic school in the *University*.
- iii) The advanced study or research or both, as the case may be, shall be in the subject in which the *candidate* has obtained an Honours or equivalent *qualification*: Provided that the Senate may permit a *candidate* to pursue advanced study or research or both in a cognate subject in which event it may require her/his to attend such *courses* and to pass such *examinations*.
- b) A person who is admitted as a *candidate* for the degree shall, after consultation with the supervisor, present for the approval of the Senate a *dissertation* on a subject approved by the Senate, such *dissertation* to show acquaintance with methods of research, and shall, if required by the Senate, present herself/himself for such *examination* in regard to the subject of her/his *dissertation* as it may determine.
- c) A *candidate* for the degree of master must submit for *examination* an electronic copy of her/his *dissertation* via email or any other electronic platform designated by the faculty office. In exceptional circumstances the examiner may request a hard copy of the *dissertation*. In such a case, the *candidate* will be required to provide a bound hard copy or copies, together with the electronic version. Copies must be in a format that, in the opinion of the Senate, is suitable for submission to the examiners.

Prior to graduation, a *candidate* must submit a final, corrected electronic copy of her/his *dissertation* via email or any other designated electronic platform designated by the faculty office.

- d) A Bachelor of Science of the *University* may, by permission of the Senate, register for the degrees of Honours and Master's concurrently, but shall not be awarded the degree of Master of Science until a minimum of one year after her/his award of the degree of Bachelor of Science Honours.

(Note: An institution is normally deemed by the Senate to be part of the *University* only for the purpose of the research of an individual *candidate*.)

B) MSc by Coursework and Research Report (SCA00)

- a) A candidate for the degree shall:
 - i) attend, perform the work of the class and any other work as the Senate may prescribe, and, as the Senate determines, present herself/himself for examination or present such work in lieu thereof as may be required of her/his in the courses prescribed in the Syllabuses;
 - ii) be required to obtain *credit* in every *course* at the first attempt: Provided that the Senate may, in a case considered by it to be exceptional, permit a candidate who has completed all but one of the courses to repeat such *course* the next time it is offered or if the *course* is not available the following year, with the approval of the Senate, to register for another *course* which is offered the following year (If the candidate fails to pass the *course* s/he is repeating s/he will be required to cancel her/his registration.); and
 - iii) the Senate may in circumstances considered by it to be exceptional *credit* a candidate with *courses* on the grounds of her/his having obtained *credit* in the same or a similar *course*, either in the *University* or elsewhere: Provided that such *credits* do not exceed half of the total number of *credits* prescribed for the degree.
- b) A candidate shall conduct, under the guidance of a supervisor appointed by the Senate, research on a topic approved by the Senate either in the *University* or in an institution deemed by the Senate to be part of the *University* for this purpose, and shall submit a *Research Report* for the approval of the Senate.

Note: In some instances a *candidate* is permitted by the Senate to conduct research at an institution which is not under the control of a school or department of the *University* but which is recognised by the Senate as being an appropriate place for the purpose of the research of an individual *candidate*.

- c) A candidate shall, after consultation with her/his supervisor, submit a *Research Report* by a date to be determined by the Senate, which date is hereinafter referred to as 'the due date'.
- d) A candidate for the degree of master must submit for examination an electronic copy of her/his *Research Report* via email or any other electronic platform designated by the faculty office. In exceptional circumstances the examiner may request a hard copy of the *Research Report*. In such a case, the *candidate* will be required to provide a bound hard copy or copies, together with the electronic version. Copies must be in a format that, in the opinion of the Senate, is suitable for submission to the examiners.

Prior to graduation, a *candidate* must submit a final, corrected electronic copy of her/his *Research Report* via email or any other designated electronic platform designated by the faculty office.

- e) The due date may be extended from time to time by the Senate if it is satisfied that by reason of illness or for some good and sufficient cause the *candidate* would suffer hardship to an exceptional degree if the due date were not so extended.
- f) A *candidate* who fails to obtain the approval of the Senate for her/his *Research Report* may be permitted by the Senate to submit a revised *Research Report* by such date as it may determine.
- g) Notwithstanding anything in the foregoing contained, a *candidate* may be required or permitted by the Senate to submit a *Research Report* on a new topic approved by the Senate in terms of these Rules, by such date as the Senate may determine.
- h) A *candidate* shall, if required by the Senate, present herself/himself for such assessment in regard to the subject of her/his *Research Report* as the Senate may determine.

3.3.3.4 Fields of Study

A) MSc by Research (SRA00)

The Master of Science degree by *Dissertation* may be offered in the following fields of study:

School	Field of Study Code	Field of Study Description
Animal, Plant and Environmental Sciences	APES8003A	Animal, Plant and Environmental Sciences
Chemistry	CHEM8003A	Chemistry
Computer Science and Applied Mathematics	APPM8003A	Computational and Applied Mathematics
Computer Science and Applied Mathematics	COMS8003A	Computer Science
Geography, Archaeology and Environmental Studies	ARCL8003A	Archaeology
Geography, Archaeology and Environmental Studies	GEOG8003A	Geography and Environmental Studies
Geosciences	GEOL8003A	Geology
Geosciences	GEOP8003A	Geophysics
Geosciences	PALP8003A	Palaeontology
Mathematics	MATH8003A	Mathematics
Molecular and Cell Biology	MCBG8002A	Molecular and Cell Biology
Physics	PHYS8003A	Physics
Statistics and Actuarial Science	STAT8003A	Mathematical Statistics

Note: The University cannot guarantee that all fields will be offered every year. Curricula are available in the relevant academic departments or schools.

B) MSc by Coursework and Research Report (SCA00)

The Master of Science degree by Coursework and *Research Report* may be offered in the following fields of study:

School	Field of Study
Animal, Plant and Environmental Sciences	Interdisciplinary Global Change Studies
Computer Science and Applied Mathematics	Artificial Intelligence
Computer Science and Applied Mathematics	Artificial Intelligence for Games
Computer Science and Applied Mathematics	Computational and Applied Mathematics
Computer Science and Applied Mathematics	Computer Science
Computer Science and Applied Mathematics	Cybersecurity
Computer Science and Applied Mathematics	Data Science
Computer Science and Applied Mathematics	e-Science
Computer Science and Applied Mathematics	Robotics
Computer Science and Applied Mathematics	Mathematical Sciences (Interdisciplinary)

School	Field of Study
Geography, Archaeology and Environmental Studies	Geographical Information Systems and Remote Sensing
Geography, Archaeology and Environmental Studies	Science Communication
Geography, Archaeology and Environmental Studies	Environmental Sciences
Geosciences	Economic Geology
Geosciences	Hydrogeology
Mathematics	Mathematics
Physics	Astrophysics
Physics	Medical Physics
Physics	Radiation Protection

Note: The University cannot guarantee that all fields will be offered every year. Curricula are available in the relevant academic departments or schools.

3.3.3.5 Programme details for various fields of study within the MSc by Coursework and Research Report

1) School of Animal, Plant and Environmental Sciences – MSc by Coursework and Research Report in the field of Interdisciplinary Global Change Studies

An applicant must have a BA Honours, BCom Honours, LLB, BEd Honours or BSc Honours and in some cases with approval by the Global Change Institute (GCI) Director. Elective courses are subject to school specific entry requirements.

A candidate must successfully complete the following courses to obtain a Master of Science in the field of Interdisciplinary Global Change Studies.

Programme Code: SCA00	NQF Exit Level: 9		
Plan Code: SFAIGCL60	Total NQF Credits: 180		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
APES7021A	Interdisciplinary Global Change Studies Research Report	90	9
APES7028A	Introduction to Global Environmental Change	30	9
APES7029A	Sustainability Science and Governance	30	9
Select any course/s from the list below yielding a minimum of 30 credits:			
APES7004A	Maintaining Ecosystem Processes: Foundations	15	9
GAES7000A	Globalisation of Food	30	9
GAES7001A	Environmental Monitoring and Assessment	30	9
GAES7002A	Landscapes and Climate Change	30	9
GAES7005A	Sustainable Ecotourism	30	9
GAES7006A	People and Palaeoecology	30	9

Course Code	Course Description	NQF Credits	NQF Level
GAES7007A	Knowledge, Society, Precarity: Science and Communication in an Era of Climate Crisis	30	9
ECON7016A	Development	15	9
ECON7057A	Gender Economics	15	9
ECON7070A	Introduction to Inequality Studies	15	9
ECON7071A	Inequality Studies: Theory and Methods	15	9
ECON7074A	Political Economy and Development	15	9
LAWS7215A	Environmental Law and Sustainability I	30	8
POLS7006A	Development Theories, Issues, Problems and Strategies	30	9
POLS7056A	Equality	30	9
SOCL7009A	Development as Ideology and Practice	30	9
SOCL7010A	Economic Sociology	30	9
SOCL7011A	Environmental Sociology	30	9
SOCL7043A	Sociology of Land and Agrarian Reform in Southern Africa	30	9

Note: Not all elective courses will be offered in every year.
Elective courses may be selected subject to the approval of the Senate.

2) School of Geography, Archaeology and Environmental Studies – MSc by Coursework and Research Report in the field of Geographical Information Systems and Remote Sensing

A candidate must successfully complete the following courses to obtain a Master of Science degree in the field of Geographical Information Systems and Remote Sensing.

Programme Code: SCA00	NQF Exit Level: 9		
Plan Code: SFAGINF61	Total NQF Credits: 210		
Course Code	Course Description	NQF Credits	NQF Level
GEOG7000A	Environmental Studies Research Report	90	9
GEOG7049A	Research Methods in GIS and Remote Sensing	15	9
STAT7006A	Spatial Statistics	15	9
STAT7063A* and STAT7064A*	Statistical Research Design and Analysis (Coursework) and Statistical Research Design and Analysis (Project)	18 12	9 9
GEOG7048A	Advanced Applied Geographical Information Systems	15	9
GEOG7044A	Advanced Applied Remote Sensing	15	9
GEOG7047A	Cloud Computing for Geospatial Analytics	15	9
GEOG7046A	Project Management for Geospatial Professionals	15	9

* If this course or an equivalent has been successfully completed before, a candidate will not be permitted to register for it as part of this qualification; an alternative course will have to be selected.

3) School of Geography, Archaeology and Environmental Studies – MSc by Coursework and Research Report in the field of Environmental Sciences.

Applicants are required to have a **Honours degree in Environmental Studies or any cognate discipline in Science, Social Science or Humanities or a relevant NQF level 8 qualification.**

A candidate must successfully complete the following courses to obtain a Master of Science in the field of Environmental Sciences.

Programme Code: SCA00	NQF Exit Level: 9
Plan Code: SFAENVS60	Total NQF Credits: 180

Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
GAES7003A or [GAES7008A and GAES7009A]	Research Report: Environmental Science Full-time or [Research Report: Environmental Science Part-time I and Research Report: Environmental Science Part-time II]	90 45 45	9 9 9
Any three elective courses from the list below:			
GAES7000A	Globalisation of Food	30	9
GAES7001A	Environmental Monitoring and Assessment	30	9
GAES7002A	Landscapes and Climate Change	30	9
GAES7005A	Sustainable Tourism	30	9
GAES7006A	People and Palaeoecology	30	9
GAES7007A	Knowledge, Society, Precarity: Science and Communication in an Era of Climate Crisis	30	9
GAES7010A	Environmental Science Research: Masterclass and Case Studies	30	9

Note: Not all elective courses will be offered in every year.

4) School of Geography, Archaeology and Environmental Studies – MSc by Coursework and Research Report in the field of Science Communication.

Applicants are required to have a **Honours degree or equivalent that aligns with this field of study.**

A candidate must successfully complete the following courses to obtain a Master of Science in the field of Science Communication.

Programme Code: SCA00	NQF Exit Level: 9
Plan Code: SFACMSC60	Total NQF Credits: 180

Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
GAES7011A	Science Communication	30	9
GAES7012A	Research Report: Science Communication	90	9

Course Code	Course Description	NQF Credits	NQF Level
Any elective courses from the list below yielding a minimum of 60 credits:			
GAES7007A	Knowledge, Society, Precarity: Science and Communication in an Era of Climate Crisis	30	9
COMH7221A	Health and Society	15	9
MDLL7015A	Fantasy Science Fiction and the Fiction of the Unreal	30	9
COMS7055A	Data Privacy and Ethics	15	9
SLLS7078A	Communicating for Social Change	30	9
SCMD7002A	Foundations of Bioethics	18	9
WCRW4000A	Working Concepts in Creative Writing	23	8
HIST7030A	Oral and Documentary History: Theory and Practice	30	9
CPVC7035A	Curating Exhibitions: The Politics and Aesthetics of Display	30	9
CPVC7036A	Public Culture	30	9
COMH7227A	Research, Monitoring and Evaluation	15	9

Note: Not all elective courses will be offered in every year.

5) **School of Physics – MSc by Coursework and Research Report in the field of Radiation Protection**

A candidate must successfully complete the following courses to obtain a Master of Science degree in the field of Radiation Protection.

Programme Code: SCA00	NQF Exit Level: 9		
Plan Code: SFAPHYS60	Total NQF Credits: 180		
Course Code	Course Description	NQF Credits	NQF Level
PHYS7000A	Research Report	90	9
PHYS7075A	Review of Fundamentals	0	9
PHYS7076A	Quantities and Measurements	11	9
PHYS7077A	Biological Effects of Ionising Radiation	7	9
PHYS7078A	International System of Radiation Protection and the Regulatory Framework	13	9
PHYS7079A	Assessment of External and Internal Exposures (non-Medical)	10	9
PHYS7080A	Planned Exposures: Generic Requirements	4	9
PHYS7081A	Planned Exposures: Applications in the Nuclear Industry	10	9
PHYS7082A	Planned Exposures: Applications in Mining and Industry	9	9
PHYS7083A	Planned Exposures: Applications in Medicine	8	9
PHYS7084A	Emergency Exposures and Emergency Preparedness and Response	7	9

Course Code	Course Description	NQF Credits	NQF Level
PHYS7085A	Existing Exposure Situations	4	9
PHYS7086A	Training the Trainers	7	9

6) School of Physics – MSc by Coursework and Research Report in the field of Medical Physics

A candidate must successfully complete the following courses to obtain a Master of Science degree in the field of Medical Physics.

Programme Code: SCA00	NQF Exit Level: 9
Plan Code: SFAMEDP60	Total NQF Credits: 180

Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
PHYS7000A	Research Report	90	9
PHYS7054A	Dosimetry	15	9
PHYS7056A	Medical Physics of Imaging	18	9
PHYS7057A	Medical Physics of Radiation Oncology	11	9
PHYS7058A	Radiation Physics for Medical Physicists	7	9
PHYS7061A	Radiation Protection and Control	9	9
PHYS7062A	Radiobiology for Medical Physicists	3	9

Any elective courses from the list below yielding a minimum of 27 NQF credits:

PHYS7052A	Advanced Brachytherapy	8	9
PHYS7053A	Advanced Dosimetry Theory	19	9
PHYS7055A	Dosimetry Standards, Uncertainties and Traceability	8	9
PHYS7059A	Advanced Radiation Oncology Medical Physics	17	9
PHYS7060A	Clinical Dosimetry in Radiotherapy	10	9
PHYS7063A	Accuracy in Radiotherapy Medical Physics	10	9
SCMD7003A	Research Ethics	20	9

Note: Not all courses will be offered in every year.

7) School of Physics – MSc by Coursework and Research Report in the field of Astrophysics

Applicants are required to have a Bachelor of Science Honours in the field of Physics or a relevant Postgraduate Diploma with a minimum average mark of 65 percent.

Unless permitted or required otherwise by the Senate, the Masters programme extends over one academic year of full-time study or two academic years of part-time study.

A candidate must successfully complete the following courses to obtain a Master of Science by Coursework and Research Report in the field of Astrophysics.

Programme Code: SCA00	NQF Exit Level: 9
Plan Code: SFAAPHY60	Total NQF Credits: 180

Course Code	Course Description	NQF Credits	NQF Level
Compulsory course:			
PHYS7074A	Research Report: Astrophysics	90	9
Subject to the discretion of the Senate select five courses from the list below:			
PHYS7064A	Advanced General Relativity	18	9
PHYS7065A	Cataclysmic Variables	18	9
PHYS7066A	Computational Astrophysics	18	9
PHYS7067A	Extragalactic Astronomy	18	9
PHYS7068A	High Energy Astrophysics and Pulsars	18	9
PHYS7069A	Observational Cosmology	18	9
PHYS7070A	Plasma Physics	18	9
PHYS7071A	Stellar Structure and Evolution	18	9
PHYS7072A	Theoretical Cosmology	18	9
PHYS7073A	Time Series and Data Analysis	18	9

Note: Not all courses will be offered in every year.

8) School of Mathematics – MSc by Coursework and Research Report in the field of Mathematics

A candidate must successfully complete the following courses to obtain a Master of Science in the field of Mathematics.

Programme Code: SCA00	NQF Exit Level: 9
Plan Code: SFAMSCI60	Total NQF Credits: 180

Course Code	Course Description	NQF Credits	NQF Level
MATH7025A	Research Report: Mathematics	90	9
MATH7021A	Measure Theory	22	9
MATH7022A	Topology	23	9
MATH7023A	Algebra	22	9
MATH7024A	Functional Analysis	23	9

Note: An applicant may not be permitted to register for the programme if s/he has completed a BSc Honours in the field of Mathematics at this University.

Applicants with a minimum of 65 percent in the BSc in the field of Mathematics Honours will be considered for this qualification.

9) School of Computer Science and Applied Mathematics – MSc by Coursework and Research Report in the field of Computer Science

A candidate must successfully complete the following courses to obtain a Master of Science by Coursework and Research Report in the field of Computer Science.

Applicants require a minimum average of 70 percent for a NQF level 8 qualification.

Programme Code: SCA00	NQF Exit Level: 9		
Plan Code: SFACOMS62	Total NQF Credits: 195		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
COMS7009A	Research Report: Computer Science	90	9
COMS7072A	Research Methods and Capstone Project in Computer Science	15	9
COMS7041A	Applications of Algorithms	15	9
Any five elective courses from the list below:			
COMS7040A	Advanced Operating Systems	15	9
COMS7042A	Compilers	15	9
COMS7043A	Databases	15	9
COMS7044A	Artificial Intelligence	15	9
COMS7045A	High Performance Computing and Scientific Data Management	15	9
COMS7046A	Distributed Databases and Transaction Processing	15	9
COMS7047A	Adaptive Computation and Machine Learning	15	9
COMS7048A	Multi-agent Systems	15	9
COMS7049A	Robotics	15	9
COMS7050A	Computer Vision	15	9
COMS7051A	Distributed Computing	15	9
COMS7052A	Software Defined Networking	15	9
COMS7053A	Special Topics in Computer Science	15	9
COMS7054A	Human Computer Interaction	15	9
COMS7055A	Data Privacy and Ethics	15	9
COMS7056A	Data Visualisation and Exploration	15	9
COMS7057A	Large Scale Optimisation and Data Science	15	9
COMS7058A	Mathematical Foundations of Data Science	15	9
COMS7059A	Large Scale Computing Systems and Scientific Programming	15	9
COMS7062A	Special Topics in Data Science	15	9
COMS7063A	Statistical Foundations of Data Science	15	9
COMS7065A	Computational Intelligence	15	9
COMS7066A	Natural Language and Technology	15	9
COMS7069A	Advanced Topics in Robotics	15	9
COMS7071A	Reinforcement Learning	15	9
COMS7238A	Advanced Digital Image Processing	15	9
COMS7074A	Probabilistic Graphical Models	15	9

Course Code	Course Description	NQF Credits	NQF Level
COMS7077A	Cybersecurity	15	9
COMS7078A	Cryptography	15	9
COMS7081A	Computational Neuroscience	15	9

Note: Not all elective courses will be offered in every year.

With prior permission of the Senate, a *candidate* may substitute one of the courses from another discipline yielding a minimum of 15 NQF level 9 credits.

10) School of Computer Science and Applied Mathematics – MSc by Coursework and Research Report in the field of eScience*

(This programme is offered full-time only.)

Applicants are required to have a Bachelor of Science Honours degree from a relevant discipline in Science (Computer Science, Mathematics, Physics, and Statistics) or a relevant NQF level 8 *qualification* or a relevant Professional Engineering Degree with demonstrable knowledge of basic principles of computing, calculus, linear algebra, probability and statistics.

Applicants require a minimum average of 70 percent for a NQF level 8 *qualification*.

A *candidate* must successfully complete the following courses to obtain a Master of Science by Coursework and Research Report in the field of eScience.

Programme Code: SCA00	NQF Exit Level: 9		
Plan Code: SFAESC160	Total NQF Credits: 180		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
COMS7061A	Research Report: Data Science	90	9
COMS7055A	Data Privacy and Ethics	15	9
COMS7060A	Research Methods and Capstone Project in Data Science	15	9
Any four courses from the list below subject to the approval of the Senate:			
COMS7047A	Adaptive Computation and Machine Learning	15	9
COMS7056A	Data Visualisation and Exploration	15	9
COMS7057A	Large Scale Optimisation for Data Science	15	9
COMS7058A	Mathematical Foundations of Data Science	15	9
COMS7059A	Large Scale Computing Systems and Scientific Programming	15	9
COMS7062A	Special Topics in Data Science	15	9
COMS7063A	Statistical Foundations of Data Science	15	9
COMS7074A	Probabilistic Graphical Models	15	9

Note: Not all elective courses will be offered in every year.

11) School of Computer Science and Applied Mathematics – MSc by Coursework and Research Report in the field of Data Science

Applicants are required to have a Bachelor of Science Honours degree from a relevant discipline in Science (Computer Science, Mathematics, Physics, and Statistics) or a relevant NQF level 8 qualification or a relevant Professional Engineering Degree with demonstrable knowledge of basic principles of computing, calculus, linear algebra, probability and statistics.

Applicants require a minimum average of 70 percent for a NQF level 8 qualification.

A candidate must successfully complete the following courses to obtain a Master of Science by Coursework and Research Report in the field of Data Science.

Programme Code: SCA00	NQF Exit Level: 9
Plan Code: SFADATS61	Total NQF Credits: 195

Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
COMS7061A	Research Report: Data Science	90	9
COMS7047A	Adaptive Computation and Machine Learning	15	9
COMS7055A	Data Privacy and Ethics	15	9
COMS7056A	Data Visualisation and Exploration	15	9
COMS7060A	Research Methods and Capstone Project in Data Science	15	9
COMS7063A	Statistical Foundations of Data Science	15	9

Any two courses from the list below subject to the approval of the Senate:

COMS7040A	Advanced Operating Systems	15	9
COMS7041A	Applications of Algorithms	15	9
COMS7042A	Compilers	15	9
COMS7043A	Databases	15	9
COMS7044A	Artificial Intelligence	15	9
COMS7045A	High Performance Computing and Scientific Data Management	15	9
COMS7046A	Distributed Databases and Transaction Processing	15	9
COMS7048A	Multi-Agent Systems	15	9
COMS7049A	Robotics	15	9
COMS7050A	Computer Vision	15	9
COMS7051A	Distributed Computing	15	9
COMS7052A	Software Defined Networking	15	9
COMS7053A	Special Topics in Computer Science	15	9
COMS7054A	Human Computer Interaction	15	9
COMS7056A	Data Privacy and Ethics	15	9
COMS7057A	Large Scale Optimisation and Data Science	15	9
COMS7058A	Mathematical Foundations of Data Science	15	9

Course Code	Course Description	NQF Credits	NQF Level
COMS7059A	Large Scale Computing Systems and Scientific Programming	15	9
COMS7062A	Special Topics in Data Science	15	9
COMS7065A	Computational Intelligence	15	9
COMS7066A	Natural Language Technology	15	9
COMS7069A	Advanced Topics in Robotics	15	9
COMS7071A	Reinforcement Learning	15	9
COMS7238A	Advanced Digital Image Processing	15	9
COMS7074A	Probabilistic Graphical Models	15	9

Note: Not all elective courses will be offered in every year.
Elective courses may be selected subject to the approval of the Senate.

12) School of Computer Science and Applied Mathematics – MSc by Coursework and Research Report in the field of Artificial Intelligence

Applicants are required to have a Bachelor of Science Honours degree from a relevant discipline in Science (Computer Science, Mathematics, Physics, and Statistics) or a relevant NQF level 8 *qualification* or a relevant Professional Engineering Degree with demonstrable knowledge of basic principles of algorithms, computing, calculus, linear algebra, probability and statistics. *Applicants* require a minimum average of 70 percent for a NQF level 8 *qualification*.

Applicants are also required to have passed Mathematics and Computer Science at NQF level 6.

A candidate must successfully complete the following courses to obtain a Master of Science by Coursework and Research Report in the field of Artificial Intelligence.

Programme Code: SCA00	NQF Exit Level: 9		
Plan Code: SFAARTI61	Total NQF Credits: 195		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
COMS7068A	Research Report: Artificial Intelligence	90	9
COMS7047A	Adaptive Computation and Machine Learning	15	9
COMS7050A	Computer Vision	15	9
COMS7067A	Research Methods and Capstone Project in Artificial Intelligence	15	9
COMS7071A	Reinforcement Learning	15	9
COMS7044A	Artificial Intelligence	15	9
Any two courses from the list below subject to the approval of the Senate:			
COMS7040A	Advanced Operating Systems	15	9
COMS7041A	Applications of Algorithms	15	9
COMS7042A	Compilers	15	9
COMS7043A	Databases	15	9

Course Code	Course Description	NQF Credits	NQF Level
COMS7045A	High Performance Computing and Scientific Data Management	15	9
COMS7046A	Distributed Databases and Transaction Processing	15	9
COMS7048A	Multi-agent Systems	15	9
COMS7049A	Robotics	15	9
COMS7051A	Distributed Computing	15	9
COMS7052A	Software Defined Networking	15	9
COMS7053A	Special Topics in Computer Science	15	9
COMS7054A	Human Computer Interaction	15	9
COMS7055A	Data Privacy and Ethics	15	9
COMS7056A	Data Visualisation and Exploration	15	9
COMS7057A	Large Scale Optimisation and Data Science	15	9
COMS7058A	Mathematical Foundations of Data Science	15	9
COMS7059A	Large Scale Computing Systems and Scientific Programming	15	9
COMS7062A	Special Topics in Data Science	15	9
COMS7063A	Statistical Foundations of Data Science	15	9
COMS7065A	Computational Intelligence	15	9
COMS7066A	Natural Language Technology	15	9
COMS7069A	Advanced Topics in Robotics	15	9
COMS7238A	Advanced Digital Image Processing	15	9
COMS7074A	Probabilistic Graphical Models	15	9
COMS7081A	Computational Neuroscience	15	9

Note: Not all elective courses will be offered in every year.

13) School of Computer Science and Applied Mathematics – MSc by Coursework and Research Report in the field of Artificial Intelligence for Games

Applicants are required to have a Bachelor of Science Honours degree from a relevant discipline in Science (Computer Science, Mathematics, Physics, and Statistics) or a relevant NQF level 8 qualification or a relevant Professional Engineering Degree with demonstrable knowledge of basic principles of algorithms, computing, calculus, linear algebra, probability and statistics. Applicants require a minimum average of 70 percent for a NQF level 8 qualification.

Applicants are also required to have passed Mathematics and Computer Science at NQF level 6.

Candidates who have completed NQF Level 8 Computer Science courses at this University may not register for the equivalent NQF Level 9 courses in this qualification.

Instead, they must take alternative courses approved by the Senate. Additionally, candidates with more than 30 credits of overlap are ineligible for this programme.

A candidate must successfully complete the following courses to obtain a Master of Science by Coursework and Research Report in the field of Artificial Intelligence for Games.

Programme Code: SCA00	NQF Exit Level: 9
Plan Code: SFAAIGA60	Total NQF Credits: 195

Course Code	Course Description	NQF Credits	NQF Level
<i>Compulsory courses</i>			
COMS7068A	Research Report: Artificial Intelligence	90	9
COMS7067A	Research Methods and Capstone Project in Artificial Intelligence	15	9
COMS7044A	Artificial Intelligence	15	9
COMS7047A	Adaptive Computation and Machine Learning	15	9
DIGA7008A	Advanced Game Design	15	9
DIGA7009A	Artificial Intelligence – Enhanced Gameplay	15	9
<i>Any two courses from the list below subject to the approval of the Senate:</i>			
COMS7050A	Computer Vision	15	9
COMS7071A	Reinforcement Learning	15	9
COMS7053A	Special Topics in Computer Science	15	9
COMS7058A	Mathematical Foundations of Data Science	15	9
COMS7065A	Computational Intelligence	15	9
COMS7066A	Natural Language Technology	15	9
ELEN7046A	Software Technologies and Techniques	20	9

Note: Not all elective courses will be offered in every year.

14) School of Computer Science and Applied Mathematics – MSc by Coursework and Research Report in the field of Robotics

Applicants are required to have a Bachelor of Science Honours degree from a relevant discipline in Science (Computer Science, Mathematics, Physics, and Statistics) or a relevant NQF level 8 qualification or a relevant Professional Engineering Degree with demonstrable knowledge of basic principles of algorithms, computing, calculus, linear algebra, probability and statistics. Applicants require a minimum average of 70 percent for a NQF level 8 qualification.

Applicants are also required to have passed Mathematics and Computer Science at NQF level 6.

A candidate must successfully complete the following courses to obtain a Master of Science by Coursework and Research Report in the field of Robotics.

Programme Code: SCA00	NQF Exit Level: 9		
Plan Code: SFAROBT61	Total NQF Credits: 195		
Course Code	Course Description	NQF Credits	NQF Level
<i>Compulsory courses:</i>			
COMS7070A	Research Report: Robotics	90	9
COMS7073A	Research Methods and Capstone Project in Robotics	15	9

Course Code	Course Description	NQF Credits	NQF Level
COMS7047A	Adaptive Computation and Machine Learning	15	9
COMS7049A	Robotics	15	9
COMS7050A	Computer Vision	15	9
COMS7071A	Reinforcement Learning	15	9
Any two courses from the list below subject to the approval of the Senate:			
COMS7040A	Advanced Operating Systems	15	9
COMS7041A	Applications of Algorithms	15	9
COMS7042A	Compilers	15	9
COMS7043A	Databases	15	9
COMS7044A	Artificial Intelligence	15	9
COMS7045A	High Performance Computing and Scientific Data Management	15	9
COMS7046A	Distributed Databases and Transaction Processing	15	9
COMS7048A	Multi-agent Systems	15	9
COMS7051A	Distributed Computing	15	9
COMS7052A	Software Defined Networking	15	9
COMS7053A	Special Topics in Computer Science	15	9
COMS7054A	Human Computer Interaction	15	9
COMS7055A	Data Privacy and Ethics	15	9
COMS7056A	Data Visualisation and Exploration	15	9
COMS7057A	Large Scale Optimisation and Data Science	15	9
COMS7058A	Mathematical Foundations of Data Science	15	9
COMS7059A	Large Scale Computing Systems and Scientific Programming	15	9
COMS7062A	Advanced Topics in Data Science	15	9
COMS7063A	Statistical Foundations of Data Science	15	9
COMS7065A	Computational Intelligence	15	9
COMS7066A	Natural Language Technology	15	9
COMS7069A	Advanced Topics in Robotics	15	9
COMS7238A	Advanced Digital Image Processing	15	9
COMS7074A	Probabilistic Graphical Models	15	9

Note: Not all elective courses will be offered in every year.

15) School of Computer Science and Applied Mathematics - MSc by Coursework and Research Report in the field of Cybersecurity

Applicants must hold a BSc Honours degree in Computer Science, Software Engineering, or an equivalent NQF Level 8 qualification, with demonstrable knowledge of core computing principles. This includes a background in programming, software engineering, networks, operating systems, algorithms, and complexity analysis, as well as foundational knowledge in calculus, linear algebra, probability, and

statistics. A minimum average of 70 percent in the NQF Level 8 qualification is required. Admission will be based on academic performance, capacity constraints, and the alignment of the applicant's background with the programme's technical focus.

Candidates who have completed NQF Level 8 Computer Science courses at this University may not register for the equivalent NQF Level 9 courses in this qualification.

Instead, they must take alternative courses approved by the Senate. Additionally, candidates with more than 30 credits of overlap are ineligible for this programme.

A candidate must successfully complete the following courses to obtain a Master of Science by Coursework and Research Report in the field of Cybersecurity.

Programme Code: SCA00	NQF Exit Level: 9		
Plan Code: SFACYBS60	Total NQF Credits: 195		
Course Code Course Description NQF Credits NQF Level			
Compulsory courses:			
COMS7075A	Research Report: Cybersecurity	90	9
COMS7076A	Research Methods and Capstone Project in Cybersecurity	15	9
COMS7077A	Cybersecurity	15	9
COMS7078A	Cryptography	15	9
COMS7079A	Secure Systems Design and Analysis	15	9
COMS7080A	Offensive Security and Ethical Hacking	15	9
COMS7055A	Data Privacy and Ethics	15	9
COMS7047A	Adaptive Computation and Machine Learning	15	9

16) School of Geosciences – MSc by Coursework and Research Report in the field of Hydrogeology

Applicants are required to have a Bachelor of Science Honours degree from the relevant discipline of Science (Geology, Chemistry, Physics and Mathematics) or a relevant Postgraduate Diploma. Acceptance into certain courses may be restricted to applicants with relevant undergraduate course credits and field experience. Applicants from Chemistry, Physics and Mathematics are required to attend the prerequisite courses before registering for this degree. Unless permitted or required otherwise by the Senate, the Masters programme extends over one academic year of full-time study or two academic years of part-time study. Part-time candidates are required to register for four courses and Research Report: Hydrogeology Part-time I in the first year of study. The remaining two courses and Research Report: Hydrogeology Part-time II are to be completed in the second year of study.

A candidate must successfully complete the following courses to obtain a Master of Science by Coursework and Research Report in the field of Hydrogeology.

Programme Code: SCA00	NQF Exit Level: 9		
Plan Code: SFAHYDR60	Total NQF Credits: 180		
Course Code Course Description NQF Credits NQF Level			
Compulsory courses:			
GEOL7028A or	Research Report: Hydrogeology or	90	9

Course Code	Course Description	NQF Credits	NQF Level
[GEOL7051A and GEOL7052A]	[Research Report: Hydrogeology Part-time I and and Research Report: Hydrogeology Part-time II]	30 60	9 9
GEOL7022A	Hydrogeochemistry	15	9
GEOL7023A	Environmental Isotopes	15	9
GEOL7024A	Physical Hydrogeology	15	9
GEOL7029A	Hydrological Processes	15	9
Any two elective courses from the list below:			
GEOL7025A	Hydrogeophysics	15	9
GEOL7026A	Geochemical Toolbox for Hydrogeology	15	9
GEOL7027A	Contaminant Hydrogeology	15	9
GEOL7030A	Water Resources Management	15	9
GEOL7031A	Applied Structural Geology	15	9

Note: Not all elective courses will be offered in every year.

17 School of Geosciences – MSc by Coursework and Research Report in the field of Economic Geology

Applicants are required to have a Bachelor of Science Honours degree in Geology or a relevant Postgraduate Diploma or a BSc degree in Geology and a minimum of four years professional experience in mining or minerals exploration. Acceptance into certain courses may be restricted to applicants with relevant undergraduate course credits and/or work experience. Applicants may be required to complete prerequisite courses as stipulated by the Senate before being admitted.

Unless permitted or required otherwise by the Senate, the Masters programme extends over one academic year of full-time study or two academic years of part-time study. Part-time candidates are required to register for three compulsory courses and Research Report: Economic Geology Part-time I in the first year of study. The remaining elective courses and Research Report: Economic Geology Part-time II are to be completed in the second year of study.

A candidate must successfully complete the following courses to obtain a Master of Science by Coursework and Research Report in the field of Economic Geology.

Programme Code: SCA00	NQF Exit Level: 9		
Plan Code: SFAECOG60	Total NQF Credits: 180		
Course Code	Course Description	NQF Credits	NQF Level
Compulsory courses:			
GEOL7048A or [GEOL7049A and GEOL7050A]	Research Report: Economic Geology Full-time or [Research Report: Economic Geology Part-time I and Research Report: Economic Geology Part-time II]	90 30 60	9 9 9
GEOL7032A	Introduction to Ore Deposit Geology	15	9
GEOL7033A	GIS and Remote Sensing	15	9

Course Code	Course Description	NQF Credits	NQF Level
GEOL7034A	Structural Controls on Ore Deposits	15	9
Any three elective courses from the list below:			
GEOL7030A	Water Resources Management	15	9
GEOL7035A	Magmatic Ore Deposits	15	9
GEOL7036A	Sedimentary Ore Deposits	15	9
GEOL7037A	Hydrothermal Ore Deposits	15	9
GEOL7038A	Exploration Targeting - Geochemistry	15	9
GEOL7039A	Exploration Targeting - Geophysics	15	9
GEOL7040A	Geometallurgy and Reflected Light Microscopy	15	9
GEOL7041A	Geological Modelling	15	9
GEOL7042A	Platinum Group Element Deposits	15	9
GEOL7043A	Gold Deposits	15	9
GEOL7044A	Uranium Deposits	15	9
GEOL7045A	Iron and Manganese Deposits	15	9
GEOL7046A	Critical Metal Deposits	15	9
GEOL7047A	The Central African Copperbelt	15	9
GEOL7053A	Geology and Exploitation of Coal Deposits	15	9
MINN7092A	Mine Financial Valuation	20	9
MINN7007A	Statistical Valuation of Ore Reserves	20	9
MINN7066A	Geostatistical Methods in Mineral Evaluation	20	9
MINN7012A	Sustainable Development in Mining and Industry	20	9
MINN7025A	Mining and the Environment	20	9
CHMT7029A	Mineral Beneficiation	20	9
MINN7048A	Coal and the Environment	20	9
MINN7050A	Mineral Resource Management	20	9
MINN7014A	Mineral Economics	15	9

Note: Not all elective courses will be offered in every year.

3.3.4 Completion Rules

3.3.4.1 Results

A candidate shall qualify for the award of the degree when s/he has:

- obtained credit in all the prescribed courses in accordance with 3.3.3.4 and 3.3.3.5; and
- attained a standard in her/his *Research Report* considered by the Senate to be satisfactory.

3.3.4.2 Distinction

Conferment of the *qualification* with distinction:

- a) the MSc by Research degree shall be awarded with distinction only when the Examiners are unanimous in their recommendations. If only the external Examiner has recommended the award of the degree with distinction then the Graduate Studies Committee may consult the internal Examiner on this issue.
- b) the MSc by Coursework and *Research Report* shall be awarded with distinction using the following criteria:
 - i) all the prescribed courses in the *qualification* must have been passed at the first attempt;
 - ii) the coursework component must have been completed in the minimum period of time (one year full-time and two years part-time);
 - iii) all prescribed courses are passed with a minimum weighted average of 75 percent and the *research report* is passed with a minimum of 75 percent.
 - iv) Any additional courses registered for will not be considered when determining if a *student* qualifies with distinction.

3.4 Doctor of Philosophy

Qualification Name	Programme Code	NQF Exit Level
Doctor of Philosophy (PhD)	SDA00	10

3.4.1 Application

See Rule G3.

A person who wishes to be admitted as a *candidate* for the degree must apply online or submit her/his application to the Student Enrolment Centre, and must indicate the line of research which s/he wishes to conduct.

3.4.2 Admission Rules

- a) Any of the following may be admitted by the Senate as a *candidate* for the degree of Doctor of Philosophy if the Senate is satisfied that the *applicant* is qualified to undertake the line of study or research proposed (or both):
 - i) a Master of Science of this or *another university*;
 - ii) a person other than a graduate who has in any other manner satisfied the Senate that s/he is so qualified; and/or
 - iii) a person who has been accepted as a *candidate* to the degree of Doctor of Philosophy by virtue of having obtained at any *other university* or institution such awards as is, in the opinion of the Senate, equivalent to or higher than the *qualification* of Master of Science at the *University*.
- b) A person who has been admitted as a *candidate* for the Master of Science may, on the recommendation of the supervisor and the head of the school concerned, be permitted by the Senate to proceed instead to the degree of Doctor of Philosophy.

3.4.3 Curricula

3.4.3.1 Length of programme

A *candidate* shall conduct full-time/part-time research on a subject approved by the Senate, under the guidance of a supervisor appointed by the Senate either in the *University* or in an institution deemed by the Senate to be part of the *University* for this purpose, for not less than two academic years of study.

(Note: An institution is normally deemed by the Senate to be part of the *University* only for the purpose of the research of an individual *candidate*.)

Provided that:

- a) the Senate may permit a *candidate* to conduct her/his research outside the *University* for such portion of the prescribed period and in such manner as the Senate may determine; and
- b) a person admitted under 3.4.2 shall be deemed to have commenced the prosecution of research for the Doctor of Philosophy at the date of her/his *admission* as a *candidate* for the award of Master of Science or such later date as the Senate may determine in her/his case.

3.4.3.2 Conditions for the degree of PhD

- a) The Senate may require a *candidate* to attend such advanced *courses* of instruction as it considers to be cognate to the subject of her/his research and to pass an *examination*, oral or written or both, in such *courses*.
- b) At the close of the period of research every *candidate* for the degree shall:
present for the approval of the Senate a *thesis* which must constitute a substantial contribution to the advancement of knowledge in the subject chosen, and which must be satisfactory as regards literary presentation and in a form suitable for publication.

Note: When presenting her/his *thesis* a *candidate* may include published results of publications, provided that this work was undertaken during the period of the candidature. In the case of joint publications, the *candidate*'s share in such work must be indicated.

- c) If required by the Senate, present herself/himself for an *examination* or test, oral or written.
- d) A *candidate* for the degree of Doctor of Philosophy must submit for *examination* an electronic copy of her/his *thesis* via email or any other electronic platform designated by the faculty office. In exceptional circumstances, the examiner may request a hard copy of the *thesis*. In such a case, the *candidate* will be required to provide a bound hard copy or copies of her/his *thesis*, together with the electronic version. The bound copies must be in a format that, in the opinion of the Senate, is suitable for submission to the examiners.

Prior to graduation, a *candidate* must submit a final, corrected electronic copy of her/his *thesis* via email or any other electronic platform designated by the faculty office.

3.4.3.3 Fields of study

The degree of PhD will be offered in the following fields of study.

School	Course Code	Field of Study Description
Animal, Plant and Environmental Sciences	APES9002A	Animal, Plant and Environmental Sciences
Chemistry	CHEM9002A	Chemistry
Computer Science and Applied Mathematics	APPM9002A	Computational and Applied Mathematics
Computer Science and Applied Mathematics	COMS9002A	Computer Science
Geography, Archaeology and Environmental Studies	ARCL9002A	Archaeology
Geography, Archaeology and Environmental Studies	GEOG9002A	Geography and Environmental Studies

School	Course Code	Field of Study Description
Geosciences	GEOL9002A	Geology
Geosciences	GEOP9002A	Geophysics
Geosciences	PALP9002A	Palaeontology
Mathematics	MATH9002A	Mathematics
Molecular and Cell Biology	MCBG9002A	Molecular and Cell Biology
Physics	PHYS9002A	Physics
Statistics and Actuarial Science	STAT9002A	Mathematical Statistics and Actuarial Science

3.5 Doctor of Science

Qualification Name	Programme Code	NQF Exit Level
Doctor of Science (DSc)	SDA01	10

3.5.1 Application

See Rule G3.

A person who wishes to be admitted as a *candidate* for the degree must apply online or submit her/his application to the Student Enrolment Centre, and must indicate the line of research which s/he wishes to conduct.

3.5.2 Admission Rules

Any one of the following may be admitted by the Senate as a *candidate*:

- A person who has held any of the following degrees of this or *another university* for a minimum of five years:
 - a Bachelor of Science Honours;
 - a Bachelor of Science (if s/he has passed an *examination* of Honours standard); or
 - a Bachelor of Arts Honours, provided the proposed work relates to Archaeology, Geography, Mathematical Statistics, Mathematics or Psychology.
- A person who has held any of the following degrees and under such conditions as stated hereunder:
 - a Master of Science of the *University* who has held the degree of Bachelor of Science Honours for a minimum of four years;
 - a Master of Arts of the *University* who has held the degree of Bachelor of Arts Honours for a minimum of four years, provided the proposed work relates to Archaeology, Geography, Mathematical Statistics, Mathematics or Psychology;
 - a Doctor of Philosophy or a graduate admitted to the status of Doctor of Philosophy of a minimum of two years' standing of this or *another university*;
 - a graduate of *any other university*, who has held the degrees of Master of Science or Master of Arts for a minimum of four years, provided the proposed work, in the case of a *candidate* admitted to the status of Master of Arts, relates to Archaeology, Geography, Mathematical Statistics, Mathematics or Psychology;

- v) a person accepted as a *candidate* for the degrees of Doctor of Science by virtue of having obtained at any other *university* or institution such *qualifications* as is, in the opinion of the Senate, equivalent to or higher than the award of Doctor of Philosophy degree and who has held the *qualification* by virtue of which such acceptance has been granted for a period of a minimum of four years; or
- vi) a person accepted as a *candidate* for the degree of Doctor of Science who has held the *qualification* by virtue of which such acceptance has been granted for a period of a minimum of four years.

3.5.3 Conditions for award of qualification

- a) A *candidate* for the degree of Doctor of Science shall present for the approval of the Senate original work in a field approved by the Senate; such work shall have been published and shall constitute a distinguished contribution to the advancement of knowledge in that field.
- b) A *candidate* shall give a minimum of six months' notice in writing to the Faculty Registrar of her/his intention to submit her/his work for examination.

OUTCOMES FOR THE FACULTY OF SCIENCE

The University aspires for its students to achieve the following outcomes upon qualifying. The outcomes and assessment criteria listed are those, for each qualification of the University, as agreed by the Senate.

4.1 Degrees of Bachelor

4.1.1 Bachelor of Science

Qualification Title	Bachelor of Science
Qualification Abbreviation	BSc
Minimum Period of Study	3 years full-time
NQF Exit Level	Level 7
NQF Credits	Total minimum 432

Exit Level Outcomes

The qualifying student:

1. generates, explores and considers options and makes decisions about ways of seeing systems and situations, and considers different ways of applying and integrating scientific knowledge to solve theoretical, applied or real life problems;
2. demonstrates an understanding of key aspects of specified scientific systems and situations;
3. demonstrates an understanding of specified bodies of content and their inter-connectedness in chosen disciplines;
4. demonstrates an understanding of the boundaries, inter-connections, value and knowledge creation systems of chosen disciplines within the sciences;
5. reflects on possible implications for self and system of different ways of seeing and intervening in systems and situations;
6. demonstrates an ability to reflect with self and others, critical of own and other peoples' thoughts and actions, and capable of self-organisation and working in groups in the face of continual challenge from the environment;
7. demonstrates consciousness of, and engagement with own learning processes and the nature of knowledge, and how new knowledge can be acquired;
8. demonstrates an ability to conduct oneself as an independent student and practitioner.

4.2 Degrees of Bachelor Honours

4.2.1 Bachelor of Science Honours

Qualification Title	Bachelor of Science Honours
Qualification Abbreviation	BScHons
Minimum Period of Study	1 year
NQF Exit Level	Level 8
NQF Credits	Total minimum 120

Exit Level Outcomes

The qualifying candidate:

1. generates, explores and considers options and makes decisions about ways of seeing systems and situations, and considers different ways of applying and integrating scientific knowledge to solve theoretical, applied or real life problems, specifically through research and the production of a research project;
2. demonstrates an advanced understanding of key aspects of specified scientific systems and situations;
3. demonstrates an advanced understanding of specified bodies of content and their interconnectedness in chosen discipline/s;
4. demonstrates an advanced understanding of the boundaries, inter-connections, value and knowledge creation systems of the chosen discipline/s within the sciences;
5. reflects on possible implications for self and system of different ways of seeing and intervening in systems and situations;
6. demonstrates an ability to reflect with self and others, critical of own and other peoples' thoughts and actions, and capable of self-organisation and working in groups in the face of continual challenge from the environment;
7. demonstrates consciousness of, and engagement with, own learning and learning strategies, and awareness of the nature of knowledge and how new knowledge can be acquired;
8. demonstrates an ability to reflect on the importance of scientific paradigms and methods in understanding scientific concepts and their changing nature;
9. demonstrates an ability to conduct her/his self as independent candidate and practitioner.

4.3 Degree of Master

4.3.1 Master of Science

Qualification Title	Master of Science
Qualification Abbreviation	MSc
Minimum Period of Study	1 year
NQF Exit Level	Level 9
NQF Credits	Total minimum 180

Master of Science (by dissertation)

Exit Level Outcomes

1. generate, explore and consider options and possibilities for scope, content and methodology of research leading to a dissertation;

2. identify the most appropriate scope, content and methodology of research commensurate with one or several of interest, research imperatives, resources and supervision available;
3. explain why a particular scope, content and methodology of research has been chosen and what has been taken into account in doing so;
4. undertake the research and produce the dissertation, while continuously monitoring and adapting own performance as required or recommended by supervision and/or peers;
5. evaluate own learning during the research and identify strengths, weaknesses and areas for improvement;
6. reflect on the ethics of their research and what they have learnt about themselves as a candidate and as a researcher;
7. demonstrate an advanced understanding of the boundaries, inter-connections, value and knowledge creation systems of the chosen discipline/s within the sciences and an ability to critically evaluate these;
8. demonstrate an advanced understanding and ability to analyse specified bodies of content and their inter-connectedness in chosen discipline/s.

Master of Science (by Coursework and Research Report)

Exit Level Outcomes

The candidate must:

1. generate, explore and consider options and possibilities for scope, content and methodology of research leading to a research report;
2. identify the most appropriate scope, content and methodology of research commensurate with one or several of interest, research imperatives, resources and supervision available;
3. explain why a particular scope, content and methodology of research has been chosen and what has been taken into account in doing so;
4. undertake the research and produce the research report, while continuously monitoring and adapting own performance as required or recommended by supervision;
5. evaluate own learning during the research and identify strengths, weaknesses and areas for improvement;
6. reflect on the ethics of their research and what they have learnt about themselves as a candidate and as a researcher;
7. demonstrate an advanced understanding of the boundaries, inter-connections, value and knowledge creation systems of the chosen discipline/s within the sciences and an ability to critically evaluate these;
8. demonstrate an advanced understanding and ability to analyse specified bodies of content and their inter-connectedness in chosen discipline/s.

4.4 Doctoral Degrees

4.4.1 Doctor of Philosophy

Qualification Title	Doctor of Philosophy
Qualification Abbreviation	PhD
Minimum Period of Study	2 years
NQF Exit Level	Level 10
NQF Credits	Total minimum 360

Exit Level Outcomes

The candidate must:

1. The qualifying candidate is capable of independent and original research;
2. The qualifying candidate possesses highly specialised, authoritative knowledge and is competent to apply that knowledge to the solution of problems;
3. The qualifying candidate is self-directed and self-critical.

4.5 Senior Doctoral Degrees

4.5.1 Doctor of Science

Qualification Title	Doctor of Science
Qualification Abbreviation	DSc
Minimum Period of Study	n/a (published work)
NQF Exit Level	Level 10
NQF Credits	360

Exit Level Outcome

The candidate must demonstrate an original and distinguished contribution to science by completing a body of work that includes a set of co-ordinated publications.

4.6 Diplomas

4.6.1 Postgraduate Diploma in Science

Qualification Title	Postgraduate Diploma in Science
Qualification Abbreviation	PGDipSc
Minimum Period of Study	1 year
NQF Exit Level	Level 8
NQF Credits	Total minimum 120

Exit Level Outcomes

The candidate must:

1. generate, explore and consider options and possibilities for scope, content and methodology of research;
2. explain why a particular scope, content and methodology of research has been chosen and what has been taken into account in doing so;

3. evaluate own learning and identify strengths, weaknesses and areas for improvement
4. reflect on the ethics of research and what s/he has learnt about her/his self as a candidate;
5. demonstrate an advanced understanding of the boundaries, inter-connections, value and knowledge creation systems of the chosen discipline/s within the sciences and an ability to critically evaluate these;
6. demonstrate to peers and instructors an advanced understanding and ability to analyse specified bodies of content and their inter-connectedness in chosen discipline/s.

SYLLABUSES

FOR THE

FACULTY OF SCIENCE

School of Accountancy (Faculty of Commerce, Law and Management)

Course Code: ACCN1000A

Course Description: Business Accounting

NQF Credits: 36

NQF Level: 5

Topics covered in the course include the following: The role of accounting in business, and the objective of a business enterprise, a conceptual overview and framework, the accounting equation, analysis of transactions and journals, preparation of financial statements, recognition and measurement of the elements of the financial statements, inventory and cost of sales, computerised accounting, information technology security and controls, accounting for partnerships, accounting for companies, statement of cash flows, budgeting, analysis of financial statements and managerial accounting.

School of Anatomical Sciences (Faculty of Health Sciences)

Course Code: ANAT2021A

Course Description: Human and Comparative Biology II

NQF Credits: 48

NQF Level: 6

Human and Comparative Biology II is a full course at the Second Year level of study. The course consists of four topics which aim to clarify and explain the structure of the human body within a comparative framework of the evolutionary history and development of the vertebrates. The four topics are the Concepts of Evolution, Primary Tissues and Early Embryology, Comparative Biological Systems, Vertebrate and Human Neuroanatomy, and the Vertebral Skeletal System. The course is a stepping-stone to the Human Biology III and Medical Cell Biology III courses offered in the Third Year of study. Interactions of organisms with the external environment, combined with evolutionary mechanisms over time have resulted in the development, adaptation, retention and loss of features that have yielded an incredible diversity of form and function among all the vertebrate species. Therefore this course covers a series of integrated study areas.

Course Code: ANAT3002A

Course Description: Human Biology III

NQF Credits: 72

NQF Level: 7

The Human Biology III course introduces key topics in biological anthropology. This course consists of four lecture topics and one protocol project. The first topic deals with human skeletal biology and its application in a forensic context, while the second explores major themes in the field of human evolution. The third block is divided into two sections dealing with human biodiversity and then research methods. A protocol project is undertaken during the fourth block where students design a feasible research project under the supervision of one of the teaching and research staff.

Course Code: ANAT3011A**Course Description: Medical Cell Biology III****NQF Credits: 72****NQF Level: 7**

Medical Cell Biology III aims to provide an understanding of applied cell biology, molecular biology, and developmental biology within a biomedical framework, through lectures and independent student work.

The course consists of 5 lecture-based topics which reflect the current research interests of the School, including: Teratology and Birth Defects; Introduction to Toxicology; Reproductive Immunology and Infertility; Introduction to Cellular and Molecular Neuroscience; and Cellular and Molecular Mechanisms of Cancer. The final topic is a Research Proposal, where students identify a research question and develop a full protocol detailing relevant literature, hypotheses and methodological approaches. Course content is selected primarily from research articles in order to convey current developments in specific fields, with laboratory sessions aimed at introducing students to commonly used and cutting-edge research and diagnostic techniques. The course thus aims to prepare students for postgraduate studies and employment in the scientific arena.

School of Animal, Plant and Environmental Sciences

The School offers courses in the majors of; Ecology & Conservation, Biodiversity and Organismal Biology. The courses are listed below and have been designed to introduce the students to a broad range of topics within the field. The choice of courses could follow the career lines identified in the Biological Sciences handbook. Appropriate short courses from other schools that make up 25% of the credits for a major can also be taken with the approval of the Senate.

Course Code: APES2033A**Course Description: Animal Form and Function II****NQF Credits: 24****NQF Level: 6**

This course examines how the anatomy and physiology of living and extinct animals have been shaped through evolutionary processes for functional purposes. Using a set of fundamental principles (e.g., lever mechanics), the course builds integrative knowledge of animal anatomy, functional morphology, and comparative physiology.

Course Code: APES2038A**Course Description: Research Methods in Biological Sciences II****NQF Credits: 12****NQF Level: 6**

This course provides students with an opportunity to gain experience in research methods. The course consists of a self-study topic in which students engage with particular staff members about a research topic of interest, and learn how to develop the research problem statement, aim and objectives. The student learns how to perform literature reviews, development appropriate research methods, conduct the research, and write a report. The course will have a strong focus on research methodology and skills development (writing and presenting, data collection and analysis).

Course Code: APES2039A**Course Description: Ecology, Environment, and Conservation IIA****NQF Credits: 24****NQF Level: 6**

This course provides a comprehensive, introductory survey of the main topics in ecology. It is designed from an African perspective, and to serve the needs of terrestrial, freshwater, and marine ecology. It covers the fundamental components of all scales of ecology, including organismal, community, population, ecosystem, landscape, and global ecology.

Course Code: APES2040A**Course Description: Ecology, Environment, and Conservation IIB****NQF Credits: 24****NQF Level: 6**

This course builds on Ecology, Environment, and Conservation IIA. In Ecology, Environment, and Conservation IIB the foundational concepts of ecology covered in the first semester course are applied to the management and conservation of systems. Humans can no longer be viewed as separate to the environment, and this course explores how people manage natural resources, including the management of wastewater and its effects on the environment, sustainability in transformed ecosystems, and the concepts of resilience and stability. We will also engage with topics around conservation biology, including theory, legislature and conservation needs and threats in the 21st century.

Course Code: APES2041A**Course Description: Plant Form and Function II****NQF Credits: 24****NQF Level: 6**

This course demonstrates how the structure of plants has allowed them to survive on planet Earth and ultimately enable other life forms, including humans, to survive. It introduces students to the organisation of the plant body, describes the function of plant tissues and discusses plant nutrition and water uptake. The course provides an integrated understanding of how plants function under changing environmental conditions and presents the fundamental concepts important for the understanding of plant growth which enables accurate estimates of plant productivity to be made for future climates.

Course Code: APES2042A**Course Description: Life on Earth: Diversity II****NQF Credits: 24****NQF Level: 6**

This course introduces the major groups of flora and fauna in grassland and savanna (the major biomes that occur in Gauteng Province) in the context of the principles and practices of systematics. It focuses on the evolutionary trends in morphology, physiology, ecology and/or behaviour, and the biogeographical features that have shaped the complements of organisms occurring in this region. In this way, drivers of biodiversity and the economic/ecological conservation values of this biodiversity is addressed, and the impact of human transformation on the biota is also considered. This course lays the foundation for biosystematics, evolutionary and ecological work by examining many of the components and factors affecting biodiversity. In addition, it introduces students to the technological advances in the archiving of such pertinent biodiversity information.

Course Code: APES2043A**Course Description: Life on Earth: Evolution II****NQF Credits: 12****NQF Level: 6**

This course provides a working understanding of evolution. It introduces Darwinian natural selection and contextualises it in neo-Darwinian population genetics. Examples are drawn across the diversity of life on earth, from organelles to plants, animals and humans. Topics include: Macro-evolution, micro-evolution, speciation, evolution of sex, and strategies for improving fitness.

Course Code: APES3023A**Course Description: Self – study course III****NQF Credits: 9****NQF Level: 7**

This course makes provision for special interests to suit individual students. It may only be taken under exceptional circumstances and only with the approval of the Head of School.

Course Code: APES3026A**Course Description: Special Topic III****NQF Credits: 9****NQF Level: 7**

Special course given by visiting lecturers – not always offered.

Course Code: APES3028A**Course Description: Biogeography III****NQF Credits: 18****NQF Level: 7**

This course gives a detailed overview of most of the important concepts in biogeography: it explains what an organism's distribution is, and how this can change through time due to various processes and events; it explains diversity gradients from the point of view of several current (and discredited) hypotheses and adds the spatial dimension to the theory of evolution. The course covers these concepts at various scales, from global patterns in the distribution of various taxonomic groups to the species composition on islands and nature reserves. The course shows how these ideas can be applied to the planning of parklands in urban areas. This course focuses on the biogeography of Africa and especially southern Africa.

Course Code: APES3029A**Course Description: Palaeontology III****NQF Credits: 18****NQF Level: 7**

This course offers an integrated approach to the evolution of plants and animals through time. The course begins with a short introduction to the origin of life and then focuses on higher plant and animal taxa that have evolved. The course covers the major transitions; fish to amphibian to reptile to mammals and hominids to modern humans, mass extinctions, aquatic to land plants, ferns, gymnosperms and angiosperms. The course provides students with the fundamental concepts of palaeoecology.

Course Code: APES3038A**Course Description: Populations and Resources III****NQF Credits: 18****NQF Level: 7**

This course covers principles of population ecology, including population distribution and dynamics, the behavioural ecology of resource use, interactions with predators and competitors, and applications to bio – resource conservation. The course focuses on large mammalian herbivores and their interactions with vegetation. The course introduces students to applications of appropriate mathematical and graphical models via computer modelling exercises.

The course starts with some of the psychological processes underlying animal behaviour, such as stimulus – response, learning, and cultural transmission of information. The course ends with an extensive coverage of the adaptive significance of behaviour, particularly socio – ecological phenomena. The course also covers issues in applied ethology to demonstrate the applicability of animal behaviour in the real world.

Course Code: APES3044A**Course Description: Laboratory Project III****NQF Credits: 18****NQF Level: 7**

This course is a laboratory – based project which may only be taken under exceptional circumstances. Entry is limited to those students who are majoring in one of the AP&ES courses and acceptance may be limited because of staffing constraints. Students may not do both a Field Work Project and a Laboratory Project in the same major. Students wishing to register for this module should contact the Head of School and the relevant staff member before registration.

Course Code: APES3047A**Course Description: Ecological Communities and Biodiversity Conservation III****NQF Credits: 18****NQF Level: 7**

This course explores the quantitative description of animal and plant communities and their relationships to biotic and abiotic factors. This course offers an array of quantitative skills that are essential for practising field ecologists. This course focuses on the conservation of biodiversity and the ecology of the southern African biomes is also included. This course includes a compulsory field trip during the first weekend after the start of the block in which this course is offered.

Course Code: APES3052A**Course Description: Plant Propagation and Conservation III****NQF Credits: 18****NQF Level: 7**

This course investigates the two broad ways to conserve plant germplasm; in situ conservation where plants are allowed to remain in their natural habitat with the minimum of human management and ex situ conservation where plants are either removed from their natural habitats and grown in botanic gardens, fields and plantations or alternatively their seeds may be stored in seed/genebanks. In this course the various methods adopted in the ex situ conservation of plant germplasm (e.g. seed storage and cryopreservation) are linked with the various methods of plant propagation, viz. seed propagation, vegetative propagation and in vitro micropropagation (plant tissue culture). The course is designed to give students practical experience in seed germination and plant tissue culture.

Course Code: APES3057A**Course Description: Physiological Entomology III****NQF Credits: 18****NQF Level: 7**

This course provides an overview of interactions between insects and their environments from a physiological perspective. This course introduces the basic insect physiological principles as applied to insects, with inclusion of; the evolution of plant – insect interactions, chemical defence mechanisms, vision, metabolic rate, respiration, water loss and thermoregulation. The course is designed to teach students experimental techniques in insect physiology.

Course Code: APES3064A**Course Description: Applied Freshwater Ecology and Management III****NQF Credits: 18****NQF Level: 7**

This field based course introduces students to research skills in aquatic ecology. Students use in situ physical and chemical parameters, riparian vegetation, macroinvertebrates and fish to determine the health of a river in the Mpumalanga Province. The course is designed to equip students with the necessary tools used to determine river health.

Course Code: APES3065A**Course Description: Applied Population Ecology III****NQF Credits: 18****NQF Level: 7**

This course provides students with an understanding of applied population ecology as a professional discipline and of the use of the scientific method in this field. The course explores the importance of population ecology as the theoretical basis upon which renewable resources are managed and its application to wildlife conservation, fisheries, forestry and rangeland management, pest control, and harvest management. The course teaches students how to be scientists and managers in applied population ecology.

Course Code: APES3066A**Course Description: Behavioural Ecology III****NQF Credits: 18****NQF Level: 7**

The course provides the students with a critical understanding of behavioural ecology principles and their applications to problems in the conservation of biological diversity and natural resources. The course is made up of a theoretical and a practical component. The theoretical component focuses on the temporal and spatial dynamics of consumer – resource relations to address issues of resource use sustainability and factors governing the variable success of species in different habitats. The practical component consists in designing and implementing a small group project to test some aspect of behavioural ecology theory. Deliverable of the project is an individually written report.

Course Code: APES3067A**Course Description: Experimental Field Biology III****NQF Credits: 18****NQF Level: 7**

This field based course is designed to train undergraduate students in basic field techniques, and the application of these, to experimental ecological research. The course consists of a field – based project during which students are introduced to the process of conducting ecological research in the field, and exposes them to a variety of concepts and field techniques. In particular, students learn skills appropriate to the scientific method, including; hypothesis formulation and experimental design, data collection, data analysis, scientific writing and presentation.

Course Code: APES3068A**Course Description: Field Methods in Terrestrial Ecology III****NQF Credits: 18****NQF Level: 7**

This field based course gives students experience in doing ecological research in a heterogeneous savanna environment. The course includes learning methods for conducting a research project including formulating a research question, planning data collection, field methods for collecting data, how to analyse data in the appropriate manner and how to communicate those results both verbally and in a written report. This course involves completing a research project in groups.

Course Code: APES3070A**Course Description: People and Conservation Field Course III****NQF Credits: 18****NQF Level: 7**

This field course is a combination of lectures, tutorials, and fieldwork, in which students be exposed to concepts, issues and research methodology relating to the relationship between local people and conservation in rural communities. The course is run from the Wits Rural Facility (WRF), in the central Lowveld. The course introduces students to social research methods, such as structured interviews and participatory rural appraisal focus groups. The course teaches students how to engage with local community members about local environmental issues, dependence on natural resources, environmental attitudes and perceptions, and local resource management.

Course Code: APES3071A**Course Description: Service Learning in Biology III****NQF Credits: 18****NQF Level: 7**

This course introduces students to both the theory behind and the practice of service learning in biology. The course explores the teaching and learning strategy that integrates meaningful community service with instruction and reflection to enrich the learning experience, teach civic responsibility, and strengthen communities. The course equips students with event, poster and oral presentation skills, reflective journaling and exhibition planning and time management so that they can participate in the Yebo Gogga Yebo aBloma event.

Course Code: APES3073A**Course Description: Environment and Sustainability III****NQF Credits: 18****NQF Level: 7**

This course explores basic concepts of sustainability and how human activities and management practices alter biodiversity, ecosystem functioning and ecosystem services. It introduces the applied side of environmental sciences and the ways in which it can have meaning in the business environment. Students are familiarised with aspects related to the Green Economy, economic and legislative tools for sustainability, sustainable development goals and society's progress in achieving them. It explores economic, social and governance perspectives to understand the value of the natural environment in sustainability, as well as the value of ecological research in sustainability and environmental management.

Course Code: APES3078A**Course Description: Biodiversity in a Changing World IIIA: From Process to Pattern****NQF Credits: 30****NQF Level: 7**

This course builds on foundational concepts in evolution and diversity, exploring what comprises biodiversity at multiple levels. Starting at the molecular level, the class will explore the origins of life on earth and cellular evolution, then the evolutionary relationships between organisms through phylogenetics and systematics. This leads to the study of biogeography, considering how the distributions of species were established. Finally, the course covers evolutionary processes at the genetic level to understand what biodiversity is, and ultimately how to conserve biodiversity.

Course Code: APES3079A**Course Description: Biodiversity in a Changing World IIIB: From Animal Physiology to Behaviour****NQF Credits: 30****NQF Level: 7**

This course builds on the concepts taught in Biodiversity in a Changing World IIIA: From Process to Pattern. It explores how the physiology of plants and animals allow them to survive and adapt in a changing world, with a view to best conserve biodiversity. It also covers proximate and ultimate aspects of animal behaviour with a focus on conservation. Plant/animal interactions are explored within the theme of biological control, and the impact of alien invasives in conserving biodiversity.

Course Code: APES3080A**Course Description: Biodiversity in a Changing World IIIB: Plant Ecophysiology****NQF Credits: 30****NQF Level: 7**

This course builds on the concepts taught in Biodiversity in a Changing World IIIA: From Process to Pattern. The course explores how the physiology of plants allows them to survive and adapt in a changing world, with a view to best conserve biodiversity. Plant/animal interactions are explored within the theme of biological control, and the impact of alien invasives in conserving biodiversity.

Course Code: APES3081A**Course Description: Research Methods in Animal, Plant, and Environmental Sciences III****NQF Credits: 12****NQF Level: 7**

This course will be a self-study module offered by various staff within the School of Animal, Plant and Environmental Sciences. Students will engage with the staff member about a specific research topic of interest, and develop the research problem statement, aim and objectives with a staff member. The student will then research appropriate methods, conduct the research, and write a report. The course will have a strong focus on research methodology, and skills development (writing and presenting, data collection and analysis).

Course Code: APES3082A**Course Description: Applied Ecology and Global Change IIIA: Individuals, Populations and Communities****NQF Credits: 30****NQF Level: 7**

In this African-centric course topics in ecology, spanning from the individual to the biological community will be covered. Topics range from the evolution of traits, functional traits, behavioural ecology, population dynamics, and how these contribute to community structure, species co-existence, change in species composition, and the broader consequences of these processes (succession and alternate states). The course has a strong quantitative component to facilitate thinking in a structured manner and working with mathematical models and complex datasets.

Course Code: APES3083A**Course Description: Applied Ecology and Global Change IIIB: Pattern and Process****NQF Credits: 30****NQF Level: 7**

This African-centric course begins with a paleo-ecological focus to understand historical, global, environmental change and provide context for our complex world. It integrates knowledge of contemporary environmental issues related to global change and its implications for biodiversity, ecosystem services and human wellbeing. The course explores the complexity of natural systems, aspects of landscape management, conservation, society, and ecosystem services. The course has a strong quantitative component on how to work with large amounts of complex data.

Course Code: APES3084A**Course Description: Practical Skills in Animal, Plant, and Environmental Sciences III****NQF Credits: 12****NQF Level: 7**

The primary objective of this field trip is to give students experience in doing practical research in a terrestrial or aquatic environment. The course will include learning methods for conducting a research project including formulating a research question, planning data collection, field methods for collecting data, how to analyse data in the appropriate manner and how to communicate those results both verbally and in a written report. Fieldwork will involve completing a research project in groups. The exact nature of the research project will vary depending on local conditions at the time.

Course Code: APES4015A**Course Description: Animal Behaviour and Ecology IV****NQF Credits: 17****NQF Level: 8**

This course covers some of the topics related to animal behaviour and behavioural ecology with the aim to introduce the candidates to current concepts and techniques in the study of these closely related disciplines. Emphasis is placed on physiological, developmental, adaptive function and ecological processes of behaviour as well as the evolutionary context of behaviour. The course includes such topics as natural selection, sexual selection, microeconomic theory in behaviour, learning and cognition, communication, contest behaviour, sociality, resource use, behaviour and conservation, behaviour and environmental change.

Course Code: APES4016A**Course Description: APES Special Topic IV****NQF Credits: 17****NQF Level: 8**

This course covers a relevant topic in modern biology, such as conservation ecology, remote sensing in biological systems, plant pathology or systematics, animal or plant anatomy and morphology, the ecology of vision, or some other such topic which is relevant to the expertise available in the school within any given teaching year. This course might not run every year.

Course Code: APES4017A**Course Description: Biocontrol IV****NQF Credits: 17****NQF Level: 8**

This course explores current issues in the biological control of alien invasive organisms. The main focus of the course is on biocontrol of alien weeds, in which South Africa is a leading exponent. The course also introduces the candidate to allied topics such as sterile male release, pheromone based pest control, the role of molecular biology in biocontrol and any other related topics which the candidates chose from a list or suggest themselves. The course also explores how science interacts with the society it is in.

Course Code: APES4018A**Course Description: Biogeography IV****NQF Credits: 17****NQF Level: 8**

This course comprises two sections:

the first focuses on Island Biogeography, and the second on Endemism and Species Richness. In the first section, candidates are introduced to Biogeography in the broad sense as the science that endeavours to describe and interpret the geographic distributions of organisms and the processes that have shaped their distribution, and then more specifically to the patterns and processes involved in the biogeography of islands; and the second section of the course considers factors affecting species richness and endemism, the role of spatial and temporal scales in the assessment of species richness and endemism and implications for conservation, the biogeography of alien invasive species and their ecological impacts, and/or the role of refugia in influencing patterns of species richness and endemism, and principles, and practices of conservation biogeography.

Course Code: APES4019A**Course Description: Ecological Engineering and Phytoremediation IV****NQF Credits: 17****NQF Level: 8**

This course addresses how landscapes deliver ecosystem services, and describes the ecological principles that underpin self – sustaining landscapes. This course introduces candidates to plant – soil – water relations, the concept of evapotranspiration, and the role of plants in hydraulic processes, landscape hydrology and the movement of contaminated groundwater. The course also explores the genetic traits and physiological processes associated with plant tolerance, uptake and accumulation of halogens and metals are addressed, and the ways in which plant – microbial symbioses confer tolerance to adverse conditions.

Course Code: APES4020A**Course Description: Ecophysiology IV****NQF Credits: 17****NQF Level: 8**

This course focuses on how animals regulate and maintain their functional capacities in response to stressors in their environment. The course explores the link between environmental challenges and energy expenditure in both invertebrates and vertebrates in a variety of environments. The course introduces the importance of size as a determinant of physiological variables and this is used to understand ecology as well as how morphology, anatomy and physiology interface to allow animals to successfully exploit their environment. This course also compares and contrast the strategies shown in endotherms and ectotherms in the thermal environment.

Course Code: APES4021A**Course Description: Enabling Skills IV****NQF Credits: 17****NQF Level: 8**

This course exposes the candidates to a variety of techniques which they either need (e.g. statistics) or find useful (e.g. Global Information Systems) in their Honours year, particularly in connection with their compulsory research project.

The components of the course are Approaches to Science which covers the philosophy and methods underlying modern science; R which introduces candidates to the R statistical computer programme; Experimental Design and Statistics explores useful statistical methods in biology.

Course Code: APES4022A

Course Description: Entomology IV

NQF Credits: 17

NQF Level: 8

This course covers a range of subjects relating to insects, concentrating on how insects surviving in extreme environments. The course covers the following topics; metabolism, gas exchange, nutrition, water balance, temperature and insect aggregations. The course also involves a drawing or composite microscope picture of an anatomical structure important to one of the physiological systems discussed.

Course Code: APES4023A

Course Description: Ethnoecology IV

NQF Credits: 17

NQF Level: 8

This course introduces candidates to key theoretical concepts and research methods in the multi-disciplinary field of ethnoecology. The course is taught at the Wits Rural Facility, in Limpopo Province, and consists of lectures, readings, group activities and field excursions that are structured around a number of core themes. The central focus of the course is experiential learning, and most theoretical aspects covered in class are linked with practical examples and experiences in the field in rural Bushbuckridge.

Course Code: APES4026A

Course Description: Freshwater Science – Field and Laboratory approaches IV

NQF Credits: 17

NQF Level: 8

This course provides a broad introduction into the theory and methods of environmental data collection and the practice of environmental monitoring. The course consists of case studies drawn from a wide range of environmental fields including meteorological and hydrological monitoring, air and water pollution monitoring and other aspects of environmental change science. The course covers a range of environmental data collection approaches from citizen science to professional environmental monitoring using specialist equipment, with an exploration of the role and limitations of each.

Course Code: APES4027A

Course Description: Global Change: Impacts on Soil, Plants, Animals and Humans in Southern Africa – the next 50 years IV

NQF Credits: 17

NQF Level: 8

This course covers an overview of the most important aspects of global change and the associated impacts which are expected to occur in Southern Africa. The undergraduate courses are all orientated towards terrestrial biological systems but this course is intended to be much broader. The course covers topics related to marine, human and global systems and approaches to understanding legally binding negotiations. The purpose of the course is to teach breadth in a transdisciplinary way and to teach depth within a discipline.

Course Code: APES4028A

Course Description: Plant Variation and Nomenclature IV

NQF Credits: 17

NQF Level: 8

This course introduces candidates to the most important issues dealt with in systematics, recognising and interpreting variation. In this course, candidates discuss what kinds of variation exist, what characters (e.g. morphological, anatomical, molecular) one might investigate to study variation and what approaches or methods may be used to interpret variation (e.g. phenetics and phylogenetics). This course also explores the need for and requirements of an international standardised naming system and the principles and practices espoused in the International Code of Botanical Nomenclature.

Course Code: APES4029A

Course Description: Pollination Ecology IV

NQF Credits: 17

NQF Level: 8

This course focuses on pollination which is a vital process in the continued survival of any plant taxon. The course addresses topics on floral diversity and pollinator types, floral phenology, breeding systems, the relationship of pollination biology to gene flow and the interaction of pollination, plant communities and the environment.

Course Code: APES4030A

Course Description: Research Project: APES IV

NQF Credits: 52

NQF Level: 8

The research project forms a major part of the APES Honours programme because it offers the candidate the opportunity to be an independent researcher, running their own project under the close supervision of a mentor. The candidate has to choose a supervisor, design a research project, write a project proposal, present that proposal as a formal seminar to the school, write up the project as a formal dissertation and present the final results to the school in a formal seminar.

Course Code: APES4033A

Course Description: Tropical Studies in Field Ecology IV

NQF Credits: 34

NQF Level: 8

This course consists of the fundamental modules or hard skills that are acquired during the programme. The course work introduces the skills of; statistics, Excel modelling, philosophy of science, field research skills, natural history skills, group dynamics, scientific writing and oral presentation. The core topics covered in the course are; ecology, conservation and biodiversity, history and culture of South Africa. In addition, candidates participate in field research projects.

Course Code: APES4034A

Course Description: Population Conservation IV

NQF Credits: 17

NQF Level: 8

This course introduces candidates to the bridge between landscape ecology and genetics, and to enable a more holistic and comprehensive approach to conservation research and management. The course focuses on the application of molecular population genetics, network analyses, and landscape ecology tools in improving conservation management planning. Through the course, candidates gain a valuable understanding of each of the above – mentioned techniques, their application in professional disciplines, and how to apply the scientific method in this multidisciplinary setting.

Course Code: APES4035A

Course Description: Climate Change – Exploring Science with Society IV

NQF Credits: 17

NQF Level: 8

This course enables candidates to understand the social dimensions of global change. The course is designed to enable candidates to investigate the range of challenges associated with complex, wicked issues, to enable understanding of how these can be framed from various paradigmatic viewpoints (eg. very technical versus a more social approach) so that interventions that are designed may be effective rather than disruptive (eg. sustainable development goal).

Course Code: APES4036A**Course Description: Global Change Impacts on Medicinal Plants IV****NQF Credits: 17****NQF Level: 8**

This course introduces key concepts about the use and importance of medicinal plants. It examines the relationship between plants and medicine, the history of medicinal plants, the use of medicinal plants in phytomedicine, phytochemistry, alternative medicine and toxic plants. The course also explores the potential effects of climate change on commercially important medicinal plants, especially those that are useful to the pharmaceutical industry.

Course Code: APES4037A**Course Description: Analysis of Wildlife Populations IV****NQF Credits: 17****NQF Level: 8**

This course equips candidates with the basic abilities in the quantitative methods used to study population ecology, with particular reference to mammal populations. This course includes statistical theory relevant to the estimation of population parameters, sampling design, matrix algebra, population models, and methods to estimate presence, density, survival and recruitment. This course introduces candidates to the methods of matrix population modelling, distance sampling, occupancy modelling, and capture – mark – recapture analysis.

Course Code: APES7000A**Course Description: Conserving Biodiversity: Foundations****NQF Credits: 15****NQF Level: 9**

This course addresses the definition and determination of biodiversity at different levels; threats to biodiversity; benefits and functions of biodiversity to ecosystem processes; practical approaches to biodiversity conservation; and the evaluation and assessment of biodiversity.

Course Code: APES7001A**Course Description: Conserving Biodiversity: Frontiers****NQF Credits: 15****NQF Level: 9**

This course is designed as an introduction to spatial techniques used in conservation; essentially a peek into the toolbox of tools that are available to conservation practitioners and training in the use of a few of these tools. With easy access to spatial data from various sources, and the reality of conservation planning in the face of biodiversity loss, conservation is becoming an increasingly spatially explicit problem that needs spatially explicit solutions. The course comprises of theory around spatial ecology, niche modelling, landscape pattern analysis and remote sensing.

Course Code: APES7002A**Course Description: Sustaining Populations and Resources: Foundations****NQF Credits: 15****NQF Level: 9**

This course outlines the application of population ecology theory supported by computer modelling techniques towards sustaining resource populations. The course introduces candidates to alternative models, forms of density dependence, age – and stage – structured matrix models, deterministic vs stochastic simulations, optimal harvest quotas, population viability analysis, herbivore – plant interactions, Markov state models and adaptive management.

Course Code: APES7003A**Course Description: Sustaining Populations and Resources: Frontiers****NQF Credits: 15****NQF Level: 9**

This course addresses applications of population and resource modelling techniques to the management of herbivore – vegetation systems for conservation or production ends, including habitat suitability assessment, competitive interactions and broader factors governing stability and sustainability.

Course Code: APES7004A

Course Description: Maintaining Ecosystem Processes: Foundations

NQF Credits: 15

NQF Level: 9

This course outlines biogeochemical processes, in particular the cycling of nutrients, processes maintaining soil fertility, influence on primary and secondary production and relevance for ecological sustainability. The course also explores the consequences of rising atmospheric CO₂ and other greenhouse gases and global temperature change for vegetation patterns be evaluated and modelled.

Course Code: APES7008A

Course Description: Advanced Special Topic in Environmental Biology

NQF Credits: 15

NQF Level: 9

This option allows for one or more Master modules in another field of environmental science to be included for credit towards the Masters degree in Resource Conservation Biology.

Course Code: APES7017A

Course Description: Interdisciplinary Global Change Studies

NQF Credits: 30

NQF Level: 9

This course introduces candidates to basic concepts and new thinking in the field of Global change within multi – disciplinary conceptual frames. The course covers key problematic and methodologies in global change research, as well as new understanding and development of integrative research tools and the human capacities they require. The course introduces candidates to problem – solving and systems thinking approaches to understand current global change issues. The course also explores the values and beliefs driving society's behaviours as well as an awareness of own values and beliefs in the context of global change.

Course Code: APES7021A

Course Description: Interdisciplinary Global Change Studies Research Report

NQF Credits: 90

NQF Level: 9

This course allows the student to apply theory to practice. The student is guided by experts in their chosen field of research to gain the skills and abilities required for independent, rigorous and interdisciplinary research. The research project includes interdisciplinary, and where possible, transdisciplinary research, and may be co-supervised across schools.

Course Code: APES7028A

Course Description: Introduction to Global Environmental Change

NQF Credits: 30

NQF Level: 9

This course examines the composition and workings of the biophysical environment with a specific focus on complex, interactive systems, the landscape change drivers, the role of climate change in shaping environmental systems and the feedback into the climate systems. The course provides knowledge to learners on how to deal with complex uncertainty with the biophysical drivers of global environmental change (e.g. the role of thresholds and exceeding tipping points, the role of climate change in enhancing and driving local weather such as storms and drought); and how one can account for 'attribution' in the climate system. This course exposes learners to 'real world' examples of research underway in this field in the GCI. This first set of topics are all strongly rooted in biophysical framings of the global environmental change issues and provides the platform for the next semester (Semester 2) that turns to focus on the interventions required and the governance dimensions within the sustainability field through lectures, invited speakers and policy-science integrators.

Course Code: APES7029A**Course Description: Sustainability Science and Governance****NQF Credits: 30****NQF Level: 9**

This course presents a detailed, complex composition and workings of the social, economic and cultural environment. The course examines the current and future drivers of global change (e.g. landscape change drivers, drivers that contribute to the role that climate change plays in shaping environmental systems such as resource utilization). The course also explores the socio-cultural and socio-economic drivers of global environmental change including the role of politics, governance and ways of seeing the world (e.g. environmental and social constructions of the environment).

The course also highlights the ways in which one can begin to frame and design approaches and solutions to navigate sustainably through such complex landscapes. The course exposes learners to 'real world' examples of research underway in this field in the Global Change Institute (GCI) as they are given examples of real-world issues to tackle and respond to and again expose them to the governance dimensions in the sustainability field through invited speakers and policy-science integrators.

School of Arts (Faculty of Humanities)**Course Code: DIGA7008A****Course Description: Advanced Game Design****NQF Credits: 15****NQF Level: 9**

This course explores the intersection of artificial intelligence and game design, focusing on the integration of machine learning, procedural content generation, and adaptive gameplay. Students will engage with design methodologies, player motivation theories, and iterative design processes, developing games that utilise AI to create dynamic and immersive experiences. Key topics include narrative design, user modeling, game balancing, and emergent behaviours in games.

Course Code: DIGA7009A**Course Description: Artificial Intelligence - Enhanced Gameplay****NQF Credits: 15****NQF Level: 9**

This course explores the transformative role of artificial intelligence in revolutionising game dynamics and player experiences. The course delves into how AI technologies such as procedural content generation, adaptive gameplay, and player modeling create engaging, personalised, and emergent gaming experiences. Students will study advanced gameplay mechanics, including dynamic difficulty adjustment, behaviour modeling for non-player characters (NPCs), and real-time decision-making systems, alongside techniques for enhancing player immersion and agency. Additionally, the course addresses the ethical and psychological dimensions of AI in gaming, such as transparency in AI decision-making, bias in player modeling, and the societal impact of AI-driven games. Through theoretical exploration, practical development with AI-capable tools, and critical discussion, students will gain the skills to design intelligent, ethical, and innovative gameplay systems that push the boundaries of interactive entertainment.

Course Code: CPVC7035A**Course Description: Curating Exhibitions: The Politics and Aesthetics of Display****NQF Credits: 30****NQF Level: 9**

This course examines the practices, roles, and effects of contemporary curating. Through seminars, site visits, and guest lectures, the course explores the evolving roles of curators, the constitution of exhibition audiences and publics, the roles of different forms of display and artistic practice within and outside the white cube. Students participate in various practical projects with partner institutions, structured to give them the opportunity to engage with different forms of writing and producing exhibitions.

Course Code: CPVC7036A**Course Description: Public Culture****NQF Credits: 30****NQF Level: 9**

This course examines a cluster of concepts that have become central to how we think and act in the interdisciplinary field of Heritage Studies. It focuses on how notions of culture are deployed in the public sphere, by and for various stakeholders, to various ends. It also critically interrogates the notion of heritage, and the closely associated practices of public history and public art, with reference to their representation and associated conventions of collecting and display in museums, galleries, other formal cultural institutions, as well as alternative settings like tourism sites and festivals. The disciplinary origins of cultural knowledge circulating within the cultural domain and how decolonisation relates to the theory and practice of heritage are interrogated. It provides the conceptual foundation for advanced courses in Heritage Studies, including curating, archiving, and public history.

School of Business Sciences (Faculty of Commerce, Law and Management)**Course Code: BUSE2006A (FT)/BUSE2007A (PT)****Course Description: Insurance and Risk Management IIA****NQF Credits: 24****NQF Level: 6**

This course introduces students to the key concepts and principles of risk management and insurance. It focuses on the concept of risk, main principles of risk management and the application of insurance as a risk management mechanism. Topics covered include: sources of risk, types of risk and their management; utility theory and risk, enterprise risk management; the role of insurance, insurance markets, principles of insurance, analysis of the insurance contract, determination of insurance premiums, liability risks and analysis of selected types of insurance products and other related issues.

Course Code: BUSE2008A(FT)/BUSE2009A (PT)**Course Description: Insurance and Risk Management IIB****NQF Credits: 24****NQF Level: 6**

The course focuses on the conceptual and theoretical foundation developed in BUSE2006/7 and exposes students to South African statutory insurance funds, international insurance markets, risk financing approaches and life insurance and other short term insurance products. Key areas covered in the course include: Risk financing; Captive Insurance; Introduction to Reinsurance; South African Statutory risk funds with specific reference to workers' compensation and the Road Accidents Fund; The role of Insurance Intermediaries; insurance of political risks including terrorism and the role of SASRIA in the South African insurance market; specialized global insurance markets with specific reference to Lloyds of London; Protection & Indemnity Clubs; and Life insurance business.

Course Code: BUSE5006A**Course Description: Basics of Business for Innovators****NQF Credits: 10****NQF Level: 8**

This course integrates the fields of human resources, business management, marketing, information systems, and insurance/risk management to provide a comprehensive overview of the key principles and practices that support innovation in a business context. Through a comprehensive examination of the interrelationships between these fields, students gain an understanding of the challenges and opportunities relating to innovation and growth and gain critical skills in launching, managing and sustaining an innovation-oriented business.

Course Code: INFO1000A**Course Description: Information Systems IA****NQF Credits: 18****NQF Level: 5**

This course introduces students to the fundamentals underpinning the field of Information Systems. Students are shown how pervasive technologies impact individuals, organisations and societies through exposure to a set of interrelated themes. Students demonstrate their knowledge through continuous assessment exercises. In addition to gaining a sound theoretical base, students also undertake business-focused assignments including use of spreadsheet and database applications.

Course Code: INFO1003A

Course Description: Information Systems IB

NQF Credits: 18

NQF Level: 5

This course introduces students to the fundamentals of programming. Students are taught how to plan, write and test programs using various methodologies and how to apply these concepts in a visual programming language environment. Students are also introduced to the process of designing and implementing solutions to “real world” problems.

Course Code: INFO1004A(FT)/INFO1005A(PT)

Course Description: Fundamentals of Information Systems

NQF Credits: 18

NQF Level: 5

This course introduces students to the fundamentals underpinning the field of Information Systems. Students are shown how pervasive technologies impact individuals, organisations and societies through exposure to a set of interrelated themes. Students demonstrate their knowledge through continuous assessment exercises. In addition to gaining a sound theoretical base, students also undertake business-focused assignments including use of spreadsheet and database applications.

Course Code: INFO2000A

Course Description: Information Systems IIA

NQF Credits: 24

NQF Level: 6

This course introduces students to the core methodologies, models and tools of systems analysis and design. The course is underpinned by an integrated team-based project, which focuses on the planning and analysis phases of the systems development lifecycle and on developing “softer” professional skills such as business and technical writing and persuasive presentations. Students also continue to develop their skills in designing and implementing solutions to “real world” problems.

Course Code: INFO2001A

Course Description: Information Systems IIB

NQF Credits: 24

NQF Level: 6

This course continues students’ engagement with the core methodologies, models and tools of systems analysis and design, with strong emphasis on solution, database, report and user interface design. The course is again underpinned by an integrated team-based project, which focuses on the design and implementation phases of the systems development lifecycle and on developing “softer” professional skills such as business and technical writing and persuasive presentations. Students also continue to develop their skills in designing and implementing solutions to “real world” problems.

Course Code: INFO3002A

Course Description: Management and Application of Information Systems

NQF Credits: 72

NQF Level: 7

This course prepares final year students for roles in the information systems industry, contributing to information systems projects and working effectively in information intensive organisations. Through exposure to a set of interrelated themes, students are provided conceptual understanding and practical experience in a number of core topics relating to the use, development, management and impact of Information Systems. .

Course Code: INFO3003A**Course Description: Information Systems Development Project****NQF Credits: 24****NQF Level: 7**

This course expects final year students to undertake a year-long, team-based development project for a “real world” client. The project comprises the full systems development lifecycle from planning and analysis through to design and implementation. The course is strongly dependent on the project experience gained during second year and expects students to further demonstrate industry readiness in both “hard” and “soft” skills.

Biological Sciences**Course Code: BIOL1035A****Course Description: Introductory Life Sciences I****NQF Credits: 36****NQF Level: 5**

This course is the core course for most of the disciplines offered at second and third year level in the Biological Sciences. This course examines the relationship between structure and function at molecular and cellular levels. It includes a brief introduction on how cells came into existence, sampling relevant geological records. Students study the cell as the basic unit of life, how cells communicate and react to molecular signals. The course covers the foundations of genetics (i.e. the central dogma of biology), including how genes and chromosomes play a role in the storage, expression, and transmission of genetic material from one generation to the next. The course examines biology at the level of organisms, building genetic variation by studying evolution and the diversity of life including protists, plants and animals. The relationships between living organisms is investigated through an ecological lens at multiple scales of organisation

Course Code: BIOL1008A**Course Description: Molecular and Cellular Biology I****NQF Credits: 9****NQF Level: 5**

This course is based on the identification of major principles recognised in modern molecular and cellular biology. Emphasis is placed on how the study of DNA may be used to study evolution, and how recombinant DNA technology and biotechnology is used in research in the field.

Course Code: BIOL1009A**Course Description: Principles and Applications of Microbiology I****NQF Credits: 9****NQF Level: 5**

The course studies microbial diversity including the structure and function of bacteria and viruses and explains the principles of host – microbe interactions.

Course Code: BIOL1025A**Course Description: Life in its Diversity****NQF Credits: 18****NQF Level: 5**

This course explores the patterns of diversity, evolution, relationships and biology of major groups of protists, animals, plants and fungi. This course equips students with the skills on how to recognise these organisms, how to identify organisms and access information about them via a knowledge of their classification. This course also focuses on the importance of these organisms in the natural environment and to man, and the need for their conservation.

School of Chemical and Metallurgical Engineering (Faculty of Engineering and the Built Environment)

Chemistry with Chemical Engineering Courses

Course Code: CHMT2021A/CHMT2022A (PT)

Course Description: Process Engineering Fundamentals A (CHEM)

NQF Credits: 20

NQF Level: 6

This course introduces chemical and metallurgical engineering students to the basic principles and calculation techniques used in process engineering. It acquaints the students with the fundamentals of material balances. The course focuses on both reactive and non-reactive material balances as applied to steady-state process systems and covers both single and multiple units including recycle, purge and bypass streams.

Course Code: CHMT2023A/CHMT2024A (PT)

Course Description: Process Engineering Fundamentals B (CHEM)

NQF Credits: 20

NQF Level: 6

This course builds on the fundamentals taught in previous courses and acts as a bridge to advanced courses and covers intermediate chemical engineering problems and an introduction to energy balances, heat transfer and fluid flow.

School of Chemistry

Course Code: CHEM1012A

Course Description: Chemistry I

NQF Credits: 36

NQF Level: 5

Students who wish to proceed to Chemistry II Major after completing this course need to achieve a minimum pass mark of 60 percent. This course is the study of matter and the changes that matter undergoes. It is often considered to be the 'central science' because of its importance to diverse areas of science and engineering. Chemistry draws on the language of mathematics and the laws of physics to describe the world around us from a chemical, biological and physical point of view. It plays a vital part in our understanding of the structure and the interactions of matter, and it is crucial for a thorough understanding of disciplines as diverse as geology, molecular biology, biotechnology, medicine, materials science and environmental studies. This course covers the introductory aspects of chemistry essential for further studies towards a BSc in Chemistry or degrees that require a general first-year background in the subject. Experimental work related to this material, including quantitative analysis, is carried out in the first year laboratories throughout the year.

This course comprises:

Students are introduced to the concepts of matter and measurement; atoms, molecules and ions; stoichiometry and calculations with chemical formulas and equations. This is followed by a study of aqueous reactions, including acid-base reactions and solution stoichiometry. The fundamental description of matter from a chemistry point of view, including aspects such as, electronic structure of atoms, periodic properties of the elements, basic concepts of chemical bonding, molecular geometry and bonding theories and the properties and theory of gases is then covered in some detail, followed by an introduction to organic chemistry. Organic chemistry (including polymers and molecules of life); an introduction to coordination compounds, intermolecular forces, liquids and solids and properties of solutions is given, followed by physical chemistry topics such as thermochemistry, chemical kinetics, chemical equilibrium, chemical thermodynamics, electrochemistry and additional aspects of acid-base equilibria and aqueous equilibria.

Course Code: CHEM2038A

Course Description: Chemistry IIA (Major)

NQF Credits: 24

NQF Level: 6

This course comprises:

Analytical Chemistry: This section provides theory and introduction to basic quantitative chemical analysis. Topics include calibration methods, volumetric analysis, and statistical treatment of data allowing students to evaluate the integrity of quantification. The different reactions and associated calculations involved in titrimetric analysis (e.g. acids and bases, complexometric reactions, redox reactions, precipitation reactions and gravimetric analysis) are explored theoretically, and in lab-based practicals, using experiments applicable to society and industry.

Physical Chemistry: Solid State Chemistry, Chemical Thermodynamics and Reaction Kinetics.

Solid State Chemistry covers the language of the solid state and a basic understanding of crystallography. Chemical Thermodynamics is concerned with the energy changes associated with, and the spontaneity of, the changes that occur in material substances. Reaction kinetics, also called chemical kinetics, covers the study of the rates and mechanisms of chemical reactions, and deals with the experimental aspects of reaction kinetics, and focuses largely on the dependence of rate on reactant concentrations and the effect of temperature on rate.

Laboratory Work: Experimental work forms an integral part of this course and is aligned with the material covered in lectures. Practical laboratory experiments run on one afternoon per week.

Course Code: CHEM2039A

Course Description: Chemistry IIB (Major)

NQF Credits: 24

NQF Level: 6

This course comprises:

Organic Chemistry: This section of the course covers stereoisomerism in organic chemistry and aspects of reactivity of saturated and unsaturated hydrocarbon compounds, saturated and unsaturated heteroatom compounds, and compounds with composite functionalities. The course introduces students to various types of spectroscopy (e.g. the electromagnetic spectrum, vibrational or infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and electronic or ultraviolet–visible (UV – VIS) spectroscopy; mass spectrometry), which are essential for characterising compounds.

Inorganic Chemistry: This section of the course covers the basic chemical concepts of atomic structure and chemical bonding. Topics include chemical bonding theories (e.g. valence shell electron pair repulsion model, valence bond theory and molecular orbital theory). The solution chemistry topics include Brønsted and Lewis acid and base chemistry, an introduction to transition metal coordination chemistry, and redox reactions.

Laboratory Work: Experimental work forms an integral part of this course and is aligned with the material covered in lectures. Practical laboratory experiments run on one afternoon per week.

Course Code: CHEM2007A

Course Description: Materials Science II

NQF Credits: 48

NQF Level: 6

This course introduces the student to fundamental concepts of materials that is useful in the third year course. It is made up of three components. The first component, Chemistry of Materials provides the student with fundamental information about structure and properties of materials and the different types of materials. The second component Physics of Materials explores the different characterisation techniques that are used to study the properties of materials whilst the third component, Metallurgy, introduces the student to the different types of engineering materials including relationships between processing, structure, properties and applications of these materials. All three components incorporate experimental work related to them.

Course Code: CHEM2029A**Course Description: Environmental Chemistry II****NQF Credits: 12****NQF Level: 6**

This course covers the core of environmental chemistry – water, soil and air. Sources, reactions, transport, effect and fate of chemical species in water, soil and air, and the effect of human activity on these. This course forms an integral part of the BSc in the field of Natural Sciences curriculum. Properties of matter are considered from a chemical perspective. The laboratory unit emphasises the nature of experimentation in chemistry. The content is integrated with the development of skills required by practising scientists.

Course Code: CHEM2030A**Course Description: Applied Chemistry II****NQF Credits: 48****NQF Level: 6**

This course has been designed to introduce students to current technologies and instrumentations needed in the South African chemical industry. The main aim of this course is to increase the relevance of a chemistry degree in the chemical industry. As such, the topics selected are biased to covering content and also building skills applicable to industry as well as applied research. The topics include instrumentation and statistics; nanotechnology and forensics; fast moving consumer goods and industrial chemistry; natural products; cosmetics and flavours and fragrances. Topics offered may change depending on available industry partners and academic staff.

Instrumentation and statistics: The first part of the course introduces concepts of basic statistics that are used in analytical chemistry such as basic graphs; analytical uncertainties and error propagation; design of experiments (DOE); statistical sampling techniques (Normal, Hypergeometric, Binomial, Poisson and Bayesian); introduction to method validation (test for outliers, confidence intervals, chi – squared tests, correlation, regression, Student's t – test, F – test, ANOVA, quality control charts and capability indices).. The second part describes techniques such as Ultraviolet–visible spectroscopy (UV – VIS), chromatography pH and conductivity and sample preparation and handling in the water industry.

Nanotechnology and forensics: The first part includes topics such as what is nanotechnology; uses of nanomaterials; types of nanomaterials; quantum dots; manufacturing of nanomaterials; handling, disposal of nanomaterials and characterisation techniques. The second part, forensic science, focuses mainly on handling and sampling, chemical analysis and toxicology.

Industrial chemistry: This topic introduces the students to the basic research and developmental processes in the Fast Moving Consumer Goods (FMCG) industry, specifically in the personal care industry. The first part consist of emulsions, surfactants, thickening and rheology; the role of preservatives, Safety, Materials Safety Data Sheets (MSDS), regulations, claims and labelling. The second part introduces the production of the chemicals, materials and fuels which we use in our daily lives.

Natural products; cosmetics and flavours and fragrances: This section provides students with the knowledge of various types of natural products that are obtained from plants and their pharmaceutical, flavours, fragrance and cosmetic applications. It details the extraction of natural products; the production processes and equipment used in the flavour and fragrance industry as well as the safety regulations and formulations of cosmetic products.

Course Code: CHEM3002A**Course Description: Chemistry IIIA (Major)****NQF Credits: 36****NQF Level: 7**

This course comprises:

NMR Spectroscopic Techniques, which covers advanced nuclear magnetic resonance spectroscopic techniques. The topic covers theoretical aspects of one and two dimensional NMR and interpretation of NMR spectra.

Instrumental Analytical Chemistry: Instrumental analytical techniques, including advanced emission and absorption spectroscopic methods, electroanalytical methods, and separation techniques.

Organic Chemistry: Synthetic methods and principles of synthetic design, carbonyl group chemistry, aromatic and heteroaromatic chemistry, rings and rearrangements. Experimental work related to the material covered in all of these components is incorporated as several afternoon practical laboratory sessions.

Course Code: CHEM3003A

Course Description: Chemistry IIIB (Major)

NQF Credits: 36

NQF Level: 7

This course comprises:

Inorganic Chemistry: The chemistry of the d and f blocks elements.

The Physical Chemistry component deals with topics such as thermodynamics, electrochemistry, quantum effects in chemistry and crystal chemistry. Experimental work related to the material covered in all of these components is incorporated as several afternoon practical laboratory sessions.

Course Code: CHEM3007A

Course Description: Environmental Chemistry III

NQF Credits: 39

NQF Level: 7

This course includes the core of environmental chemistry – the sources, reactions, transport, effect and fate of chemical species in the air, water and soil and the effect of human activity upon these. Discussed topics are: theoretical concepts to illustrate the relevance of theory to environmental problems, geochemical cycles and their importance to biologically mediated and inorganic systems, introduction to organic and inorganic pollution, hazardous substances and human activities which lead to release of pollutants into the environment as well as their neutralisation. The two terms 'environmental chemistry' and 'pollution' often seem to go together, yet environmental chemistry is much more than the study of the chemical effects of pollution. It is multi – disciplinary science of chemical phenomena in the environment involving chemistry, physics, life science, public health, engineering, etc.

Course Code: CHEM3031A

Course Description: Undergraduate Research III

NQF Credits: 9

NQF Level: 7

This course is assigned to one of the active research groups in the School. Students undertake a short research project with clearly defined goals under the supervision of the member(s) of staff. The student is expected to complete the set goals in the allocated time. The emphasis is on practical laboratory work and the student is exposed to the methods and techniques used by researchers in the research group.

Course Code: CHEM3033A

Course Description: Applied Chemistry IIIA

NQF Credits: 36

NQF Level: 7

This course comprises of four topics, and is the equivalent of the first semester of the full year course CHEM3030A. These topics are selected to give students an introduction to "real – life" chemistry as it is applied in various industrial settings.

The course comprises:

Catalysis: heterogeneous catalysis, adsorption isotherms, surface area and porosity, kinetics, acid catalysis, catalyst preparation and characterisation, Fischer – Tropsch synthesis. Experimental work and assignments related to this material.

Polymer Chemistry: classification of polymers, synthesis by addition and condensation processes, physical properties (including structure, tacticity and crystallinity), survey of industrially important chain – growth and step – growth polymers; experimental work related to this material.

Solid State Chemistry: properties of organic and inorganic crystals (symmetry, structure, applications), electronic structure of solids (conductors, semiconductors and insulators, superconductivity, elementary band theory, ionic conductivity, dielectric materials, ferroelectricity, piezoelectricity, pyroelectricity).

Surface and Bulk Properties: The course is concerned with the characterisation and study of bulk and surface structures of materials at the atomic/molecular level. A number of techniques are discussed, including powder X-ray diffraction, X-ray adsorption, DSC, DTA, TGA, solid-state NMR spectroscopy (bulk techniques), SIMS, Electron microscopy, DRIFTS, RBS, STM and AFM, vacuum procedures (surface techniques), as well as a discussion around characterization using synchrotron radiation.

Course Code: CHEM3034A

Course Description Applied Chemistry IIIB

NQF Credits: 36

NQF Level: 7

This course is a semester course that is made up of four topics, and is the equivalent of the first semester of the full year course CHEM3030A. These topics are selected to give students an introduction to "real – life" chemistry as it is applied in various industrial settings.

The course comprises:

Environmental Chemistry: sources, reactions, transport, effect and fate of chemical species in water, soil and air, and the effect of human activity on these.

Medicinal Chemistry: an introduction to the origin of medicines, the physical properties of successful drugs, the sulfonamide and penicillin families of antimicrobial drugs, modern treatments for malaria and cancer, viral treatments for HIV and influenza. Industrial Inorganic Chemistry & Extractive Metallurgy: chemistry of the extraction of metals from their ores with particular emphasis on the base metals and the platinum group metals, principles of refining and a survey of the principal techniques used in the

South African mining industry.

Green Chemistry: environmentally benign processes in chemistry and the philosophy and principles underlying such processes, interdisciplinary aspects of green chemistry, biocatalysis.

Course Code: CHEM3037A

Course Description: Materials Science III

NQF Credits: 7

NQF Level: 7

The course comprises of four modules taught in the School of Chemistry in the first semester and one module taught in the School of Physics in the second semester:

The first semester modules include: Materials Chemistry which studies the chemical properties of materials; Catalysis which introduces the students to fundamental concepts in catalysis; Surface and Bulk properties which explores the characterisation techniques used to study the properties of the surface and bulk of solid materials; and Polymer Chemistry which provides an introduction to polymer science with respect to synthesis, properties, polymerization kinetics and network formation.

Second semester module: Advanced Functional Materials and Materials Characterisation covers advanced chemical and physical aspects of modern materials.

Course Code: CHEM4007A

Course Description: Analytical Chemistry

NQF Credits: 12

NQF Level: 8

This course explores important concepts in advanced environmental chemistry and deals with aspects of both pollution and geochemical based analysis. The course covers a number of aspects of environmental chemistry, including environmental processes (cycles, organic and inorganic pollutants, metal speciation, and bioavailability), geochemical analysis (sediment provenance, climate change, environmental reconstruction), and radioactivity (processes and transport). The critical aspects of sampling, sampling preparation and method validation are also discussed, together with general measurement techniques. Case studies on aspects of geochemistry, environmental toxicology and organic chemical pollution are dealt with, and techniques learned are applied to problem solving in environmental chemistry.

Course Code: CHEM4008A

Course Description: Contemporary Topics in Chemistry

NQF Credits: 30

NQF Level: 8

This course focuses on specialised and applied concepts and trends in the areas of analytical, inorganic, organic and physical chemistry. The course comprises a number of optional topics in each discipline, such as advanced methods for environmental modelling, trace analysis and isotopes in environmental chemistry, bioinorganic chemistry and applications in medicine and drug design, advanced homogeneous and heterogeneous catalysis and synthetic design, crystallography and solid state chemistry.

Course Code: CHEM4009A

Course Description: Inorganic Chemistry

NQF Credits: 12

NQF Level: 8

This course covers the application of spectroscopy to the solution of structural problems in inorganic chemistry. Modern inorganic chemistry recognises that spectroscopic signatures of coordination compounds provide significant information relating to compound structure and chemical reactivity of metal centres. This course also deals with concepts of chemical kinetics and ligand substitution reactions of transition elements.

Course Code: CHEM4010A

Course Description: Organic Chemistry

NQF Credits: 12

NQF Level: 8

This course deals with contemporary methods for the construction of organic molecules, and modern approaches to the attainment of diastereoselectivity and enantioselectivity in organic synthesis. One aspect of the course focuses on the use of chemistry of the main group elements in the formation or breaking of carbon–carbon bonds, introduction or removal of unsaturation in bonds, and functional group interconversions. A further challenge is to accomplish these transformations stereoselectively, and a second aspect of the course explores the wide range of procedures and reagents now available for effecting these changes diastereoselectively or enantioselectively.

Course Code: CHEM4011A

Course Description: Physical Chemistry

NQF Credits: 18

NQF Level: 8

This course deals with the fundamental study of chemically important systems by experimental and theoretical methods. The course approaches this on two levels: experimental studies and theoretical studies. Theoretical analysis refers to model studies of isolated entities like single atoms or molecules, discussed in the basics of quantum mechanics. Statistics is used to link the two sets of results and the procedure is commonly known as statistical thermodynamics. This course first introduces the candidate to numerical approaches to solving complex mathematical problems that may be useful in chemistry and a study of the symmetry of molecules, known as group theory. The course then covers the fundamentals and applications of quantum theory and statistical thermodynamics.

Course Code: CHEM4012A**Course Description: Research Project: Chemistry****NQF Credits: 36****NQF Level: 8**

This course provides practical training for the development of research skills and bridges the gap between formal practicals performed in the undergraduate courses and the more open – ended experimental work that is the hallmark of chemical research. The course is comprised of two research projects in two different areas of Chemistry. The ability to do research is an essential skill for an individual pursuing a career in Chemistry, and forms the basis of further postgraduate study. By working within established research structures, candidates receive exposure to the methods, philosophy and ethos of research.

School of Clinical Medicine (Faculty of Health Sciences)**Course Code: SCMD7002A****Course Description: Foundations of Bioethics****NQF Credits: 18****NQF Level: 9**

This course enables candidates to analyse and evaluate issues in bioethics within the context of a solid ethical framework. Major theoretical, non-theoretical and other ways of viewing the world are taught. The course provides a foundational understanding of the relationship between concepts, logic and argumentation, and fallacies of reasoning that may be applied across all other courses.

School of Computer Science and Applied Mathematics**Course Code: APPM1026A (APPM1027 PT)****Course Description: Mathematical Methods and Modelling I****NQF Credits: 12****NQF Level: 5**

This course introduces the formal process and methods of encoding conceptual problems into mathematical statements and equations that can be studied, analysed, and solved. Students are introduced to methods of formulating simple deterministic mathematical models (which approximately describe real-life problems in the fields of Biology, Physics, and Finance) using either recurrence equations or differential equations. Methods of solution are presented in tandem with model formulation and students will therefore evaluate appropriateness of the methods used and the models formulated. In this course students will formulate simple models, analyse them, solve them and interpret results in the real-life context.

Course Code: APPM1028A (APPM1029A PT)**Course Description: Mechanics I****NQF Credits: 12****NQF Level: 5**

This course introduces students to mathematical models of motion. The course is divided into kinematics and dynamics. In kinematics, students learn about mathematical models describing the observed motion of a particle without giving any consideration to the forces that are responsible for the particle's motion. In dynamics, students consider forces that are responsible for generating the motion of a particle. Students will use vector algebra and vector calculus to construct mathematical models of motion.

Course Code: APPM1030A (APPM1031A PT)**Course Description: Scientific Computing I****NQF Credits: 12****NQF Level: 5**

This course focuses on the introduction to programming and algorithms, numerical linear algebra, linear and non-linear systems, data interpolation, and numerical calculus. The course aims to present computational tools used in Scientific Computing and to build competency in the fundamentals of computing and in the implementation of mathematical methods used to solve problems in Mathematics, Physics, Biology, and Finance. The course draws on a collection of mathematical problems that are not easily solved by analytic or exact means but are solvable using numerical methods. It is expected that students develop a basic understanding of numerical algorithms, and the skills needed to implement them using the Python programming language.

Course Code: APPM2021A (APPM2022A PT)

Course Description: Mathematical Methods and Modelling II

NQF Credits: 16

NQF Level: 6

This course builds on the established foundational knowledge of Mathematical Methods and Modelling I. It introduces methods of solution for higher-order difference and differential equations and transforms them to a vector-matrix system of the first-order equations which can be solved and analysed using the theory of eigenvalues and eigenvectors. Advanced methods of solution such as the Fundamental Matrix solution method, the integral transform methods and the series solution methods are introduced. Models of real-life problems in the fields of Physics, Finance and Biology, which are described by first-order or higher-order difference or differential equations will be formulated, analysed solved and interpreted. Students are introduced to techniques of qualitative and quantitative analysis, which provide more insight on the behaviour of solutions to selected problems prior to solving them.

Course Code: APPM2023A (APPM2024A PT)

Course Description: Mechanics II

NQF Credits: 16

NQF Level: 6

This course introduces the formal mathematical language and theory that underpin multidimensional problems in Classical Mechanics. Students develop and employ the tools and techniques of tensor algebra to analyse the behaviour of classical mechanical systems. Topics include: curvilinear coordinate systems and coordinate transformations; tensors and tensor algebra; generalised coordinates, transformations and system descriptions; Lagrange's Formulation; multiparticle systems; rigid body mechanics; and generalised mechanical oscillations.

Course Code: APPM2025A (APPM2026A PT)

Course Description: Scientific Computing II

NQF Credits: 16

NQF Level: 6

This course presents numerical and optimisation techniques used to solve various models that arise in different practical applications and to recognise and use suitable numerical methods for different situations as they arise in solving practical problems. The course introduces students to the intermediate tools of Scientific Computing, with the purpose of performing scientific computations involved in computer programming, paradigms and algorithms for Scientific Computing. Students are involved in solving advanced problems that are generated in the Mechanics and Mathematical Modelling & Methods courses, with an emphasis on the interpretation of results, understanding the limitations of solution techniques, and distinguishing problems according to applicable methods of solution.

Course Code: APPM3038A (APPM3041A PT)

Course Description: Mathematical Methods and Modelling III

NQF Credits: 24

NQF Level: 7

This course introduces students to partial differential equations such as the Heat equation, the Wave equation and the Laplace equation. The course introduces students to more advanced methods of solution as well as analysis techniques for ordinary differential equations and partial differential equations such as methods of solving the Sturm-Liouville Problem; Separation of variables; Asymptotic methods; etc. Students learn how to non-dimensionalise differential equations using scaling theory and they will learn about methods of obtaining similarity solutions to differential equations. This course exposes students to advanced model development. Students are able to distinguish between linear and nonlinear phenomena and interpret results.

Course Code: APPM3039A (APPM3042A PT)

Course Description: Mechanics III

NQF Credits: 24

NQF Level: 7

This course introduces students to the basic principles of continuum mechanics, which is concerned with the modelling and simulation of fluids, solids, and other materials. A review of vectors and tensors is given so that students can subsequently be introduced to various measures of the deformation of a material, such as the displacement gradient tensor; Green's Tensor, the strain tensor; etc., and the concept of sheer. Students are to derive the fundamental equations of Continuum Mechanics using the conservation laws for mass and momentum. Students will use the specified Continuum Mechanics equations and the given constitutive equations that describe the sheer-strain relation for various materials to formulate and solve mathematical models describing different continuum mechanics problems. In this course, emphasis is made on the formulation of initial/boundary value problems for various materials.

Course Code: APPM3040A (APPM3043A PT)

Course Description: Scientific Computing III

NQF Credits: 24

NQF Level: 7

This course aims to introduce to students techniques for approximating functions and minimising the error associated with approximation. Further, this course aims to equip students with a variety of tools for solving ODEs and PDEs numerically, as well as the ability to assess the analytic properties of the solution schemes. Students are also introduced to the fundamentals of nonlinear optimization theory and methods. Some basic algorithms are presented and studied to provide some flavour of this important aspect of optimization. Seeking solutions to optimal control problems whenever closed-form solutions exist will also be investigated, where students will learn to mathematically model optimal control problems arising from practical applications, and numerically obtain solutions to those problems.

Course Code: APPM4057A

Course Description: Computational Differential Equations

NQF Credits: 12

NQF Level: 8

This course is focused on numerical and computational treatment of partial differential equations (PDEs) of various classes. The course focuses not only on a variety of methods used to approximate solutions of PDEs but also on analysis of these numerical methods as well as the implementation of the methods through coding in mathematical programs such as Mathematica and MATLAB. The aim of this course is to impart the skills of numerically solving PDEs, interpreting numerical solutions and presenting solutions in a contextually relevant manner.

Course Code: APPM4058A

Course Description: Digital Image Processing

NQF Credits: 12

NQF Level: 8

This course introduces candidates to the nature of digital images and information extraction from them. Areas investigated include smoothing filters, edge detection, morphology operators, segmentation and shape detection. The course includes techniques for handling remotely sensed images and hyperspectral images. Issues of processing high dimensional data sets and image compression are also addressed. Candidates are expected to work with the concepts in the laboratory, and to develop expertise with both the basic theory and practice of processing digital images.

Course Code: APPM4059A

Course Description: Continuum Mechanics

NQF Credits: 12

NQF Level: 8

The aim of the course is to provide a detailed description of the theory of fluid mechanics and elasticity. The course content is subject to the discretion of the lecturer. In fluid mechanics the topics considered include boundary layer theory, thin film theory and turbulence. In elasticity topics from plane strain and plane stress theory of linear elasticity are considered. Methods of obtaining solutions to the problems in fluid mechanics and elasticity are presented. Much attention is paid to the physical interpretation of the solutions to these problems.

Course Code: APPM4060A

Course Description: Galaxies and the Determination of Cosmological Parameters

NQF Credits: 12

NQF Level: 8

This course introduces candidates to concepts and notions regarding galaxies and the determination of various cosmological parameters.

Course Code: APPM4061A

Course Description: Studies in Applied Mathematics

NQF Credits: 12

NQF Level: 8

This course focuses on familiarising candidates with current research methods and methodologies in Applied Mathematics. The tools for comparing and analysing these are also investigated. The context depends on the lecturer and alters accordingly.

Course Code: APPM4062A

Course Description: Studies in Mechanics

NQF Credits: 12

NQF Level: 8

This course focuses on familiarising candidates with current research methods and methodologies in Mechanics. The focus of the course within this field depends on the lecturer and alters accordingly. The methods of solution employed ranges from computational methods to analytical methodologies. This allows candidates to gain insight into the various ways problems in Mechanics may be investigated.

Course Code: APPM4063A

Course Description: Studies in Computational Mathematics

NQF Credits: 12

NQF Level: 8

This course focuses on familiarising candidates with current research methods and methodologies in the field of Computational and Applied Mathematics. The use of obtaining computational as well as analytical solutions for a problem is considered. Candidates learn ways of analysing not only their results, but the methods employed for solution as well. The context depends on the lecturer and alters accordingly.

Course Code: APPM4064A

Course Description: Optimal Control Theory

NQF Credits: 12

NQF Level: 8

This course forms the basis of control theory. Most fundamental concepts in control theory are rooted in linear system theory. This course provides an overall introduction to linear system theory with rigorous mathematical proofs for all fundamental results. These results include representation of linear systems by both time and frequency domains; controllability; pole assignment; stability; observability; detectability; duality principle; observer; design and separation principle, PID control and dynamic feedback, Routh – Hurwitz criteria, and basic control problems for PDEs.

Course Code: APPM4065A

Course Description: Global Optimisation

NQF Credits: 12

NQF Level: 8

This course enables candidates to understand and utilise optimisation techniques.

This course comprises:

Stochastic algorithms for solving global optimisation problems both continuous, discrete and combinatorial problems; Deterministic algorithms such as the Branch and Bound algorithm for solving combinatorial optimisation problems; and Complexity and solution methods for a number of combinatorial optimisation problems.

Course Code: APPM4076A

Course Description: Research Project: Computational and Applied Mathematics IV

NQF Credits: 30

NQF Level: 8

This course provides practical training for the development of research skills and bridges the gap between theory and practice, and established work and novel research. By working with the established research structures in the School, candidates are exposed to the methods, philosophy and ethos of research.

Course Code: APPM7034A

Course Description: Advanced Mathematical Modelling

NQF Credits: 15

NQF Level: 9

This course aims to inform the candidates of the uses and importance of mathematical models in applications to industry. The candidates learn to develop mathematical models in areas such as epidemiology, industrial processes, mining, finance and fluid mechanics. The central focus of this course is to provide the candidates with tools which enable them to develop different models, to analyse these models and decide on their validity using mathematical arguments. Furthermore the course focuses on familiarising candidates with current research methods, methodologies and tools for comparing these via an exhaustive survey of the field in question. The understanding of the candidates regarding the topic is also deepened via a more rigorous critical analysis of the methods and follow on implementations of the methods.

Course Code: APPM7035A

Course Description: Advanced Methods of Partial Differential Equations

NQF Credits: 15

NQF Level: 9

This course is an introduction to first – order partial differential equations (PDEs) as well as linear second – order PDEs. The emphasis is on obtaining exact solutions and accordingly the necessary theoretical elements are presented to suit this need with numerous illustrations. Furthermore the course focuses on familiarising candidates with current research methods, methodologies and tools for comparing these via an exhaustive survey of the field in question. The understanding of the candidates regarding the topic is also deepened via a more rigorous critical analysis of the methods and follow on implementations of the methods.

Course Code: APPM7036A**Course Description: Advanced Symmetry Methods for Differential Equations****NQF Credits: 15****NQF Level: 9**

This course equips the candidate with algebraic techniques for symmetry reductions that enables one to solve some models arising in physical phenomena for example engineering, acoustics, environmental mechanics, industry and finance. It also focuses on familiarising candidates with current research methods, methodologies and tools for comparing these via an exhaustive survey of the field in question. The understanding of the candidates regarding the topic also deepened via a more rigorous critical analysis of the methods and follows on implementations of the methods.

Course Code: APPM7037A**Course Description: Advanced Computational Differential Equations****NQF Credits: 15****NQF Level: 9**

This course serves as an introduction to Partial Differential Equations (PDE) and their computational solution. Furthermore candidates are familiarised with current research methods, methodologies and tools for comparing these via an exhaustive survey of the field. The understanding of the candidates regarding the topic is deepened via a more rigorous critical analysis of the methods and follows on implementations of the methods.

Course Code: APPM7038A**Course Description: Advanced Global Optimisation****NQF Credits: 15****NQF Level: 9**

This course comprises:

Stochastic algorithms for solving global optimization problems both continuous, discrete and combinatorial problems; Deterministic algorithms such as the Branch and Bound algorithm for solving combinatorial optimization problems; and Complexity and solution methods for a number of combinatorial optimization problems.

Furthermore the course focuses on familiarising candidates with current research methods, methodologies and tools for comparing these via an exhaustive survey of the field in question. The understanding of the candidates regarding the topic is also deepened via a more rigorous critical analysis of the methods and follows on implementations of the methods.

Course Code: APPM7039A**Course Description: Advanced Optimal Control Theory****NQF Credits: 15****NQF Level: 9**

This course covers the representation of linear systems by time and frequency domain; controllability; pole assignment; stability; stabilizability; observerability; detectability; duality principle; observers for linear systems and basic control problems for PDEs. Furthermore the course focuses on familiarising candidates with current research methods, methodologies and tools for comparing these via an exhaustive survey of the field in question. The understanding of the candidates regarding the topic is also deepened via a more rigorous critical analysis of the methods and follows on implementations of the methods.

Course Code: APPM7040A**Course Description: Advanced Principles of Continuum Mechanics****NQF Credits: 15****NQF Level: 9**

This course is combined Fluid Mechanics and Elasticity allowing for a deeper understanding of the relationship and similarities between these two aspects of continuum mechanics. It is also focusing on familiarising candidates with current research methods, methodologies and tools for comparing these via an exhaustive survey of the field in question. The understanding of the candidates regarding the topic is deepened via a more rigorous critical analysis of the methods and follows on implementations of the methods.

Course Code: APPM7041A**Course Description: Studies in Mechanics****NQF Credits: 15****NQF Level: 9**

This course focuses on familiarising candidates with current research methods, methodologies and tools for comparing these via an exhaustive survey of the field in question. The understanding of the candidates regarding the topic is deepened via a more rigorous critical analysis of the methods and follows on implementations of the methods.

Course Code: APPM7042A**Course Description: Studies in Applied Mathematics****NQF Credits: 15****NQF Level: 9**

This course focuses on familiarising candidates with current research methods, methodologies and tools for comparing these via an exhaustive survey of the field in question. The understanding of the candidates regarding the topic is deepened via a more rigorous critical analysis of the methods and follows on implementations of the methods.

Course Code: APPM7043A**Course Description: Studies in Computational Mathematics****NQF Credits: 15****NQF Level: 9**

This course focuses on familiarising candidates with current research methods, methodologies and tools for comparing these via an exhaustive survey of the field in question. The understanding of the candidates regarding the topic is deepened via a more rigorous critical analysis of the methods and follows on implementations of the methods.

Course Code: APPM7044A**Course Description: Research Report: Computational and Applied Mathematics****NQF Credits: 90****NQF Level: 9**

The ability to do research is an essential skill for an individual pursuing a career in Computational and Applied Mathematics, and forms the basis of further postgraduate study. This module provides practical training for the development of research skills and bridges the gap between theory and practice, and established work and novel research. By working within established research structures in the School, candidates receive exposure to the methods, philosophy and ethos of research.

Course Code: COMS1015A (COMS1019A PT)**Course Description: Basic Computer Organisation I****NQF Credits: 9****NQF Level: 5**

This course covers various introductory topics to computing systems. Topics covered include: Number Systems, which include basic arithmetic and conversion between various number systems; Data Representation, which include digital and analog information, data compression, binary formats, character sets, sound, image, and video formats; Gates and Circuits, which include the use and manipulation of Boolean expressions, truth tables, and logic diagrams; Computing Components, which include the Von Neumann machine and three alternative parallel computer configurations; Low-level Programming, which include implementing simple algorithms in assembly and machine language; and finally, Operating Systems, which include memory management, process management, and various CPU scheduling algorithms.

Course Code: COMS1016A (COMS1020A PT)**Course Description: Discrete Computational Structures I****NQF Credits: 9****NQF Level: 5**

This course introduces the students to the mathematical ideas, structures and arguments needed for computer science. The objective is to introduce topics in mathematics with an emphasis on their application in computer science. The topics mainly come from areas of discrete mathematics, including sets, logic, induction, relations, finite automata, Turing machines and computability theory. There is an emphasis on reading and understanding mathematical reasoning and constructing mathematical arguments.

Course Code: COMS1017A (COMS1021A PT)

Course Description: Introduction to Data Structures and Algorithms I

NQF Credits: 9

NQF Level: 5

This course introduces students to the fundamental design, analysis, and implementation of various data structures (ways of representing values and associations between them). It also considers how these data structures can be represented in a computer memory and algorithms for manipulating these data structures efficiently. Important characteristics (e.g. efficiency, time and space complexity) of these data structures and algorithms are examined, as well as their respective practical C++ implementations. Both array and pointer based implementations are considered where relevant. Topics presented in the course include Arrays, Linked Lists, Stacks, Queues, Tree Structures, Binary Search Trees, AVL Trees, Hashing, Heaps, and Basic Searching and Sorting Algorithms.

Course Code: COMS1018A (COMS1022A PT)

Course Description: Introduction to Algorithms and Programming I

NQF Credits: 9

NQF Level: 5

This course provides an introduction to problem solving through algorithmic thinking, using the basic building blocks of programming: sequencing, selection, repetition and abstraction. Translation of algorithms into working C++ programs, as well as intermediate C++ programming features, such as parameter passing mechanisms, static and dynamic array allocation, and pointer arithmetic also fall into the main scope of the course.

Course Code: COMS1025A

Course Description: Auxiliary Computer Science and Programming IA

NQF Credits: 9

NQF Level: 5

This course equips students with practical skills required for basic programming. Topics include: Problem-solving using the basic building blocks of algorithms: sequence, selection, repetition, recursion and abstraction; Translation of algorithms into working programs using relevant development environments and programming tools. Specific topics include basic syntax and semantics of a higher-level language, variables and primitive data types (e.g., numbers, characters, Booleans), expressions and assignments, simple I/O including file I/O, conditional and iterative control structures, functions and parameter passing, and the concept of recursion.

Course Code: COMS1026A

Course Description: Auxiliary Computer Science and Programming IB

NQF Credits: 9

NQF Level: 5

This course introduces algorithms and design, specifically the design of simple algorithms and computer programs. It covers the basics of classes and Object Orientation, various Abstract Data Structures (ADTs) and their appropriate use. Specific ADTs include arrays, lists, stacks, queues, priority queues, sets, maps, dictionaries/hashtables, trees, and graphs. Students are introduced to common data analysis and visualisation libraries as well as common data formats used in large datasets.

Course Code: COMS2002A / COMS2018A (PT)

Course Description: Database Fundamentals II

NQF Credits: 12

NQF Level: 6

This course introduces the students to the main concepts and principles in database design and implementation. Good database design ensures survival in an environment where timely and accurate information is critical for every modern organisation, enterprise or institution. Organisations must have access to a well-designed and well-managed data repository, the database. This unit provides the students with the required breadth-and-depth knowledge and skills in the area of database design and database fundamentals. Some of the key concepts such as entities, keys, relationships, dependency, relationship strength, supertypes, subtypes, and transactions are discussed and implemented in the forms of projects.

Course Code: COMS2013A / COMS2019A (PT)

Course Description: Mobile Computing II

NQF Credits: 12

NQF Level: 6

This course introduces students to Java and Object Oriented Programming. Students are also exposed to Android Development Environment and topics include Activities, Intents, Views Sensors, APIs including Location, GPS, Maps, UI and App Basics, Widgets, Persistence ,Network and Web Services.

Course Code: COMS2014A / COMS2020A (PT)

Course Description: Computer Networks II

NQF Credits: 12

NQF Level: 6

This course focuses on principles and practice in networking, structure and components of computer networks, packet switching, layered architectures, applications: web/http, voice-over-IP (VOIP), peer-to-peer (p2p) file sharing and socket programming, reliable transport: TCP/IP (Transmission Control Protocol/Internet Protocol), reliable transfer, flow control, and congestion control, network layer: names and addresses, routing, local area networks: ethernet and switches, wireless networks and network security.

Course Code: COMS2015A / COMS2021A (PT)

Course Description: Analysis of Algorithms II

NQF Credits: 12

NQF Level: 6

This course focuses on introducing basic algorithmic analysis and design, computer representation of graphs, spanning and search trees, shortest path, searches and connectivity, bicomponents, strongly connected components, program evaluation and review technique, Eulerian and Hamiltonian circuits, planarity and coloring, flows (theory, applications, and algorithms), matching and stable marriage problems.

Course Code: COMS2017A

Course Description: Auxiliary Database Systems II

NQF Credits: 12

NQF Level: 6

This course introduces relational schema and their development from conceptual models, concepts of entity integrity and referential integrity constraints, algebraic operations from mathematical set theory, functional dependency, normal forms (1NF, 2NF, 3NF, BCNF, 4NF), query construction using structured query language (SQL), stored procedures and functions, and transaction and concurrency control.

Course Code: COMS3002A / COMS3019A (PT)

Course Description: Software Engineering III

NQF Credits: 18

NQF Level: 7

This course introduces students to the key concepts of software engineering – the application of sound scientific and engineering principles to the construction of large software systems – and equips students with the theoretical and practical tools required to manage software projects. The course consists of an exploration of: software engineering history; the software life–cycle; document–driven, agile and hybrid software engineering methodologies; software processes (e.g. CMMI, TSP); software project planning and cost estimation; UML and other tools for system description and implementation; software and project management tools and processes; quality assurance and testing; and maintenance.

Course Code: COMS3003A / COMS3021A (PT)

Course Description: Formal Languages and Automata III

NQF Credits: 18

NQF Level: 7

This course presents several abstract mathematical models of languages and computing processes and examines their implications, e.g. capabilities and limitations of various computing mechanisms. Subjects covered include regular languages, context–free grammars, the corresponding pumping lemmata, regular expressions, finite automata, pushdown automata.

Course Code: COMS3005A / COMS3022A (PT)

Course Description: Advanced Analysis of Algorithms III

NQF Credits: 18

NQF Level: 7

This course provides the student with the theory, application and implementation of various algorithms. A number of algorithms for solving real world problems are reviewed. Both theoretical and empirical analysis are performed to come up with an optimal solution for a given problem. This course includes the following topics: advanced search and sort algorithms, greedy algorithms, dynamic programming, closest pair of points problems, complexity classes (P, NP and Np – Completeness), backtracking, and A* search.

Course Code: COMS3006A / COMS3025A (PT)

Course Description: Computer Graphics and Visualisation III

NQF Credits: 18

NQF Level: 7

This course presents the mathematics and algorithms used in the generation and manipulation of images using computers. It is the science of enabling visual communication through computation. Its uses include cartoons, film special effects, video games, medical imaging, engineering, as well as scientific, information, and knowledge visualisation. Traditionally, graphics at the undergraduate level has focused on rendering, linear algebra, and phenomenological approaches. More recently, the focus has begun to include physics, numerical integration, scalability, and special-purpose hardware. In order for students to become adept at the use and generation of computer graphics, many implementation-specific issues must be addressed, such as file formats, hardware interfaces, and application program interfaces. The syllabus covers the fundamental aspects of Computer Graphics, as well as Graphical Modeling, Rendering, Animation, Visualisation, and Computational Geometry.

Course Code: COMS3007A / COMS3024A (PT)

Course Description: Machine Learning III

NQF Credits: 18

NQF Level: 7

This course provides the student with the theory, application and implementation of various machine learning techniques. The course covers the main kinds of machine learning: supervised, unsupervised and reinforcement learning. A number of machine learning algorithms are studied for the tasks of classification, regression, clustering and optimisation. The algorithms are presented and investigated in detail including mathematical and statistical motivation, methods of application and implementation.

Course Code: COMS3008A / COMS3026A (PT)**Course Description: Parallel Computing III****NQF Credits: 18****NQF Level: 7**

This course is the process of sharing a large workload among multiple processors. This course provides an introduction to the basic theory, and practicalities, associated with solving computational problems using parallel computing techniques. We establish an understanding of different types of machines from the point of view of large – scale workloads. This includes a study of central processing unit and graphics processing unit architectures; interconnects; and various forms of parallel memory. The practicalities of programming these machines using the message passing interface; shared memory; and general purpose graphics processing units are introduced. Issues such as load balancing; communication; and synchronisation overhead are addressed. Lastly, established practice in the field in the form of parallel numerical algorithms is also studied.

Course Code: COMS3009A / COMS3028A (PT)**Course Description: Software Design III****NQF Credits: 18****NQF Level: 7**

This course covers higher level design principles, focusing on object oriented analysis and design, functional decomposition, event driven design, aspect oriented and service oriented architectures. Students are exposed to design patterns, and test driven development. The students learn this through a combination of lectures and the completion of a large software project.

Course Code: COMS3010A / COMS3023A (PT)**Course Description: Operating Systems and System Programming III****NQF Credits: 18****NQF Level: 7**

This course introduces the student to key concepts and techniques involved in the design and implementation of operating systems as well as nontrivial computing systems in general. The course also introduces the student to system programming and the programming interfaces to the operating system kernel. The course covers the following topics: processes and interprocess communication, multithreaded programming, memory allocation, resource allocation and scheduling, file systems and persistent storage, protection and security.

Course Code: COMS3011A / COMS3027A (PT)**Course Description: Software Design Project III****NQF Credits: 18****NQF Level: 7**

The course is designed to equip the student with the requisite skills to be able to apply the theory of System Design Principles, Design Paradigms, Design Patterns, Testing and Test-Driven Development. The course is made up of a single practical component that is continuously assessed throughout the semester. The practical component takes the form of a real world software design and implementation project.

Course Code: COMS4030A**Course Description: Adaptive Computation and Machine Learning IV****NQF Credits: 12****NQF Level: 8**

This course provides the candidate with an in – depth understanding of adaptive computing and machine learning. The course consists of machine learning, pattern recognition and computational learning theory in artificial intelligence. Machine learning explores the study and construction of algorithms that can learn from and make predictions using data – such algorithms overcome following strictly static program instructions by making data driven predictions or decisions, through building a model from sample inputs.

Course Code: COMS4032A**Course Description: Applications of Algorithms IV****NQF Credits: 12****NQF Level: 8**

This course provides the candidate with various techniques for the design, analysis and application of computer algorithms. The course introduces mathematical tools required for analysing the running time complexity of algorithms, especially asymptotic methods. A number of algorithms are presented and studied in detail from initial algorithm design to proof of correctness and analysis of complexity. The course also studies various data structures and the implementation of algorithms.

Course Code: COMS4033A**Course Description: Artificial Intelligence IV****NQF Credits: 12****NQF Level: 8**

This course provides a broad introduction to artificial intelligence (AI). Topics include: Introduction to Lisp; Fundamental Issues in AI; Intelligent Agents; Problem Solving by Searching; Informed Search and Exploration; Constraint Satisfaction Problems; Adversarial Search; Reasoning and Knowledge Representation; Reasoning with Uncertainty & Probabilistic Reasoning; and Machine Learning.

Course Code: COMS4036A**Course Description: Computer Vision IV****NQF Credits: 12****NQF Level: 8**

This course introduces the candidate to the interdisciplinary field that deals with how computers can be made to gain high – level understanding from digital images or videos. The course is comprised of topics such as image formation, feature detection, motion estimation, image mosaics, 3D shape reconstruction, and object and face detection and recognition. The course looks at the applications of these techniques include building 3D maps, creating virtual characters, organising photo and video databases, human computer interaction, video surveillance, automatic vehicle navigation, and mobile computer vision.

Course Code: COMS4040A**Course Description: High Performance Computing and Scientific Data Management IV****NQF Credits: 12****NQF Level: 8**

This course introduces the candidate to on high-performance computing and its use in computational science and engineering applications. The course consists of advanced architecture models, configurations, different types of parallel programming models and applications. Advanced architectural models include the design and analysis of parallel algorithms, and the development of parallel programs. The parallel programming modules include commonly used shared memory, distributed memory, and accelerator based programming modules. Applications comprise required parallel data management tools, data mining and the analysis of massive datasets.

Course Code: COMS4041A**Course Description: Human Computer Interaction IV****NQF Credits: 12****NQF Level: 8**

This course provides an introduction to the fundamentals and key concepts used in Human – Computer Interaction, focusing on designing interaction systems for effective communication between humans and computers. Topics include: user – centered design and testing, new interactive technologies based on visual and audio signals, collaboration and communication, statistical methods for evaluating models such as usability studies, human factors and security, design – oriented interaction models, mixed, augmented and virtual reality.

Course Code: COMS4043A**Course Description: Multi – agent Systems IV****NQF Credits: 12****NQF Level: 8**

This course provides candidates an in-depth understanding of distributed multi-agent systems. It covers the following topics: Distributed constraint satisfaction, Distributed optimization, Non-cooperative game theory: games in normal form, Computing solution concepts for normal-form games, Games with sequential actions, Computing solution concepts for extensive-form games, Repeated, stochastic, and Bayesian games, Learning in multi-agent systems, Communication in multi-agent systems, Protocols for strategic agents: Mechanism design, Protocols for multi-agent resource allocation, Coalitional game theory, Logics of knowledge and belief.

Course Code: COMS4045A**Course Description: Robotics IV****NQF Credits: 12****NQF Level: 8**

This course introduces candidates to the principles of Robotics. It focuses on the algorithms and techniques used on a robot to perceive the state of its environment and determine actions that should be taken. Topics that are covered include kinematics and inverse kinematics, dynamics, PID control, optimal control, filtering and state estimation and simultaneous localisation and mapping (SLAM). The theory is supplemented by practical exercises on simulated and physical robots using the Robotic Operating System (ROS).

Course Code: COMS4047A**Course Description: Special Topics in Computer Science IV****NQF Credits: 12****NQF Level: 8**

This course covers specialised and applied concepts and trends in the areas of Artificial Intelligence (AI), Computer Architecture & Engineering (ARC), Database Management Systems (DBMS), Graphics (GR), Human-Computer Interaction (HCI), Operating Systems & Networking (OSNT), Programming Systems (PS), Scientific Computing (SCI), Security (SEC) and Theory (THY).

Course Code: COMS4048A**Course Description: Data Analysis and Exploration IV****NQF Credits: 12****NQF Level: 8**

This course introduces the candidate to the concepts and methodology of Data Analysis for Data Management. The course is made up of Data Wrangling, Exploratory Data Analysis (EDA), and Data Modelling which all falls under the general topic of Data Analysis. Data Wrangling involves the initial steps of preparing data for analysis. EDA involves various data visualisations and descriptive statistics that assist with the analysis of a given dataset. Data modelling involves using models to do forecasting and inference based on a dataset.

Course Code: COMS4050A**Course Description: Discrete Optimisation IV****NQF Credits: 12****NQF Level: 8**

This course provides the candidate with an in-depth understanding of discrete optimisation. The course covers the basic concepts and definitions from graph theory, graph partitioning and graph colouring problem, set covering problem, max flow Problem & max – flow min cur algorithm, max/min cut problem, minimum spanning tree and shortest path problem, travelling salesman problem, the knapsack problem (linear and quadratic), the satisfiability problem (SAT), the independent set problem, facility location problem and p – median problem, assignment and quadratic assignment problem, integer linear and integer quadratic programming problems.

Course Code: COMS4054A

Course Description: Natural Language Processing IV

NQF Credits: 12

NQF Level: 8

This course focuses on the interaction between human languages and computers. It aims to provide specialised content in natural language processing. Natural language processing (NLP) involves the recognition, understanding and generation of human language by computers. This course involves modeling the characteristics of natural languages and designing algorithms that implement these models.

Course Code: COMS4055A

Course Description: Mathematical Foundations of Data Science IV

NQF Credits: 12

NQF Level: 8

This course provides the candidate with an in – depth understanding of the advanced areas of fundamental mathematics pertaining to the field of data science. The course comprises foundation in topics such as high dimensional spaces, graph theory, multivariate statistics, stochastic process and algorithms for massive data problems.

Course Code: COMS4057A

Course Description: Introduction to Research Methods IV

NQF Credits: 6

NQF Level: 8

This course exposes candidates to research including current computer science research and the scientific method. It focuses on how to read and understand scientific papers to argue logically and coherently, and improve writing and presentation skills.

Course Code: COMS4058A

Course Description: Research Project: Big Data Analytics IV

NQF Credits: 36

NQF Level: 8

This course introduces candidates to research activities, familiarises them with a special problem in computer science and provides independent study on an advanced topic under the guidance of a supervisor. The candidate is required to produce a written report on the project, to include the literature search on the topic, and to present this work at a departmental seminar.

Course Code: COMS4059A

Course Description: Research Project: Computer Science IV

NQF Credits:36

NQF Level: 8

This course introduces candidates to research activities, familiarises them with a special problem in computer science and provides independent study on an advanced topic under the guidance of a supervisor. The student is required to produce a written report on the project, to include the literature search on the topic, and to present this work at a departmental seminar.

Course Code: COMS4060A

Course Description: Introduction to Data Visualisation and Exploration IV

NQF Credits: 12

NQF Level: 8

This course introduces concepts and methodology of Data Analysis for Data Management. It is made up of Data Wrangling, Exploratory Data Analysis (EDA), and Data Modelling. Data Wrangling involves the initial steps of preparing data for analysis. EDA involves various data visualisations and descriptivestatistics that assist with the analysis of a given dataset. Data modelling involves using models to do forecasting and draw inference based on a dataset.

Course Code: COMS4061A**Course Description: Reinforcement Learning IV****NQF Credits: 12****NQF Level: 8**

This course covers decision making under uncertainty, and specifically the field of reinforcement learning to handle temporal decision making, including aspects of model-based, value function, and policy methods, deep reinforcement learning, and hierarchical reinforcement learning.

Course Code: COMS4062A**Course Description: Probabilistic Graphical Models IV****NQF Credits: 12****NQF Level: 8**

This course provides students with a comprehensive exploration and analysis of the fundamental principles and diverse applications of Probabilistic Graphical Models (PGMs). It covers various techniques for modelling and reasoning under uncertainty. The course is divided into five distinct parts, enabling students to develop a thorough understanding of model representation, probabilistic inference, learning, causal modelling, and decision-making in the context of solving complex problems in artificial intelligence. With an emphasis on Explainable AI (XAI), the course highlights the significance of interpretability and transparency in AI models and systems. Students will understand how PGMs contribute to cutting-edge research on explainable artificial intelligence, empowering them to construct models that yield understandable and justifiable decisions.

Course Code: COMS4064A**Course Description: Cybersecurity IV****NQF Credits: 12****NQF Level: 8**

This course introduces key concepts, tools, and techniques in cybersecurity, equipping students to analyse and design secure systems. Topics include authentication, access control, threat modelling, and protection strategies such as defence in depth and least privilege. Students explore real-world attack vectors, including denial-of-service and cyber-physical system threats. The course also addresses how human factors influence system vulnerabilities, and includes a discussion of responsible disclosure, ethical hacking, and regulatory concerns. Through labs, projects, and theoretical work, students develop practical skills and a critical understanding of the cybersecurity landscape. The course prepares students to reason about system security, assess risk, and propose technical and ethically sound defences.

Course Code: COMS4065A**Course Description: Cryptography IV****NQF Credits: 12****NQF Level: 8**

This course introduces core principles and mathematical foundations of cryptography. The course explores symmetric and asymmetric encryption, hashing, digital signatures, and protocols that ensure secure communication, authentication, and integrity. Mathematical topics include modular arithmetic, number theory, finite fields, and complexity theory. Cryptographic schemes such as DES, AES, RSA, and Diffie-Hellman are analysed and implemented using standard cryptographic tools. The course also covers formal modelling of cryptographic security via cryptographic games and reduction-based proofs, enabling students to critically evaluate scheme security under standard hardness assumptions. Applications such as secure messaging, digital voting, and cryptocurrencies are examined, along with contemporary challenges such as post-quantum cryptography. Students gain skills in evaluating cryptographic systems and applying them in realistic security contexts.

Course Code: COMS4066A**Course Description: Secure Systems Design and Analysis IV****NQF Credits: 12****NQF Level: 8**

This course introduces the design, analysis, and implementation of secure computing systems. Students apply system-level thinking to identify vulnerabilities, analyse threats, and develop secure designs across software, hardware, networks, and socio-technical components. Topics include security requirements, attack vectors, risk vs performance trade-offs, and defences such as access control and secure boot. Practical labs focus on tools like Nmap and Wireshark and secure infrastructure deployment across Windows, Linux, and cloud systems. Students also explore hardware security, virtualisation, and cyber-physical security. The course enables students to evaluate and design secure systems holistically, balancing technical, ethical, and operational considerations.

Course Code: COMS4067A

Course Description: Offensive Security and Ethical Hacking IV

NQF Credits: 12

NQF Level: 8

This course introduces offensive security techniques used in penetration testing and ethical hacking. Students follow the testing lifecycle, including reconnaissance, scanning, exploitation, and reporting. Topics include SQL injection, XSS, buffer overflows, privilege escalation, malware analysis, secure coding, and ransomware mitigation. Students engage with tools such as Metasploit, Wireshark, and Nmap, and explore both manual and AI-assisted attack strategies. Group projects simulate real-world adversarial testing, requiring both attack and defence. Emphasis is placed on legal frameworks, professional ethics, and responsible disclosure. The course enables students to assess vulnerabilities, conduct structured penetration tests, and articulate informed recommendations for system hardening.

Course Code: COMS4068A

Course Description: Data Privacy and Ethics IV

NQF Credits: 12

NQF Level: 8

This course introduces students to the ethical and legal foundations of data governance in cybersecurity and data science. Topics include the technical processes of data collection, storage, exchange, and access, ethical aspects of data management, legal and regulatory frameworks in South Africa and relevant jurisdictions, data policies, privacy and ownership, legal liabilities of analytical decisions, algorithmic discrimination, and technical approaches to data privacy. Students engage with relevant case studies and apply legal and ethical principles to real-world scenarios.

Course Code: COMS4063A

Course Description: Research Project: Cybersecurity IV

NQF Credits: 30

NQF Level: 8

This course introduces students to research activities through a specialised problem in cybersecurity and provides independent study on an advanced topic under the guidance of a supervisor. The student is required to produce a written report on the project, including a literature review of the topic, and to present their work.

Course Code: COMS4069A

Course Description: Computational Intelligence IV

NQF Credits: 12

NQF Level: 8

This course introduces the fundamental techniques of Computational Intelligence (CI), including neural networks and evolutionary algorithms. Students learn to identify the types of problems CI is suited to solve, select and implement appropriate techniques, and evaluate performance using real-world case studies. The course also covers problem-solving, critical analysis, and practical implementation using modern computational tools.

Course Code: COMS4070A

Course Description: Computational Neuroscience IV

NQF Credits: 12

NQF Level: 8

This course introduces students to the modelling of biological neural systems, focusing on how the brain processes information across perception, memory, and decision-making. Students examine spiking neurons, memory models (e.g. Hopfield networks), and neural learning mechanisms. Visual processing is studied through convolutional architectures, while attention and working memory are explored via recurrent and transformer-based networks. The course also introduces reinforcement learning in brain circuits and spatial navigation through grid and place cell models. Emphasis is placed on connecting biological and artificial systems to understand cognitive function and learning. Students gain foundational skills for research in computational neuroscience, neuromorphic computing, and cognitive modelling. Students interact with literature in machine learning, neuroscience and psychology, focusing on the intersection of these fields.

Course Code: COMS5021A

Course Description: Mathematical and Statistical Foundations of Data Science

NQF Credits: 15

NQF Level: 8

This course covers the fundamental mathematics and statistics needed for applied data science. Specifically, candidates will be equipped with sufficient knowledge to understand and effectively utilise data science modelling techniques in practice. A data scientist should have a working knowledge of linear algebra, multivariate calculus, probability theory and hypothesis testing. This course focuses on the core applied aspects of each of these areas of mathematics and statistics in relation to modern machine learning and data science.

Course Code: COMS5022A

Course Description: Programming for Data Scientists

NQF Credits: 15

NQF Level: 8

This course covers the fundamentals of computing, programming, data structures, algorithms, and software engineering. Candidates must implement and understand algorithms for data collection and analysis and should understand the time and space considerations of algorithms. They must follow good design principles developing software, understanding the importance of those principles for testability and maintainability, including the development and implementation of algorithms, as well as integration with existing software and/or tools. The course presents a variety of data structures, algorithms and algorithmic techniques, which candidates should be able to use, whilst understanding the implications of choosing one over another. Software engineering principles include the design, implementation and testing of programs. Candidates must understand design principles and their implications for issues such as modularisation, reusability and security.

Course Code: COMS5023A

Course Description: Data Science in Education

NQF Credits: 12

NQF Level: 8

The course focuses on data-driven decision making in education. It covers the use of data analysis and visualisation tools as a vehicle for solving education-related challenges and interpreting and effectively communicating the results of these analyses to educational managers.

Topics include: Data cleaning and transforms; Data analysis models suited to education; Statistical analysis tools in the context of educational data; Data management; and Interpreting and communicating data findings for educational managers.

Course Code: COMS5024A

Course Description: Applications of Machine Learning in Chemistry

NQF Credits: 12

NQF Level: 8

The course provides an overview of chemistry fields in which the application of machine learning can be conducted to solve complex problems associated with them. Topics include: Materials chemistry - design of functional materials (e.g., battery components for electric vehicles and automated systems) and catalytic materials for reactions (homogeneous and heterogeneous); Computational chemistry – drug design and general reactions of ligands and metals (i.e., complementing density functional theory with machine learning); Environmental chemistry – air pollution; water and soil pollution; forensics; agricultural data (e.g., classification of wines; irrigation water management and pest management); citizen science (data drawn from communities and online platforms e.g., about water quality from rivers, wells and dams); and Analytical chemistry - design of experiments and quality control.

Course Code: COMS5025A

Course Description: Data-intensive Computing

NQF Credits: 12

NQF Level: 8

This course focuses on data-intensive computing. Topics include: managing big data, designing and implementing data-intensive applications, performance analysis of computational science and engineering applications, and large scale parallel and distributed systems used for storing and processing massive data.

Course Code: COMS5026A

Course Description: Applied Machine Learning

NQF Credits: 15

NQF Level: 8

This course covers the fundamentals of machine learning. Topics include: Broad categories of machine learning approaches (e.g., supervised and unsupervised); Algorithms and tools (i.e., implementations of those algorithms) for machine learning; Machine Learning as a set of principled algorithms (e.g., optimisation algorithms); Challenges (e.g., overfitting) and techniques for approaching those challenges; Performance metrics; Training and testing methodology; Algorithmic and data bias, integrity of data, and professional responsibility for fielding learned models.

Course Code: COMS5027A

Course Description: Health Analytics for Data Science

NQF Credits: 12

NQF Level: 8

This course provides aspiring Health Data Scientists with an overview of Health Analytics in Health Systems, the data life cycle of Health Analytics and an introduction to the types of data that can be processed for Health. They should be able to identify Data Tools and Data Sources, apply data analyses to different data types, apply exploratory data analyses to Electronic Healthcare data, construct an ETL pipeline (data processing) and apply Biomedical Image Analyses and Clustering. The course is structured using a project-based learning approach and students will complete multiple projects and a task and submit that as a portfolio for assessment on the course.

Course Code: COMS7009A

Course Description: Research Report: Computer Science

NQF Credits: 90

NQF Level: 9

This course trains computer science masters candidates to perform original research, familiarises them with a special problem in computer science and provides independent study on an advanced topic under the direct supervision of a member of the computer science school. The topic is decided in consultation with the supervisor. The candidate is required to produce a written report on the project, to include the literature search on the topic, and to present this work at a departmental seminar.

Course Code: COMS7041A

Course Description: Applications of Algorithms

NQF Credits: 15

NQF Level: 9

This course provides the candidate with various techniques for the design, analysis and application of computer algorithms. The course introduces mathematical tools required for analysing the running time complexity of algorithms, especially asymptotic methods. A number of algorithms are presented and studied in detail from initial algorithm design to proof of correctness and analysis of complexity. The course also studies various data structures and the implementation of algorithms.

Course Code: COMS7044A

Course Description: Artificial Intelligence

NQF Credits: 15

NQF Level: 9

This course provides a broad introduction to artificial intelligence (AI). Topics include: Introduction to Lisp; Fundamental Issues in AI; Intelligent Agents; Problem Solving by Searching; Informed Search and Exploration; Constraint Satisfaction Problems; Adversarial Search; Reasoning and Knowledge Representation; Reasoning with Uncertainty & Probabilistic Reasoning; and Machine Learning.

Course Code: COMS7045A

Course Description: High Performance Computing and Scientific Data Management

NQF Credits: 15

NQF Level: 9

This course introduces the candidate to on high – performance computing and its use in computational science and engineering applications. The course consists of advanced architecture models, configurations, different types of parallel programming models and applications. Advanced architectural models include the design and analysis of parallel algorithms, and the development of parallel programs. Applications comprise required parallel data management tools, data mining and the analysis of massively datasets.

Course Code: COMS7047A

Course Description: Adaptive Computation and Machine Learning

NQF Credits: 15

NQF Level: 9

This course provides the candidate with an in – depth understanding of adaptive computing and machine learning. The course consists of machine learning, pattern recognition and computational learning theory in artificial intelligence. Machine learning explores the study and construction of algorithms that can

learn from and make predictions using data – such algorithms overcome the limitations of strictly static program instructions by making data driven predictions or decisions, through building a model from sample inputs.

Course Code: COMS7048A

Course Description: Multi – agent Systems

NQF Credits: 15

NQF Level: 9

This course provides candidates an in-depth understanding of distributed multi-agent systems. It covers the following topics: Distributed constraint satisfaction, Distributed optimization, Non-cooperative game theory: games in normal form, Computing solution concepts for normal-form games, Games with sequential actions, Computing solution concepts for extensive-form games, Repeated, stochastic, and Bayesian games, Learning in multi-agent systems, Communication in multi-agent systems, Protocols for strategic agents: Mechanism design, Protocols for multi-agent resource allocation, Coalitional game theory, Logics of knowledge and belief.

Course Code: COMS7049A

Course Description: Robotics

NQF Credits: 15

NQF Level: 9

This course introduces candidates to the principles of Robotics. It focuses on the algorithms and techniques used on a robot to perceive the state of its environment and determine actions that should be taken. Topics that are covered include kinematics and inverse kinematics, dynamics, PID control, optimal control, filtering and state estimation and simultaneous localisation and mapping (SLAM). The theory is supplemented by practical exercises on simulated and physical robots using the Robotic Operating System (ROS).

Course Code: COMS7050A

Course Description: Computer Vision

NQF Credits: 15

NQF Level: 9

This course introduces the candidate to the interdisciplinary field that deals with how computers can be made to gain high – level understanding from digital images or videos. The course is comprised of topics such as image formation, feature detection, motion estimation, image mosaics, 3D shape reconstruction, and object and face detection and recognition. The course looks at the applications of these techniques include building 3D maps, creating virtual characters, organising photo and video databases, human computer interaction, video surveillance, automatic vehicle navigation, and mobile computer vision.

Course Code: COMS7054A

Course Description: Human Computer Interaction

NQF Credits: 15

NQF Level: 9

This course provides an introduction to the fundamentals and key concepts used in Human – Computer Interaction, focusing on designing interaction systems for effective communication between humans and computers. Topics include: user – centered design and testing, new interactive technologies based on visual and audio signals, collaboration and communication, statistical methods for evaluating models such as usability studies, human factors and security, design – oriented interaction models, mixed, augmented and virtual reality.

Course Code: COMS7055A

Course Description: Data Privacy and Ethics

NQF Credits: 15

NQF Level: 9

This course introduces the students to the ethical and legal foundations of data science governance. The topics covered are technical processes of data collection, storage, exchange and access; ethical aspects of data management; legal and regulatory frameworks in South Africa and in relevant jurisdictions; data policy; data privacy; data ownership; legal liabilities of analytical decisions, and discrimination; algorithms and technical approaches to enhance data privacy; and relevant case studies.

Course Code: COMS7056A

Course Description: Data Visualisation and Exploration

NQF Credits: 15

NQF Level: 9

This course introduces the field of data visualisation which seeks to determine and present underlying correlated structures and relationships in data sets from a wide variety of application areas. The prime objective of the presentation is to communicate the information in a dataset so as to enhance understanding. The course is comprised of the following subjects: Data and image models; Visualisation attributes (colour) and design (layout); Exploratory data analysis; Interactive data visualisation; Multidimensional data; Graphical perception; Visualisation software (Python & R); and Types of visualisation (Animation, Networks & Text).

Course Code: COMS7057A

Course Description: Large Scale Optimisation for Data Science

NQF Credits: 15

NQF Level: 9

Advanced areas of data science require a deeper understanding of the large scale discrete optimisation methods pertaining to the field. In order to bridge this mathematical gap and provide a foundation for further learning this course will place more emphasis on topics such as convex optimisation, sub-gradient methods, localisation methods, decomposition and distributed optimisation, proximal and operator splitting methods, conjugate gradients, and nonconvex problems.

Course Code: COMS7058A

Course Description: Mathematical Foundations of Data Science

NQF Credits: 15

NQF Level: 9

Advanced areas of data science require a deeper understanding of the fundamental mathematics pertaining to the field. In order to bridge this mathematical gap and provide a foundation for further learning this course will place more emphasis on topics such as high-dimensional space, best-fit subspaces and singular value decomposition, random walks and Markov chains, statistical machine learning, clustering, random graphs, topic models, non-negative matrix factorisation, hidden Markov models, graphical models, wavelets, and sparse representations.

Course Code: COMS7059A

Course Description: Large Scale Computing Systems and Scientific Programming

NQF Credits: 15

NQF Level: 9

Conducting e-research/e-science requires a good understanding of the computing principles, methods and tools that have been developed to support the analysis of large-scale and complex data. The course focuses on the software stack but addresses hardware issues as necessary. The course covers a selection of following topics: Introduction to programming environments for scientific computing (e.g. Pandas, Numpy, matplotlib); Principles of distributed systems, and overview of parallel architectures and environments (e.g. FPGA, GPU, multi-core, cluster, grid); Large scale data transfer and storage; Frameworks for large scale data analysis (relational databases, map-reduce, streaming); Scientific workflow management: provenance and replication; Introduction to cloud computing and virtualisation; and Project (e.g. Programming large-data applications on open-source infrastructures for data processing and storage systems).

Course Code: COMS7060A

Course Description: Research Methods and Capstone Project in Data Science

NQF Credits: 15

NQF Level: 9

This course gives the students the theoretical and practical skills to plan, conduct, analyse and present a scientific assignment (Capstone Project) in the area of Data Science by introducing them to research methodology, ethics and sustainability. The course is comprised of three parts: 1) scientific writing; 2) research methodology; and 3) scientific assignment. These three parts are integrated in a capstone project.

Course Code: COMS7061A

Course Description: Research Report: Data Science

NQF Credits: 90

NQF Level: 9

The ability to do research is an essential skill for an individual pursuing a career in Data Science, and forms the basis for further post-graduate study. This module provides practical training for the development of research skills and bridges the gap between theory and practice, and established work and novel research. By working within established research structures in the Institution under the guidance of an expert, students will receive exposure to the methods, philosophy and ethos of research in the field of Data Science.

Course Code: COMS7062A

Course Description: Special Topics in Data Science

NQF Credits: 15

NQF Level: 9

This module deals with specialised and applied concepts and trends in the domain specific areas of data sciences such as finance, health sciences, bioinformatics, natural sciences, social sciences, smart cities, education, and energy.

Course Code: COMS7063A

Course Description: Statistical Foundations of Data Science

NQF Credits: 15

NQF Level: 9

This course provides an understanding of multivariate statistical methods. Hypothesis testing and confidence intervals. The ability to model data using well known statistical distributions as well as handle data that is both continuous and categorical. The ability to perform statistical modeling including multivariate regression and adjust for multiple hypothesis. Forecasting, extrapolation, prediction and modeling using statistical methods. Bayesian statistics. An understanding of bootstrapping and Monte Carlo simulation.

Course Code: COMS7065A

Course Description: Computational Intelligence

NQF Credits: 15

NQF Level: 9

This course provides candidates with the knowledge and skills required to design and implement effective and efficient computational intelligence solutions to difficult problems in the context of Artificial Intelligence. It places emphasis on the basic concepts of fuzzy, evolutionary and neural computation, which candidates apply to solve real case studies.

Course Code: COMS7066A

Course Description: Natural Language Technology

NQF Credits: 90

NQF Level: 9

This course deals with programming computers to process large Natural Language data to enable interactions between computers and humans. It introduces the most relevant problems involved in Natural Languages Programming (NLP), the most relevant techniques and resources used and the theories they are based on. Topics include: Introduction to NLP; Resources used for processing Natural Language; Language models; Morphology; Syntax; Semantics; Coreference; Natural Language generation and an overview of Natural Language applications.

Course Code: COMS7067A

Course Description: Research Methods and Capstone Project in Artificial Intelligence

NQF Credits: 90

NQF Level: 9

This course provides candidates with the knowledge and skills required to design and implement effective and efficient computational intelligence solutions to difficult problems in the context of Artificial Intelligence. It places emphasis on the basic concepts of fuzzy, evolutionary and neural computation, which candidates apply to solve real case studies.

Course Code: COMS7068A

Course Description: Research Report: Artificial Intelligence

NQF Credits: 90

NQF Level: 9

This course provides practical training for the development of research skills and bridges the gap between theory and practice, and established work and novel research. By working with the established research structures in the School, candidates are exposed to the methods, philosophy and ethos of research.

Course Code: COMS7069A

Course Description: Advanced Topics in Robotics

NQF Credits: 15

NQF Level: 9

This course deals with specialised and advanced concepts and trends in robotics, including the integration of vision, planning, learning and language.

Course Code: COMS7070A

Course Description: Research Report: Robotics

NQF Credits: 90

NQF Level: 9

This course provides practical training for the development of research skills and bridges the gap between theory and practice, and established work and novel research. By working with the established research structures in the School, candidates are exposed to the methods, philosophy and ethos of research.

Course Code: COMS7071A

Course Description: Reinforcement Learning

NQF Credits: 15

NQF Level: 9

This course covers decision making under uncertainty, and specifically the field of reinforcement learning to handle temporal decision making, including aspects of model-based, value function, and policy methods, deep reinforcement learning, and hierarchical reinforcement learning.

Course Code: COMS7072A

Course Description: Research Methods and Capstone Project in Computer Science

NQF Credits: 15

NQF Level: 9

This course provides candidates with the theoretical and practical skills to plan, conduct, analyse and present a scientific assignment (Capstone Project) in Computer Science by introducing them to research methodology, ethics and sustainability. The course comprises three parts, 1) scientific writing; 2) research methodology; and 3) scientific assignment, which are integrated into a capstone project.

Course Code: COMS7073A

Course Description: Research Methods and Capstone Project in Robotics

NQF Credits: 15

NQF Level: 9

This course provides candidates with the theoretical and practical skills to plan, conduct, analyse and present a scientific assignment (Capstone Project) in Robotics by introducing them to research methodology, ethics and sustainability. The course comprises three parts, 1) scientific writing; 2) research methodology; and 3) scientific assignment, which are integrated into a capstone project.

Course Code: COMS7074A

Course Description: Probabilistic Graphical Models

NQF Credits: 15

NQF Level: 9

This course offers students an extensive exploration and analysis of the fundamental principles and diverse applications of Probabilistic Graphical Models (PGMs). The course goes beyond the basics to delve into techniques that make PGMs highly regarded for addressing challenges related to modelling, reasoning, and decision-making under uncertainty. The course is structured to give students a deep understanding of critical aspects such as particle-based inference, parameter estimation and structure learning, causality, and structured decision problems. The course prioritizes Explainable AI (XAI), stressing interpretability and transparency in AI models and systems. Students will understand how PGMs contribute to advancing research in XAI, enabling them to construct interpretable and justifiable decision-making models.

Course Code: COMS7238A

Course Description: Advanced Digital Image Processing

NQF Credits: 15

NQF Level: 9

This course provides an introduction to image representation by computers and the computational implementation of various image processing algorithms. Furthermore candidates are familiarised with current research methods, methodologies and tools for comparing these via an exhaustive survey of the field. The understanding of the candidates regarding the topic is be deepened via a more rigorous critical analysis of the methods and follow on implementations of the methods.

Course Code: COMS7077A

Course Description: Cybersecurity

NQF Credits: 15

NQF Level: 9

This course provides a comprehensive overview of cybersecurity principles and practices. The course develops a security mindset based on confidentiality, integrity, availability, and systems' thinking. Topics include access control, vulnerabilities, authentication, threat modelling, attack vectors, and protection strategies such as least privilege, defence in depth, and zero-trust architectures. Students examine emerging trends like adversarial AI and cyber-physical system security, as well as human factors and issues such as responsible disclosure and security policy. The course integrates theory and practice through labs, literature analysis, and case studies. The course enables students to analyse threats, design secure systems, evaluate defences, and reflect critically on evolving challenges in cybersecurity.

Course Code: COMS7078A

Course Description: Cryptography

NQF Credits: 15

NQF Level: 9

This course introduces core principles and mathematical foundations of cryptography. Students explore symmetric and asymmetric encryption, hashing, digital signatures, and protocols that ensure secure communication, authentication, and integrity. Topics include modular arithmetic, number theory, finite fields, and complexity theory. Cryptographic schemes such as DES, AES, RSA, and Diffie-Hellman are analysed and implemented using standard tools. The course introduces formal modelling of security via cryptographic games and reduction-based proofs, enabling students to evaluate scheme security under standard hardness assumptions. Applications such as secure messaging, digital voting, and cryptocurrencies are examined, alongside contemporary challenges such as post-quantum cryptography. Students engage with foundational and current research literature, analysing seminal papers and standards to understand the evolution and rationale behind modern cryptographic design.

Course Code: COMS7079A

Course Description: Secure Systems Design and Analysis

NQF Credits: 15

NQF Level: 9

This course focuses on designing, analysing, and implementing secure computing systems. Students develop system-level strategies to identify vulnerabilities, model threats, and apply security principles across software, hardware, and socio-technical domains. Topics include attack vectors, risk-performance trade-offs, secure boot, containerisation, and access control. The course includes hands-on labs using tools like Nmap, Wireshark, Metasploit, and cloud and virtualisation platforms. Students also explore cyber-physical security, hardware defences, and mitigation strategies against attacks such as spoofing and privilege escalation. Topics include secure system architecture, ethical decision-making, and resilience in AI-driven environments. The course equips students to evaluate and design secure systems for enterprise, research, and critical infrastructure.

Course Code: COMS7080A

Course Description: Offensive Security and Ethical Hacking

NQF Credits: 15

NQF Level: 9

This course covers offensive security techniques used in professional penetration testing and ethical hacking. Students engage with the full testing lifecycle including reconnaissance, vulnerability scanning, exploitation, post-exploitation, and reporting. Topics include buffer overflows, privilege escalation, web-based attacks (SQLi, XSS), malware analysis, evasion, and AI-assisted threat detection. Secure coding, secure integration of third-party code, and software lifecycle management are also addressed. Practical sessions use tools like Metasploit, Wireshark, and Nmap. Emphasis is placed on ethical frameworks, legal compliance, and responsible disclosure. The course enables students to plan and execute penetration tests, analyse vulnerabilities, and provide actionable remediation aligned with industry standards.

Course Code: COMS7075A

Course Description: Research Report: Cybersecurity

NQF Credits: 90

NQF Level: 9

This course trains candidates to perform original research, familiarises them with a specialised problem in the field, and provides the opportunity for independent study under direct supervision. Candidates are required to produce a written research report on the project, which must include a literature review, appropriate methodology, and the results of their investigation. The report should demonstrate technical depth, critical thinking, and alignment with scholarly standards in the discipline. The candidate is also expected to present their work at a departmental seminar.

Course Code: COMS7076A

Course Description: Research Methods and Capstone Project in Cybersecurity

NQF Credits: 15

NQF Level: 9

This course equips students with core research skills and methodological frameworks to undertake scholarly and applied work in cybersecurity. It covers the design and execution of research projects, analysis of academic and industry literature, and ethical considerations in security research. Students engage with qualitative and quantitative paradigms, including experimental design, data analysis, and the evaluation of cybersecurity interventions. Emphasis is placed on formulating research questions, defining scope, selecting methods, and applying critical thinking to real-world or simulated problems. As part of the capstone component, students develop a research project aligned with their interests, producing a project proposal, literature review, methodological plan, and final project report.

Course Code: COMS7081A

Course Description: Computational Neuroscience

NQF Credits: 15

NQF Level: 9

This course provides an introduction to how neural systems process information, from single neurons to cognitive models. Topics include ion channels, synaptic plasticity, and spiking neuron models such as leaky integrate-and-fire units. Students explore coding schemes, Hopfield networks, Restricted Boltzmann Machines, and energy-based memory models. Attention and working memory are examined via transformers and attractor networks. The course contrasts associative learning in cerebellar circuits with semantic learning in deep networks. Vision is modelled using convolutional neural networks, while reinforcement learning is explored through CSTC loops and dopaminergic signalling. Spatial cognition is studied via grid cells, place cells, and the Tolman-Eichenbaum Machine. Emphasis is placed on connecting biological mechanisms with artificial systems across perception, learning, and decision-making.

School of Economics and Finance (Faculty of Commerce, Law and Management)

Course Code: FINE2000A (FT)/FINE2001A (PT)

Course Description: Corporate Finance II

NQF Credits: 24

NQF Level: 6

This course introduces the student to the principles of corporate finance. The course comprises two pillars relating to the investment and financing decision. The investment decision involves spending money, and the financing decision involves raising the capital. The course covers the following topics: Time value of money; risk, return and the cost of capital; agency problems; management compensation and the measurement of performance; efficient markets; how corporations issue securities; pay out policy; debt policy; financing and valuation; managing international risks and mergers and acquisitions.

Course Code: FINE2010A (FT)/FINE2011A(PT)

Course Description: Investment II

NQF Credits: 24

NQF Level: 6

This course introduces the student to the essentials of investment and measurement of investment performance. The course covers the following topics: portfolio theory; portfolio management; diversification and active and passive portfolio management; calculating investment returns and the relationship between risk and return; return for risky and risk free assets; debt and equity markets; pricing and valuation; behavioural finance and efficient market hypothesis; capital asset pricing model; arbitrage pricing theory; duration; macroeconomic, industry and technical analysis and derivative security analysis.

This course introduces students to the economic theory of insurance, retirement funding and taxation as well as health insurance and funding. The course comprises three components which are examined separately. The first component focuses on the economic theory of insurance. Key topics covered in this component include: adverse selection, risk aversion and market behaviour in the face of imperfect information among others. The second component covers retirement funding with specific reference to the economic role of retirement funding; types of retirement funds; risks associated with retirement funding; administration of retirement funds; regulation and taxation issues. The third component focuses on health economic issues of healthcare funding and health insurance. It introduces students to economic issues of healthcare, healthcare funding models and their performance under different macroeconomic conditions and medical aid schemes and their regulation.

Course Code: FINE3014A(FT)/FINE3015A(PT)

Course Description: Investment and Corporate Finance III

NQF Credits: 72

NQF Level: 7

This course focuses on the two central pillars of business finance, namely investment and corporate finance. The course is designed to equip the student with theoretical knowledge and practical skills required for financial and investment analysis. The two pillars of investment and corporate finance consist of seven topics relating to core areas such as security valuation, portfolio management, capital budgeting and capital structure. The student is exposed to methodologies such as discounted dividend and cash flow models, the weighted average cost of capital method, industry and company analysis and derivative valuation models.

Course Code: FINE3018A

Course Description: Portfolio Theory and Asset Valuation III

NQF Credits: 18

NQF Level: 7

This course will include topics such as measures and determinants of risk and return, efficient capital markets, behavioral finance, technical analysis trading rules and indicators, the Markowitz portfolio theory, efficient frontier, capital market theory, calculating risk and return of a three-asset portfolio, empirical tests of capital asset pricing model, arbitrage pricing theory, multifactor models and risk estimation, valuation and management of common stock, fundamental analysis, equity portfolio management strategies, bond fundamentals and valuation, bond analysis and investing in alternative asset classes.

Course Code: FINE3019A

Course Description: Capital Budgeting III

NQF Credits: 18

NQF Level: 7

This course is designed to give the student a better understanding of the fundamentals of valuation and capital budgeting, ranging from an in-depth exploration of capital budgeting techniques, namely, IRR, NPV etc. as well as the estimation of the appropriate cost of capital. The course also considers the different valuation techniques, namely, DCF, valuation using multiples and real option pricing. After this course, a student should be comfortable conducting a full valuation of a project, private company and listed company.

Course Code: FINE3020A

Course Description: Derivative Securities and Portfolio Management III

NQF Credits: 18

NQF Level: 7

This course covers key topics in portfolio management and derivative security analysis, including utility theory and investment decision-making, professional portfolio construction and management, alternative investments, and industry regulations and frameworks. Students will explore portfolio performance evaluation, behavioral finance biases, and matching investor preferences with portfolio characteristics. The derivative securities segment focuses on forwards, futures, options, and swaps, covering their valuation, trading strategies, and applications in hedging, speculation, and risk management. Additionally, students will learn about option pricing models (Black-Scholes and binomial trees), arbitrage relationships, and how derivatives can be used in portfolio management.

Course Code: FINE3021A

Course Description: International Finance and Capital Structure III

NQF Credits: 18

NQF Level: 7

This course provides an overview of the international business environment, and the strategies multinational corporations (MNCs) use to operate effectively. Students will learn to evaluate exchange rate, inflation, and interest rate relationships, identify arbitrage opportunities, and manage transaction, economic, and translation exposure. The course also analyses the risks MNCs face and strategies to mitigate them. Additionally, the course explores the principles of capital structure, examining how firms finance their assets through debt and equity. Key topics include foundational theories like Modigliani and Miller's Capital Structure Irrelevance Theorem, as well as practical considerations such as taxation, bankruptcy costs, and stakeholder conflicts. Students will explore dividend policy, financing decisions, and the strategic implications of capital structure, gaining a comprehensive understanding of how optimal financing influences firm value and competitive advantage.

Course Code: ECON1012A(FT)/ECON1013A(PT)

Course Description: Economics IA – Microeconomics

NQF Credits: 18

NQF Level: 5

This course introduces students to the core microeconomic theory. The course investigates the optimising behaviour of both consumers and firms and the coordination of their decisions through markets. It takes a technical (mathematics based) approach to exploring the theory and applies this knowledge to explaining real world social issues in South Africa and abroad.

The primary focus of the course is to develop an understanding of the theory and underlying logic of the economic models that form the core of the discipline. The topics covered include: economic efficiency; demand and supply; utility theory; firm cost, production, and output decisions; pricing and allocation of factors of production; market structures; international trade; and applied market analysis.

Course Code: ECON1014A(FT)/ECON1015A(PT)

Course Description: Economics IB – Macroeconomics

NQF Credits: 18

NQF Level: 5

This course introduces students to core macroeconomic theory. The course investigates the phenomenon of economic growth and its fluctuation, and considers the roles of both fiscal and monetary policy in this process. It takes a technical approach to exploring the theory and applies this knowledge to explaining real world social issues in South Africa and abroad. The primary focus of the course is to develop an understanding of the theory and underlying logic of the economic models that form the core of the discipline. The topics covered include: measuring output, unemployment, and inflation; the business cycle; the aggregate expenditure, aggregate demand and aggregate supply; and ISLM models; fiscal and money policies, banks and interest rates determination; the balance of payments; and applied economic growth analysis.

Course Code: ECON1016A(FT)/ECON1017A(PT)

Course Description: Economic Theory IA – Microeconomics for Economists

NQF Credits: 18

NQF Level: 5

This course establishes the core microeconomic theory for students intending to major in economics. The course investigates the optimising behaviour of consumers and firms and the coordination of their decisions through markets. It takes a rigorously technical approach to exploring the theory while guest speakers from within the economics profession share their insights with students. The primary focus of the course is to critically engage with the technical and mathematical aspects, as well as the underlying logic, of the theory and models that form the core of the discipline. The topics covered include: demand and supply; utility theory; firm production and output decisions; pricing and allocation of factors of production; market structures; international trade; and applied market analysis. This course covers the same material as the ECON1012 Economics IA - Microeconomics course but is more mathematically intense.

Course Code: ECON1018A(FT)/ECON1019A(PT)

Course Description: Economic Theory IB – Macroeconomics for Economists

NQF Credits: 18

NQF Level: 5

This course establishes the core macroeconomic theory for students intending to major in economics. The course investigates the phenomenon of economic growth and its fluctuation, and considers the roles of both fiscal and monetary policy in this process. It takes a technical approach to exploring this theory. The primary focus of the course is to critically engage with the technical and the underlying logic of the theory and models that form the core of the discipline. The topics covered include: measuring output, unemployment, and inflation; business cycle; aggregate expenditure & demand, aggregate supply, ISLM models; fiscal & monetary policies; interest rates determination; the BOPs; and economic growth analysis. This course covers the same material as the ECON1014 Economics IB - Macroeconomics course but is more mathematically intense.

Course Code: ECON2000A(FT)/ECON2007A(PT)

Course Description: Economics IIA

NQF Credits: 24

NQF Level: 6

This course comprises of two modules: Intermediate Microeconomics and Intermediate Macroeconomics. Microeconomics introduces students to the theory of consumer behaviour and its empirical applications. The module explores key concepts such as constrained and unconstrained preferences, demand, equilibrium, revealed preference and the Slutsky equation. Macroeconomics consists of an in-depth critical analysis of major conventional macroeconomic theories and their policy implications. Especially, as they relate to current economic conditions in South Africa and the rest of the world over the short- and medium-run.

Course Code: ECON2001A(FT)/ECON2008A(PT)

Course Description: Economics IIB

NQF Credits: 24

NQF Level: 6

This course comprises of two modules: International Economics and Mathematics and Statistics for Economists. International Economics exposes students to a critical analysis of classical and neoclassical theories that determine observable trade patterns. The module also provides a background of the basic principles of international monetary economics. This lays the groundwork for understanding why individuals and institutions trade in financial assets and how international financial transactions affect and in turn are influenced by the real and financial sectors of an economy. For Mathematics and Statistics for Economists, it equips students with elementary mathematical and statistical tools to apply in real economic analysis.

Course Code: ECON3015A/ECON3032 (PT)

Course Description: Microeconomics III

NQF Credits: 12

NQF Level: 7

This course covers competing theories on how the economy functions at the microeconomic level. It reinforces the theoretical and quantitative tools acquired in second-year economics, with an emphasis on developing analytical skills to explain and predict economic and non-economic phenomena. Topics include revealed preference, consumers' surplus, different forms of imperfect competition, game theory, and general equilibrium.

Course Code: ECON3016A/ ECON3017A (PT)

Course Description: Macroeconomics III

NQF Credits: 12

NQF Level: 7

This course covers economic growth and the impact of saving, capital accumulation and output, technological progress, and growth. The course investigates technological progress and the roles of financial markets and expectations. The course also covers the influence of expectations, consumption, investment on economic growth, and the relationship between expectations, output, and policy. The course further investigates openness in goods, exchange rate regimes and financial markets as well as the placement of the goods market in an open economy. Lastly, the course covers the relationship between output, interest rate, and the exchange rate.

Course Code: ECON3018A/ ECON3033A (PT)

Course Description: Econometrics III

NQF Credits: 12

NQF Level: 7

The course covers the descriptive analysis of data, regression analysis, statistical inference, as well as evaluating the statistical properties of the estimates from regression models. It focuses on the difference between correlation and causation and includes an investigation of omitted variable bias. The course introduces randomised controlled trials, to address omitted variable bias when estimating the effects of interventions.

Course Code: ECON3019A/ ECON3020A (PT)

Course Description: Mathematical Economics III

NQF Credits: 12

NQF Level: 7

The course provides the tools to conduct equilibrium analysis in economics. These tools include linear models and matrix algebra, differential calculus, extreme value of multivariate function optimisation, constrained optimisation, and discrete time first order difference equations.

Course Code: ECON3021A/ ECON3022A (PT)

Course Description: South African Development Issues III

NQF Credits: 12

NQF Level: 7

This course covers a historical perspective on South African economic development and key debates in understanding its contemporary structure and problems. It traces the evolution of the South African political economy from the late 19th century to the present. This foundation is used to explain the structure of the South African economy and the reasons why it has given rise to the persistence of extreme inequality, poverty, and unemployment.

Course Code: ECON3023A/ ECON3024A (PT)

Course Description: International Economics III

NQF Credits: 12

NQF Level: 7

The course consists of international trade and international finance. The international trade component focuses on the factors that influence relative prices prior to international trade and provides a general background for understanding the issues associated with trade policies. The international finance component focuses on the basic principles of international monetary economics, the complexities of international financial flows, and the international monetary system. The course also provides a sampling of an array of new financial instruments and approaches to the determination of the balance of payments and exchange rates.

Course Code: ECON3025A

Course Description: History of Economic Thought III

NQF Credits: 12

NQF Level: 7

The course provides an analysis of the historical development of economics and the ongoing developments and discourses in the field. The course also covers continuing debates within economics and its dynamic potential for broadened perspectives of economics.

Course Code: ECON3026A

Course Description: Public Economics III

NQF Credits: 12

NQF Level: 7

The course covers the field of public economics. During the past forty years, the field of public economics has broadened beyond issues of taxation to include externalities, public goods, voting, interest groups, fiscal federalism, property rights and regulation, and more. This course also covers a recognition of not only the government's role in the economy but also how tools of economic theory can be used to analyse the public sector.

Course Code: ECON3027A

Course Description: Health Economics III

NQF Credits: 12

NQF Level: 7

The course covers an introduction to the concepts of health, health systems and public health. The second part of the course covers demand-side issues, including the demand for health, health care and health insurance, and supply-induced demand. The third part investigates supply-side issues such as healthcare labour markets. The fourth part investigates aspects of market failure relevant to the healthcare sector. The course also covers the economics of addiction, health economic evaluation, and health care financing systems.

Course Code: ECON3028A

Course Description: Topics in Economic Policy III

NQF Credits: 12

NQF Level: 7

The course covers the knowledge and skills needed to design and evaluate economic and social policies. The course also covers the skill sets needed to design and evaluate social policy interventions through welfare transfer programmes such as the child support grant, basic income grant, old age pension, etc. The topics include the theoretical tools needed to design economic policies and the empirical tools needed to evaluate them. These include randomised control trials and quasi-experimental techniques such as the difference-in-differences method. The course will also address the socioeconomic challenges in the country.

Course Code: ECON3029A

Course Description: Topics in Macroeconomic Theory III

NQF Credits: 12

NQF Level: 7

This course focuses on contemporary theoretical developments in macroeconomics and develops an understanding of theoretical advancements in the field of macroeconomics to identify and explain economic concepts and relationships. It covers the following topics, the determinants of short- and long-term growth, the determinants of the level of employment and the price level, the role of investment (private and public) and its determinants, and the links between public expenditure and macroeconomic dynamics. The course also covers the connections with the monetary and financial spheres by analysing the role of money, interest rates, savings, asset prices, exchange rates etc. This course presents different types of alternative modelling on each of these topics.

Course Code: ECON3030A

Course Description: Topics in Contemporary Economics III

NQF Credits: 12

NQF Level: 7

This course provides an exposition of contemporary economic issues. The course aims to develop a student's ability to critically engage with current economic issues, apply economic approaches/theories to real-world problems and contribute to policy debates on key economic issues.

Course Code: ECON3031A

Course Description: Topics in Applied Economics III

NQF Credits: 12

NQF Level: 7

This course covers the application of economic theory, methods, and data to real-world economic issues. Topics include poverty, inequality, labour markets, health, international trade, and environmental issues. The course also covers analytical and empirical skills within sound economic theory.

Course Code: ECON3034A

Course Description: Labour Economics III

NQF Credits: 12

NQF Level: 7

The course covers contemporary labour market challenges, labour market functions, and how institutions and other factors influence the performance of the labour market. It covers the standard theories and applications of labour market behaviour, and questions related to the assumptions of these theories for developing countries. It also discusses the South African labour market.

Course Code: ECON7016A

Course Description: Development

NQF Credits: 15

NQF Level: 9

This course is designed to provide an in-depth understanding of the process of economic growth and development. The course is broadly divided into three parts. The first part explores theoretical advances in modern economic growth theory and studies the current debate through recent empirical applications. Part two focuses on the developmental impact of institutions and policies like land, institutions and credit market. The last part focuses on issues particular to the African continent including the curse of resources, foreign aid, conflict and role of the State. This course will equip the candidate to comprehend the factors behind economic growth, identify and measure issues relating to developing countries like poverty and inequality.

Course Code: ECON7057A

Course Description: Gender Economics

NQF Credits: 15

NQF Level: 9

This course explores the foundational concepts of gender, bias and intersectionality. Topics include the valuation of non-market work and the gender division of labour in the household, gender differences in the labour market, health, wellbeing and the family and the policy debates relevant to gender issues in developing and developed country contexts.

Course Code: ECON7070A

Course Description: Introduction to Inequality Studies

NQF Credits: 15

NQF Level: 9

This course provides an introduction to the major literature and relevant developments in the field of inequality studies. It focuses on the development of the literature in inequality studies in the 20th and 21st centuries, and outlines the central approaches, and identifies areas of commonality and disagreement. The course comprises of three components. The first component engages with the foundational literature on inequality studies. The second component compares and contrasts competing approaches to the study of inequality globally. The third component examines the application of inequality studies through a set of thematic studies across a number of fields and disciplines.

Course Code: ECON7071A

Course Description: Inequality Studies: Theory and Methods

NQF Credits: 15

NQF Level: 9

This course provides an introduction to the major theoretical and methodological approaches and developments in the field of inequality studies. The course covers the main theoretical and methodological approaches in inequality studies, and the skills required to evaluate these competing approaches. The course comprises of three components. The first component focuses on the major theoretical approaches within inequality studies. The second component examines the evolution of the methodological underpinnings of inequality studies. The third component applies selected theoretical and methodological approaches to a particular area of inequality studies.

Course Code: ECON7074A

Course Description: Political Economy of Development

NQF Credits: 15

NQF Level: 9

This course focuses on economic growth and its influence on conceptions of development and underdevelopment, the nature of poverty and the role of the state in the development process. The course covers elements of theory and policy relevant to the study and practice of development. Part one of the course covers theoretical and historical elements in economic thinking about development through the examination of different theoretical approaches and policy outcomes. Part two of the course focuses upon specific issues currently being debated in the political economy of development by using examples and contributions from Africa and other parts of the world. Issues covered include the role of the state, agriculture and land reform, gender and labour markets.

School of Electrical and Information Engineering (Faculty of Engineering and the Built Environment)

Course Code: ELEN2000A

Course Description: Electrical Engineering

NQF Credits:18

NQF Level: 6

This course provides a broad yet fundamental understanding of electrical engineering concepts. Students learn how to analyse simple ac; dc and transient circuits as well as basic concepts of electronics. The students are also introduced to concepts of power engineering ranging from the single-phase transformer, to the three-phase circuits and the dc and three-phase induction machine.

The course entails three key areas:

Circuit analysis methods and tools; basic electronics; and concepts of power engineering.

Course Code: ELEN7046A

Course Description: Software Technologies and Techniques

NQF Credits:20

NQF Level: 9

This course builds on foundational material found at an undergraduate level by presenting candidates with insights into the rapidly changing landscape of modern software development. A major component of this course is to develop a practical appreciation of effective teamwork. Candidates are required to work in groups on a substantial software development project. The candidate is required to deliver a presentation on relevant software development issues. Key topics include software development languages, paradigms and philosophies, pragmatic programming, operating systems and system architectures, distributed application standards, distributed and parallel processing, information models, databases and data modeling, modern application areas.

Course Code: FEBE1000A/FEBE1001A (PT)

Course Description: Introduction to the Engineering Profession

NQF Credits: 12

NQF Level: 5

This course introduces students to the various engineering disciplines, engineering materials, the social and environmental context of engineering, engineering communication and vocabulary, non-technical problem solving and creative thinking.

Course Code: FEBE1002A/FEBE1003A (PT)

Course Description: Engineering Analysis and Design IA

NQF Credits: 12

NQF Level: 5

This course covers graphic representation including freehand drawing, descriptive geometry and computer aided design (CAD), creation and interpretation of engineering technical drawings. The student is introduced to solving problems and creating engineering artefacts through the use of the engineering method, unit conversions, financial appraisal and basic computer software including word processing and spreadsheets in order to produce reports of engineering design.

Course Code: FEBE1004A/FEBE1005A (PT)

Course Description: Engineering Analysis and Design IB

NQF Credits: 12

NQF Level: 5

This course introduces students to the production of simple engineering designs to appropriate engineering practice standards. The course covers the application of basic engineering science in the design of artefacts and working principles of common engineering products. Students are required to master technical report writing.

Course Code: FEBE5000A

Course Description: Communicating Innovation

NQF Credits: 10

NQF Level: 8

This course covers graphic representation including freehand drawing, descriptive geometry and computer aided design (CAD); creation and interpretation of engineering technical drawings; introduction to materials, manufacturing methods and engineering standards. The student is introduced to systems thinking; engineering artefacts in their context; and the use of the engineering method in solving problems.

Course Code: FEBE5001A

Course Description: Design Thinking for Innovation

NQF Credits: 20

NQF Level: 8

This course aims to provide candidates with an awareness of Design Thinking. The Design Thinking course introduces candidates to an iterative process that seeks to understand stakeholder (i.e., human-centred) needs, challenge assumptions, redefine problems and create validated innovative solutions. The course provides candidates with alternative strategies and solutions that are not initially obvious without the Design Thinking mindset and methodology. The course also provides candidates with a methodology to work in a dynamic way to develop and launch human-centered innovative ideas. This includes: the Human-Centred Design (HCD) philosophy, Design Thinking overall, the Design Thinking process, Defining Points of View, Design Principles, Design Methods for Observation, Design Methods for Ideation, Design Methods for Testing, Design Methods for Reflection, and the critical role of Prototyping.

School of Geography, Archaeology and Environmental Studies

Archaeology Courses

Course Code: ARCL1007A

Course Description: Guide to Human Evolution I

NQF Credits: 9

NQF Level: 5

This course explores the development of human cultural behaviour within the framework of the major stages of human evolution. The first part of the course considers non-human primates and the analogies they provide for the origins of cultural behaviour in our earliest ancestors. It then considers cultural adaptations, from the time of the development of lithic technology from 3.3 million years ago until the evolution of modern humans 200 000 years ago. The most important and lasting adaptations are discussed, and a major theme is how modern humans mingled with other groups outside of Africa to give rise to the humans of today.

Course Code: ARCL1008A

Course Description: World Hunter – Gatherers I

NQF Credits: 9

NQF Level: 5

This course introduces global debates in the study of hunter-gatherers, whose activities represent a significant part of the archaeological record. The course explores the origins of hunting and gathering, social organisation of forager communities, hunter-gatherer economics, religion and ritual, hunter-gatherer art, complex hunter-gatherers, and the use of ethnographic analogy to understand part hunter-gatherer communities. The course is run as a series of lectures and tutorials and considers global and southern African case studies.

Course Code: ARCL1009A

Course Description: Origins of Civilisation I

NQF Credits: 9

NQF Level: 5

This course explores the urban way of life today as a consequence of a chain of events that was set into motion with the domestication of some plants and animals more than 10 000 years ago. The first half of the course explores these domestication events, how they formed preconditions to the rise of civilisation, and how and when they spread through Africa. The second half of the course considers the rise of complex societies. We look at how to define complex society and how to recognise it archaeologically. We examine the key traits of some famous ancient complex societies (e.g. Babylon, ancient Egypt, the Maya, and Great Zimbabwe) and consider the future of our 'civilisation'.

Course Code: ARCL1010A

Course Description: The Neolithic Revolution I

NQF Credits: 9

NQF Level: 5

This course covers the Neolithic period. It explores how societies shifted from economies dominated by foraging and hunting to those focused on agriculture and pastoralism. It examines how these economies radically changed or altered human societies, altered biodiversity and contributed to the modification of social landscapes, and how the Neolithic period led to the installation of more permanent settlements ie how agricultural economies evolved over time and have become key principles of food securities today.

Course Code: ARCL1011A

Course Description: Archaeology I

NQF Credits: 36

NQF Level: 5

This course introduces the basics of the practice of archaeology. The themes addressed include analysis and interpretation of archaeological evidence and relationships between archaeology and the wider public. The course comprises four modules: A Guide to Human Evolution; World Hunter-Gatherers; The Neolithic Revolution and Origins of Civilisation.

Course Code: ARCL2002A

Course Description: Archaeology II

NQF Credits: 48

NQF Level: 6

This course comprises three compulsory modules and one module which may be selected from three electives and a weeklong field school. The three compulsory modules cover the Earlier and Middle Stone Age, Archaeology of the Last 2000 Years and Space and Time in Archaeology. One module for the third block may be selected from World Rock Art, and Osteoarchaeology. The field school is on southern African Rock Art. Details of each course are listed under their respective course codes.

Course Code: ARCL2004A

Course Description: Earlier and Middle Stone Age II

NQF Credits: 12

NQF Level: 6

This course covers the cultural and paleoanthropological evolution of African hominins from 3.3 million until 40,000 years ago. The major cultural milestones include the invention of different types of tools, fire, language and music. How and whether these developments can be related to observable paleoanthropological changes is discussed. The interaction of evolutionary processes with climate and environmental change is also a major theme explored in this course.

Course Code: ARCL2005A

Course Description: Archaeology of the Last 2000 Years II

NQF Credits: 12

NQF Level: 6

This course examines the archaeology of hunter-gatherer and farming communities who lived in southern Africa during the last two thousand years.

The course comprises:

The archaeology of the Later Stone Age hunter – gatherers in southern Africa during the Wilton period; The archaeology of pastoralists during the Later Stone Age; The occupation of southern Africa by farming communities; The archaeology of the colonial period in southern Africa; and The major debates that have a bearing on the interpretation of hunter – gatherer material culture, the origins of livestock herding and crop farming, and the consequences of interaction between these communities during the last 2000 years.

Course Code: ARCL2006A

Course Description: Osteoarchaeology II

NQF Credits: 12

NQF Level: 6

Osteoarchaeology is the analysis of human and animal bones and teeth from archaeological sites, and it is crucial that professional archaeologists are able to identify bone and distinguish human from other animal remains.

This course aims to:

1. Show how to identify human and animal bones and teeth recovered from archaeological sites and to differentiate animal from human skeletal material;
2. Describe how taphonomic processes play a role in determining what skeletal elements are preserved and how bones are altered before and after death or deposition;
3. Outline what is meant by subsistence behaviour or the types of strategies people used to obtain meat in the past; and
4. Describe how the human body and populations have been affected by behaviour, disease and health through time.

Course Code: ARCL2007A

Course Description: Space and Time in Archaeology II

NQF Credits: 12

NQF Level: 6

Spatial and temporal resolutions are fundamental aspects of the archaeological record that affect the ways in which archaeologists excavate and analyse any archaeological data. This course aims to provide students with the skills needed to recognise different archaeological contexts, and plan multidisciplinary research protocols to take advantage of a broad range of evidence.

This course aims to:

Describe how the archaeological record is modified in space through time in different archaeological contexts; Introduce basic archaeological excavation methods and their applicability in different archaeological contexts; Discuss different types of archaeological evidence and how they are modified in space and through time by different biological, geological and anthropological processes; and Outline the basic professional archaeological excavation planning and application processes, in preparation for third year field schools.

Course Code: ARCL2009A

Course Description: World Rock Art II

NQF Credits: 12

NQF Level: 6

This course examines rock art – cave paintings and open air engravings – from around the world. It considers the times and spaces in which they were executed and the possible reasons as to why images were made at all. The ways in which scholars of different regions have tackled these questions engender lively debate regarding intercontinental similarities and differences.

The course takes the form of lectures

This course examines rock art – cave paintings and open air engravings – from around the world. It considers the times and spaces in which they were executed and the possible reasons as to why images were made at all. The ways in which scholars of different regions have tackled these questions engender lively debate regarding intercontinental similarities and differences.

The course takes the form of lectures and long – duration tutorials. Rock art is a highly contested field worldwide and with a large amount of visual content, it is essential for students to familiarise themselves with the literature and debate surrounding its interpretation. Assessment is based in part on debate and discussion in the tutorial setting.

Course Code: ARCL3002A

Course Description: Archaeology III

NQF Credits: 72

NQF Level: 7

This course comprises four modules. Two modules, archaeological data analysis and report writing and the history of archaeological thought are compulsory. The other modules can be chosen from the archaeology of death and from southern African rock art, archaeobotany: people and plants in the past, and Experimental Archaeology. There is a compulsory, week-long field trip. The details of each course can be found under their respective course codes.

Course Code: ARCL3004A

Course Description: History of Archaeological Thought III

NQF Credits: 18

NQF Level: 7

This course is designed to equip students with a framework for understanding the issues that affect the ways in which we understand the past. The course covers antecedents to archaeology in Egypt and the classical world, and then on to the Mediaeval and Renaissance Periods; this sets the foundation for understanding modern forms of archaeological thinking from the 19th Century to present. The course is run as lectures and long – duration tutorials, which are based on substantial readings.

Course Code: ARCL3006A

Course Description: Southern African Rock Art III

NQF Credits: 18

NQF Level: 7

This course discusses rock art traditions and meanings, in particular San rock art, but also those made by other groups including Khoe – speaking herders, Bantu – speaking farmers and groups from mixed backgrounds. Studying the rock art of these groups helps us understand their beliefs and the nature of interaction between cultures, from an anthropological approach. This course takes the form of lectures and long – duration tutorials which focus on the analysis of visual content, and the literature and debate surrounding the contested nature of rock art interpretation.

Course Code: ARCL3008A

Course Description: Archaeology of Death III

NQF Credits: 18

NQF Level: 7

This course focuses on the corpse, the grave or the memorial to obtain insight to the socio – psychological fabric of society, and corpses, death and dying which are culturally constructed entities that form part of a network of knowledge and memory.

This course comprises:

Different theoretical and practical approaches to mortuary studies; Evidence for the earliest forms of ritual body disposal and current thinking about the evolution of beliefs about death; The growth of the world's religions, and systems of governance and death; The symbolic role of mortuary architecture, and monuments and how they function(ed) in the socio – economic landscape of the past and present; and The cross – cultural treatment of the body, and what this tells us about attitudes towards and beliefs about bodies in this and the afterlife.

Course Code: ARCL3010A**Course Description: Experimental Archaeology III****NQF Credits: 18****NQF Level: 7**

This course examines the theoretic and practical aspects of Experimental Archaeology. It assesses the scope, potential and pitfalls of Experimental Archaeology in terms of the interpretation of taphonomic processes and interpretations of human behaviour in the past. Students conceptualise, design, execute and report on experiments with relevance to issues such as technology, subsistence or thought-processes in the past, as well as the vital topic of taphonomy, the processes which affect the deposition, preservation, recovery, identification, analysis and interpretation of archaeological materials.

Course Code: ARCL3012A**Course Description: Archaeobotany III****NQF Credits: 18****NQF Level: 7**

Archaeobotany is an interdisciplinary sub-field of archaeology that integrates botany, ecology and social theory to address an extensive range of issues. This course will address the use of plants by past societies, thus it examines anciently-preserved archaeological plant remains. The materials include carbonized, mineralized or desiccated plant materials macrobotanical remains or plant macrofossils such as seeds, fruit, leaves, twigs, parenchyma tissues and tubers while microbotanical remains are in the form of pollen, phytoliths and starch residue. Other datasets include plant imprints in other supports such as pottery. These plant remains come from distinctive genera or species and have specific environmental signatures. Therefore, apart from past plant use, this course will investigate the human-environmental relations, environmental changes and modifications as well as past cultural use of plants.

Course Code: ARCL4016A**Course Description: Archaeometry IV****NQF Credits: 20****NQF Level: 8**

This course presents the theory and practice of radiocarbon dating, including sampling requirements, sample preparation and analysis, and interpretation of radiocarbon dates. This course also discusses the importance of calibration and the limitations presented by multiple intercepts; radiocarbon fluctuations through time; and global carbon dynamics in the context of Earth System Science. The course comprises a theoretical component (lectures), a technical visit to the Accelerator Mass Spectrometry (AMS) facility at iThemba laboratories, and the possibility the preparation and analysis of candidates' own samples.

Course Code: ARCL4019A**Course Description: Archaeology of Food Production IV****NQF Credits: 20****NQF Level: 8**

This course examines the origins of food production during the Neolithic era, with a particular focus on Africa. The production of a food surplus through farming and herding allowed the rise of a non-food producing class of specialists, and this so-called 'Neolithic Revolution' ultimately made complex societies and civilizations possible. This course also explores the domestication of key species, responses to the introduction of new domesticates, and the development of intensive agriculture.

Course Code: ARCL4020A**Course Description: Geoarchaeology IV****NQF Credits: 20****NQF Level: 8**

This course focuses on understanding the dynamic nature of the archaeological record across different contexts, and the development of description, recording, and analytical skills within the framework of these contexts. Different contexts (e.g. floodplain gravels, rock shelter, deep cave, settlements) are introduced, with relevant geomorphological theoretical frameworks and case studies, which form the conceptual basis for the discussion of different geoarchaeological approaches.

The value of each approach/technique is then discussed and assessed with reference to the specific context, research question and archaeological assemblage. In this course, candidates learn how to record, describe and analyse deposits, sediments and landscapes in the field and laboratory using a range of traditional and contemporary techniques and technologies.

Course Code: ARCL4021A

Course Description: Historical Archaeology IV

NQF Credits: 20

NQF Level: 8

This course interrogates different social, political and economic approaches to historical archaeology and considers how these impact on the ways in which material culture is interpreted. The course looks at the impact of capitalism and colonialism on local markets, hierarchies and state development, and considers the political nature of knowledge production, and how memory, oral or written history operates within contemporary systems of knowledge and power. In this course, candidates learn how to record and describe objects and buildings and how to analyse and excavate historical sites.

Course Code: ARCL4023A

Course Description: Rock Art Management IV

NQF Credits: 20

NQF Level: 8

This course discusses the intellectual and practical challenges in the management of rock art, including its audience, the role of conservation, rights of access, traditional cultural practices, site display, and technical aspects of recording, conservation and control of human agency, development and implementation of management plans.

Course Code: ARCL4024A

Course Description: Rock Art of Africa IV

NQF Credits: 20

NQF Level: 8

This course explores conceptual and methodological approaches to understanding rock art. A wide variety of rock art traditions occur across Africa. These traditions originated in various contexts, and are studied using a range of techniques. This course draws on examples from across Africa to investigate topics of international relevance in the study of rock art.

Course Code: ARCL4025A

Course Description: Research Project: Archaeology IV

NQF Credits: 40

NQF Level: 8

In this compulsory course for Archaeology Honours, candidates must produce a research report on an approved topic in Archaeology.

Course Code: ARCL4026A

Course Description: Stone Age Archaeology IV

NQF Credits: 20

NQF Level: 8

This course focuses on key developments in stone tool technology and behaviour from the Earlier to the Middle and the Later Stone Age in southern Africa, and with an emphasis on understanding issues and debates in technological behaviour. Practical classes in this course are designed to give candidates experience with original research collections.

Course Code: ARCL4027A

Course Description: Theory of Archaeology IV

NQF Credits: 20

NQF Level: 8

This course provides candidates with an in-depth understanding of contemporary theoretical issues in Archaeology.

This course considers:

Post-processual archaeology; Agency and practice theories; Embodiment and landscape; Gender and feminism; Post colonialism; and Materiality.

Reading and writing requirements for this course are substantial and candidates are expected to deal with the original theoretical texts as well as their archaeological applications.

Course Code: ARCL4028A

Course Description: Classification in Archaeology IV

NQF Credits: 20

NQF Level: 8

This course discusses what classification is and how it can determine the outcome of archaeological enquiries. The course covers the typological debate, and candidates examine a variety of classificatory systems currently used in southern African archaeology (lithics, ceramics, rock art, etc) in the light of this debate. The art (or science) of classification is fundamental to all scientific enquiry, and archaeology is no exception.

Course Code: ARCL7025A

Course Description: Research Report: Archaeological Heritage Management

NQF Credits: 90

NQF Level: 9

Research Report in an approved topic in Archaeological Heritage Management.

Course Code: ARCL7026A

Course Description: Archaeotourism

NQF Credits: 30

NQF Level: 9

This course is designed to equip candidates with a thorough understanding of responsible archaeotourism. This course provides information on international and local archaeological heritage that can be utilised as tourism resources, on 'packaging' archaeological resources to tourist audiences and on conservation management strategies and policies.

Course Code: ARCL7027A

Course Description: Geographical Information Systems for Heritage Resource Management

NQF Credits: 30

NQF Level: 9

This course provides candidates with an advanced understanding of GIS through hands-on experience. The aim of the course is to develop the ability of the candidates to pre-process, analyse and critically assess a variety of datasets and apply the findings to a range of topics addressed by GIS professionals and cultural heritage resources managers.

The course includes sourcing of primary quantitative and qualitative data and their processing to create fundamental datasets for spatial analysis and problem solving, including analysis of site distributions, surface terrain characteristics and derived properties, and integrate GIS with remote sensing within standard and web-based GIS platforms.

Course Code: ARCL7028A

Course Description: Cultural Resource Management Archaeology in the Field and Laboratory

NQF Credits: 30

NQF Level: 9

This course is designed to equip candidates with skills required in Archaeological Impact Assessments (AIA) contexts. These include the ability to engage with ancient and modern landscapes and to accurately identify those processes that affect the formation, integrity and preservation of archaeological assemblages, as well as the identification of key archaeological remains. Landscape scale research focuses on training in geoarchaeological techniques that helps refine context documentation and assessment, for contractors and other CRM or academic archaeologists. The recovered remains component introduces the skills required to identify anthropogenic lithic, botanical and osteological remains recovered from archaeological sites.

Course Code: ARCL7029A

Course Description: Public and Heritage Archaeology

NQF Credits: 30

NQF Level: 9

The course aims to prepare archaeologists, both academic and those involved with the management or exhibition of heritage, to deal with the issues in the field. Public and heritage archaeology is a field that is fraught with complex issues in South Africa. The course focuses primarily on the presentation and re-presentation of the past in public spaces and offers practical training on how to go about constructing visitor experiences to heritage sites.

Course Code: ARCL7030A

Course Description: Rock Art Management

NQF Credits: 30

NQF Level: 9

This course examines current theories and practice in Rock Art Management globally, including specific examples in southern Africa. Drawing on case studies from around the world it analyses the scope, legislation and pitfalls of heritage management. Candidates conceptualise and debate the theory and methodology of value-based management currently espoused by UNESCO; demonstrating an understanding of the tools and the techniques for developing and implementing a rock art management plan and the need for such a plan as a fluid holistic management tool.

Environmental Studies Courses

Course Code: GAES2000A

Course Description: People and the Environment in Africa II

NQF Credits: 24

NQF Level: 6

This course describes the deep time history of people in Africa and their interactions with, uses of, and impact on their environments. Social and cultural responses to climate change and resource availability are explored specifically.

This encourages sensitivity and understanding for the long term context of environmental change, a perspective vital in developing a sense of responsible interaction with the environment. Themes examined in the course include human evolution, exploration, colonization and settlement history in Africa, up to the present. This course draws from interdisciplinary ideas in Archaeology, Geography, Geology, Anthropology, History, Cultural Studies and Politics.

Course Code: GAES2001A

Course Description: Nature, Climate and Society II

NQF Credits: 24

NQF Level: 6

This course describes how people make use of environmental resources, the values attributed to the physical environment and its varied resources by society and in different contexts, environmental management and environmental governance properties, and societal responses to climate change, using contemporary examples focusing on South Africa.

Course Code: GAES3000A

Course Description: Theory and Practice in Sustainability Science and Sustainable Development III

NQF Credits: 18

NQF Level: 7

This course considers the theoretical background and practical skills in issues of Sustainability Science and Sustainable Development, by integrating theoretical knowledge and application of real-world sustainability issues. The course covers a range of contemporary society and industry-relevant ecological and environmental issues associated with sustainable development, such as the workings and dynamics of biogeochemical (or the natural environment) systems and the role of human activities as a land surface agent. The course includes considerations and applications of key elements and aspects such as environmental impact assessments, environmental monitoring and management tools, technology and the environment, habitat conservation and protected area design, community participation and engagement, as well as knowledge development and transfer within and across communities. These elements are explored and discussed within the broader 'weak' and 'strong' sustainability frameworks.

Course Code: GAES3001A

Course Description: Political Ecology and Environmental Justice III

NQF Credits: 18

NQF Level: 7

This course introduces students to current debates in the fields of political ecology and environmental justice. It begins with an exploration of the differences between political and apolitical ecology and how these relate to questions of environmental justice. It then considers how different approaches within political ecology and environmental justice critically investigate environmental issues. The course develops a multi-faceted analysis of one or more case studies in South Africa as well as other countries, focusing on how a different key issues shaped the specific, geographically situated environmental problem and how 'solutions' are framed.

These issues include:

colonialism and apartheid; the economy; gender, race, class and intersectionality; how evidence is generated and validated; social mobilisation; and unequal power relations between different parties affected by and seeking to address the environmental problem.

The course develops students' skills to conduct holistic critical analysis of the social, political and economic aspects of environmental issues and develop proposals to address these environmental issues to advance environmental justice and are appropriate for the South African context.

Course Code: GAES3002A

Course Description: Communicating Environmental Issues III

NQF Credits: 18

NQF Level: 7

This course introduces students to environmental communication issues. Using discourse and framing theory, the course unpacks the ways in which the communication of issues in the natural and social sciences have been used to direct public and political behaviour, to perpetuate social discrimination and dissent, and in some cases create a mistrust of science and scientists. The course will critically examine how the public encounter environmental issues through different media forms (newspapers, art, film, radio, social media) in formal, informal and lived spaces and contexts. It develops students' social awareness and skills to foster effective communication of contemporary environmental issues.

Course Code: GAES3003A

Course Description: Human Biometeorology III

NQF Credits: 18

NQF Level: 7

This course introduces students to the discipline of Human Biometeorology, exploring the role of climate in human communities. The course begins with a brief overview of the scientific discipline of Biometeorology and specifically, Human Biometeorology, its development and separation from field of Applied Climatology, and its key subdisciplines.

It thereafter considers the subdisciplines of Human Biometeorology in detail, including thermal comfort and stress in the contemporary and as evidenced from the archaeological record, tourism climatology and the role of tourism in driving global change, and climate epidemiology, the study of the spread of climate-sensitive disease. The course considers key ideas in the related fields of aerobiology, climate-sensitive design, and microclimate assessments. Students actively engage in critical assessments of quantitative methodologies in Biometeorology, including basic statistics and indices developed for each thematic application, as well as the literature.

Course Code: GAES3004A

Course Description: Heritage Resources Management III

NQF Credits: 18

NQF Level: 7

This course introduces contemporary issues in heritage resources management, drawing on the interconnections of natural and cultural heritage management and conservation issues and is set in a southern African context. It considers the history and practice of heritage resources management and conservation in South Africa; an overview and critique of natural and cultural heritage management legislative frameworks; the principles of identifying and evaluating cultural and natural heritage resources and their varied uses; case studies of the processes and practices of heritage resource management; and consideration of the intellectual and practical challenges in achieving sustainable heritage management. The course draws from interdisciplinary ideas in Archaeology, Geography, Development Studies, and Cultural and Natural Heritage Studies.

Course Code: GAES3005A

Course Description: Contemporary Environmental Issues in Southern Africa III

NQF Credits: 18

NQF Level: 7

This course provides an integrated overview of up-to-date information and contemporary debates on a range of overarching environmental issues affecting the natural and human worlds in southern Africa. These issues include agriculture and rural development, food security, water security and sanitation, river basin management and pollution, transport, health, ecosystem services, air quality, waste generation and management, coastal and marine resource management, urban development and poverty; environmental migration and natural resource conflict management.

These issues are discussed from both policy and practice perspectives, set in the theoretical framework of ideas in sustainable development, and is based on real-world contemporary examples of environmental issues as well as identifying and mitigating different future environmental issues.

Course Code: GAES4000A

Course Description: Integrated Environmental Management IV

NQF Credits: 20

NQF Level: 8

This course draws on debates in political ecology, heritage studies and environmental systems to critically interrogate the concept and applications of 'environmental management' to address environmental issues affecting the human and physical environments, both locally and globally. These issues are explored through first theoretical contexts and then specific case studies from southern Africa and elsewhere.

Course Code: GAES4001A

Course Description: Environmental Policy & Practice IV

NQF Credits: 20

NQF Level: 8

This course provides an understanding of the ways in which governments have attempted to address environmental issues such as environmental change, climate change, energy security, natural resource use, pollution control and environmental sustainability.

It discusses the role of government and other interest groups in formulating and implementing environmental policies, the various forms of policy mechanism and tools that are employed in environmental management, the constraints upon their effective implementation, and how environmental strategies such as Environmental Impact Assessments (EIA), Strategic Environmental Assessments (SEA), Environmental Management Frameworks (EMF), Environmental Risk Assessments (ERA) and Environmental Management Systems (EMS) are formulated and implemented both as environmental management tools and frameworks. The course addresses the development of core scientific and social theories and discourses that underpin contemporary management of both the built and natural environments and how anthropogenic processes contribute to shaping the human-environment landscape. It deals with a range of social, development and environmental processes and explores the complexity in policy formulation and implementation. It provides an overview

Course Code: GAES4002A

Course Description: Research Report: Environmental Studies IV

NQF Credits: 40

NQF Level: 8

A research report on an approved topic in Environmental Studies.

Course Code: GAES4003A

Course Description: Research Methods in Environmental Studies IV

NQF Credits: 20

NQF Level: 8

This course introduces key methodological and epistemological tools within the discipline of Environmental Studies. It supports a candidate's engagement with their research project and develops key skills related to project design, data analysis, dealing with literature, and appropriate training in field and laboratory methods in different discipline-specific contexts.

Course Code: GAES7000A

Course Description: Globalisation of Food

NQF Credits: 30

NQF Level: 9

This course critically examines the global food system from production through to consumption. It introduces the issues of food production in relation to the challenges faced by modern agriculture and focuses on the physical parameters of soil fertility, climate change and crop selection.

The course explores the socio-political nature of food that stems from the unequal organisation of food systems and distribution of resources, and from contestations over ways to address food challenges. It engages with a range of contemporary issues on food and development, at global and local levels and across the global North and South, as an improved understanding of global and local agro-food networks is essential to stimulate sustainable production of healthy food and renewable resources. The course further investigates key environmental and development concerns about the disparity in consumption of food globally and the treatment of food waste as well as the role of agriculture in reducing hunger, malnutrition and undernutrition and contributing to the economic development of low-income nations, the sustainability of agricultural, food supply systems, and food security.

Course Code: GAES7001A

Course Description: Environmental Monitoring and Assessment

NQF Credits: 30

NQF Level: 9

This course explores the applications of environmental impacts assessments in South Africa and internationally. It explores the National Environmental Management Act (NEMA) No 107 of 1998 and other environmental policy frameworks and discusses what the statutory and policy frameworks require when conducting an environmental assessment. This course explores the applications of environmental impacts assessments in South Africa and internationally. It explores the National Environmental Management Act (NEMA) No 107 of 1998 and other environmental policy frameworks and discusses what the statutory and policy frameworks require when conducting an environmental assessment.

It considers the history of environmental monitoring and assessments as well as various components that go into creating a comprehensive environmental statement, including the environmental, ecological and social contexts in which environmental monitoring and assessment occur, their value and effectiveness in these contexts. The course focuses on some of the strengths, weaknesses and gaps in the operationalisation of environmental monitoring and assessment systems, including archaeological and heritage assessments, greenhouse gas and climate change considerations, environmental health and safety, environmental justice issues, analysis of cumulative impacts, and visual presentation and communication of information.

Course Code: GAES7002A

Course Description: Landscapes and Climate Change

NQF Credits: 30

NQF Level: 9

This course examines the composition and workings of landscape systems (including climate, weathering/erosion, hydrology, geomorphology, sediment system dynamics and ecology), and their sensitivity to climate and environmental changes, both in the past and present. It explores the climatic, geomorphological and anthropogenic controls on landscape development, over different spatial and temporal scales, with specific reference to southern Africa but set in a global context. The course then examines the relative influence of different forcing factors on landscape dynamics and properties, and concepts of sensitivity and considers contemporary examples of landscape geomorphic change in southern Africa.

Course Code: GAES7003A

Course Description: Research Report: Environmental Science

NQF Credits: 90

NQF Level: 9

A Master's level research report on an approved topic in Environmental Science.

Course Code: GAES7004A

Course Description: Ecotourism

NQF Credits: 30

NQF Level: 9

This course provides a holistic background on ecotourism, focusing on a balance between tourists' need for authentic experience as frequently dictated by popular culture, and conservation of different environmental, cultural heritage and ecological resources. It critically analyses and evaluates a range of local and international resources and landscapes that are currently utilised as ecotourism attractions, incorporating appraisal of the intersections between heritage, environments, ecosystems, popular culture and conservation, in a South African context.

Course Code: GAES7005A

Course Description: Sustainable Ecotourism

NQF Credits: 30

NQF Level: 9

This course provides a holistic background on sustainable tourism, focusing on a balance between tourists' need for authentic experience as frequently dictated by popular culture, and conservation of different environmental, cultural heritage and ecological resources. It critically analyses and evaluates a range of local and international resources and landscapes that are currently utilised as sustainable tourism attractions, incorporating appraisal of the intersections between heritage, environments, ecosystems, popular culture and conservation, in a South African context.

Course Code: GAES7006A

Course Description: People and Palaeoecology

NQF Credits: 30

NQF Level: 9

This course examines the role that technology and ecology played in human development in the past and explores the development and origins of technology and its links to human ecology as well as the technological response to climate change through time. The course then investigates palaeoenvironmental data such as faunal and plant remains regarding how these are used as proxies for palaeoecological change. Candidates are shown the basics of palaeozoological and palaeobotanical data analyses so they can understand their utility in environmental science and related fields. These key topics are used to explore the development of the human ecological niche and how this links to current issues in environmental science.

Course Code: GAES7007A

Course Description: Knowledge, Society, Precarity: Science and Communication in an Era of Climate Crisis

NQF Credits: 30

NQF Level: 9

This course provides an advanced competency in communicating and debating scientific concepts across disciplines and with broader groups within society: civil society, government, political parties and interest groups, and community-based organisations. Candidates get the opportunity to develop their own theoretical, ethical and practical competencies in engaging, communicating with and developing active and collaborative trans-disciplinary alliances within and across society. Specifically, they are presented with several real-world scenarios concerning different elements of global change as they relate to the global south context including inter alia: the social and political implications of climate-induced migration and urban change; emerging forms of climate inequality; emerging social divisions related to age, gender and race concerning climate change; the resistance of powerful groups to real adaptation and mitigation strategies; the limits of technological responses to climate change; the limits of social and political responses to climate change; and the possibilities for new modes of knowledge production that cross social boundaries. The course involves critical engagement with debates about the role of science in society: what is the role of expert knowledge; how might knowledge be embedded in co-productive processes? Finally, it entails a practical application of these learnings through the realisation of collaborative public output (in the form of e.g. an exhibition, an edited collection of writing, a series of podcasts etc).

Course Code: GAES7010A

Course Description: Environmental Science Research: Masterclass and Case Studies

NQF Credits: 30

NQF Level: 9

This course introduces students to key overarching ideas in Environmental Science in a southern Africa context, through a case studies approach in which weekly guest lecturers present the rationale, methods and outcomes of their own research endeavours in different environmental contexts. This will allow students to take a synoptic overview of the nature, diversity and different research approaches undertaken in Environmental Science through the experiences and achievements of academic staff within the School, and to position their own research studies into a wider academic and environmental context.

Course Code: GAES7011A

Course Description: Science Communication

NQF Credits: 30

NQF Level: 9

This course introduces students from across disciplines to the vital role that contemporary science communication debates and practice have in society today. Students will be exposed to artistic communication techniques that work alongside scientific field reports and data to attain a deep understanding of what communication can do at the intersections of science, ecology and society. The course brings together theoretical and methodological perspectives from interdisciplinary practice, highlighting critical thinking, collaboration, plurality and justice. Students are taught to move past divides set up between disciplines and media and formats, taking up communication as a promotion of dialogue through an active exchange of ideas and information. Students will grapple with how to story data ethically in the current climate of systemic violence, misinformation, scientific scepticism and ecological urgency. They will develop science communication skills for generating action and systemic change.

Course Code: GAES7012A**Course Description: Research Report: Science Communication****NQF Credits: 90****NQF Level: 9**

In the Research Report: Science Communication, students put to work the theories and exposures gained in the Master of Science in the field of Science Communication course to become contemporary, relevant science communicators. Here, students learn how to work collectively on science communication projects that make use of creative methodologies to engage complex, ecological and social phenomena. The project is interdisciplinary and maps together data across field reports, material encounters, testimonies, and artworks that will provide a flexible basis for generating a variety of science communication applications. Students will find analytical frameworks to manage scope and outline clarity for their communication outputs. Students will work in a rigorous, supported environment that will develop critical thinking as they build their own creative and ethical practices as science communicators.

Geography Courses**Course Code: GEOG2011A****Course Description: An Introduction to Climate Change and Society II****NQF Credits: 12****NQF Level: 6**

This course examines the relationships between climate changes that take place within the Earth system, and impacts of these changes on different aspects of the human world and societies. The course considers climate dynamics on a global scale and the impacts of climate on geomorphology and ecosystems. The course then considers how climate can impact on the human world and society, including cultural constructions of climate, vulnerability and resilience, climate politics and the IPCC, climate ethics and social justice, climate hazards and risk, and climate science communication.

Course Code: GEOG2012A**Course Description: Environmental Governance: From Local to Global II****NQF Credits: 12****NQF Level: 6**

This course considers the relationships between unequal access to resources (including natural resources, knowledge, decision making processes, the law, etc), and unsustainable environmental outcomes.

This course consists of:

Environmental problems and protests in developing world cities;

Global environmental governance and how inequalities at the global level result in the disproportionate ability of nation states to address global environmental issues; and

Changing patterns in governance away from the nation state and towards a stronger role for sub-national (local) governments and non-state actors.

Course Code: GEOG2013A**Course Description: Methods, Models and Geographical Information Systems II****NQF Credits: 12****NQF Level: 6**

This course aims to introduce student to key epistemological and ontological issues that relate spatial thinking and GIS, and tracks how changes in technology have led to Geographic Information Systems as we use them today. The course also examines how improvements in the availability and quality of data have led to the increased use and abuse of GIS, and how GIS can be used as both a source of information and propaganda. Further, the course examines how differential access to digital resources influences participation and capacity in decision making processes.

Course Code: GEOG2014A**Course Description: Conservation Biogeography II****NQF Credits: 12****NQF Level: 6**

This course focuses on the growing field of biodiversity conservation through lectures, a local fieldtrip and group projects and presentations. The course begins by reviewing the status of biodiversity on the planet and the motivations for conserving species. Next, the course will explore some of the key causes of biodiversity loss and then trace conservation from the early calls for environmental protection to more recent global initiatives, including international agreements and widely accepted conservation categories and guidelines. The remainder of the course will review some of the tools and terminology used in conservation practice, drawing on biological and ecological theory as well as themes in community conservation.

Course Code: GEOG2015A

Course Description: Thinking Geographically: Concepts and Practices in Geography

NQF Credits: 12

NQF Level: 6

This course introduces student to key theoretical perspectives and methodological approaches within the discipline of geography. The course teaches students to understand and apply theoretical perspectives in analysing contemporary issues in environmental geography, through a mixture of class – room based lectures, laboratory tutorials and off – campus field research.

Course Code: GEOG2018A

Course Description: Principles of Geospatial Database Systems

NQF Credits: 12

NQF Level: 6

This course covers the evolution of Database Management Systems (DBMS) in GIS, examining the shift from relational to object-oriented and object-relational models, particularly for managing spatial data complexities. It covers spatial data structures like R- and KD-trees, along with spatial data types such as feature classes and raster data. Students explore spatial databases architecture, data modeling, and schema design, utilising GIS software for database management tasks. The curriculum includes advanced topics like versioning, data integrity, and security practices, coupled with practical applications across various sectors. Through theoretical insights and hands-on projects, students are prepared for challenges in data storage, spatial analysis, and visualisation, equipping them for careers in GIS and related fields.

Course Code: GEOG2019A

Course Description: Fundamentals of Geospatial Programming

NQF Credits: 12

NQF Level: 6

This course is designed to blend foundational knowledge with advanced technical skills, starting with the evolution of programming within GIS. The course provides a comprehensive overview of geospatial technology, programming fundamentals, and spatial data analysis. The syllabus covers topics such as geospatial data types, GIS software applications, programming languages like Google Earth Engine, Python or R for geospatial analysis, spatial data manipulation, visualisation techniques, spatial analysis methods including buffering and overlay, remote sensing principles, web mapping, and culminates in a final project where students apply their skills to solve a real-world spatial challenge. Through a combination of theoretical concepts and practical exercises, students will develop the necessary skills to leverage geospatial programming and information technology for spatial data interpretation and decision-making.

Course Code: GEOG2020A

Course Description: Physical Fundamentals of Remote Sensing

NQF Credits: 12

NQF Level: 6

This course systematically explores the basic physical principles of satellite remote sensing and earth observation data acquisition. Emphasising electromagnetic radiation and its interactions with the Earth's surface and atmosphere, it covers various systems such as photographic, electro-optical, passive microwave, and scattering systems.

The course examines sensor characteristics, satellite orbits, and current and future missions involving sensors across the visible, radar, and microwave spectrum. It also addresses radiometric and geometric errors and corrections. Emerging trends and theories in earth observation technology are considered. Through laboratory and practical work, students will apply concepts and techniques learned in lectures.

Course Code: GEOG3019A

Course Description: Economic Geography III

NQF Credits: 18

NQF Level: 7

This course focuses on selected issues in the field of economic geography. Issues of concern include theoretical and policy debates around spatial inequality and regional development, the informal economy, and small business development. Contemporary debates in economic geography in South Africa are further discussed in this course.

Course Code: GEOG3020A

Course Description: Climate and Environmental Change III

NQF Credits: 18

NQF Level: 7

This course examines patterns of climate change through the Quaternary, and in particular during historical and recent times. Causes of climate change (such as Milankovitch, volcanic forcing etc) are varves, geomorphology and historical documentary sources are highlighted. Consideration is given to the impact that climate change has on the environment and human livelihoods. Particular reference is made to the southern African region throughout the course.

Course Code: GEOG3021A

Course Description: Advanced Atmospheric Science III

NQF Credits: 18

NQF Level: 7

This course discusses atmospheric processes and the interactions of the atmosphere with other earth systems. The course deals with heat and energy exchange in the atmosphere, ocean–atmosphere interactions, and mesoscale atmospheric processes like weather forecasting, thunderstorms and air pollution.

Course Code: GEOG3023A

Course Description: Theory and Practice in Sustainability Science and Sustainable Development

NQF Credits: 18

NQF Level: 7

This course considers the theoretical background and practical skills in issues of Sustainability Science and Sustainable Development. The course integrates theoretical knowledge and application of real world sustainability issues through a mix of lectures, seminars and field excursions. The course covers a range of contemporary society and industry-relevant ecological and environmental issues associated with sustainable development, such as the workings and dynamics of biogeochemical (or the natural environment) systems and the role of human activities as a land surface agent. The course includes considerations and applications of key elements and aspects such as environmental impact assessments, environmental monitoring and management tools, technology and the environment, habitat conservation and protected area design, community participation and engagement, as well as knowledge development and transfer within and across communities. These elements are explored and discussed within the broader 'weak' and 'strong' sustainability frameworks.

Course Code: GEOG3024A

Course Description: Environmental Monitoring and Modelling III

NQF Credits: 18

NQF Level: 7

This course provides a broad introduction into the theory and methods of environmental data collection and the practice of environmental monitoring. Examples and case studies are drawn from a wide range of environmental fields including meteorological and hydrological monitoring, air and water pollution monitoring and other aspects of environmental change science.

The course covers a range of environmental data collection approaches from citizen science to professional environmental monitoring using specialist equipment, with an exploration of the role and limitations of each. The course includes a mixture of lectures, seminars, practical exercises in data analysis and practical experience of varied monitoring and environmental data collection methods in the field.

Course Code: GEOG3025A

Course Description: Urban Futures: The Political – Economy of Population and Scarcity III

NQF Credits: 18

NQF Level: 7

This course offers an historical and theoretical account of contemporary challenges in the governance of cities, as well as a set of intellectual tools for understanding and critically engaging with these challenges. The course develops skills in explaining, interpreting and developing innovative responses to social, political and economic issues related to the governance of large and complex cities. These skills are developed through seminar discussions, group – work and student – led course content.

Course Code: GEOG3026A

Course Description: Food: Security, Politics and Culture III

NQF Credits: 18

NQF Level: 7

This course focuses on the socio – political, economic and cultural aspects of food production, acquisition, utilisation and consumption. Eating is a basic drive, and food acquisition and the safety of food are core aspects of our everyday life, and are discussed in this course.

Course Code: GEOG3027A

Course Description: Coastal Geomorphology III

NQF Credits: 18

NQF Level: 7

This course examines the physical processes and landforms associated with different coastal environments, drawing from examples worldwide but with specific reference to the varied coastlines of South Africa. It explores the geological, geomorphological and ecological processes associated with coastal landform evolution, and their variability and controls on different spatial and temporal scales. The course also examines the different ways in which people use and value the coast, its environments and resources. It covers the different types of coastal environments and their morphological controls, and the role of human activity in the coastal zone and its implications for coastal zone management.

Course Code: GEOG3029A

Course Description: Geospatial Data Design and Management III

NQF Credits: 18

NQF Level: 7

This course introduces the fundamentals of geodatabases, such as relational database design, conceptual, logical and physical databases, and relational models. It defines data properties in the geodatabase and commonly used map projections. It also explores various applications of geodatabases; the structure and functionality of the geodatabase, analysis and visualisation of distortions, colour theory models and pattern use, typography and lettering the Map.

The course further introduces the creation, editing and management of geodatabases, ER (Entity-Relationship) modelling and Object-Oriented Database Management System (DBMS), loading vector and raster data in a geodatabase, creating and editing features, working with tables, managing labels and annotation, scale factor and transformation, georeference data, data maintenance and transactions for geodatabases, geodatabase migration, practices for managing distributed data and working with versioned and non-versioned data, data archiving in a geodatabase, geodatabase topology and geoprocessing with Model Builder.

Course Code: GEOG3030A**Course Description: Project Management in Geospatial Science III****NQF Credits: 18****NQF Level: 7**

This course explores the technical and operational environment issues and methods necessary to develop and run a successful geospatial technology project, including geospatial project conception and design requirements such as teamwork-building, contextualising data collection techniques and analysis, report writing, organisational structures, human resources and financial management, communications and public relationships, and risk and safety management. It also examines the ethics, legislation and professionalism consideration in the geospatial practice and the spatial data infrastructures, data sharing and privacy between inter-organisational and geospatial communities and industry and quality assurance and control. It considers some of the current and emerging trends that may modify how geospatial technology projects are conceptualised and implemented in the coming years. Students will have opportunities to practice the concepts and techniques learnt by developing and implementing mini geospatial project plans.

Course Code: GEOG3032A**Course Description: Spatial Data Analysis and Modelling III****NQF Credits: 18****NQF Level: 7**

This course introduces knowledge and skills necessary to investigate the spatial patterns which result from social and physical environment processes. The course focuses on understanding spatial statistics theories and contexts such as point pattern analysis, Kernels and density estimation, spatial cluster analysis and interaction, multidimensional attributes, multi-criteria evaluation, spatial interpolation, trend surface analysis, and regression models. It examines essential theoretical concepts of geometric measures and quantitative geography, including measures of geographical distribution and spatial autocorrelation, interpolation and network connectivity, and uncertainty, and error on the spatial model. It further introduces the measurement and modelling, and analysis techniques and methods to address emerging spatial challenges. Finally, the course explores the spatial analysis techniques in selected topics such as watershed management, hydrological modelling, infectious disease modelling, poverty and urbanisation.

Course Code: GEOG3033A**Course Description: Remote Sensing and Photogrammetry III****NQF Credits: 18****NQF Level: 7**

This course provides the conceptual foundations and the technical skills to apply remote sensing for problem-solving in environmental, agriculture and urban domains. It introduces the theoretical and practical concepts of Remote Sensing and Photogrammetry and emphasises image acquisition and data collection in the electromagnetic spectrum, digital photography, photogrammetric measurement, image registration, ortho-rectification, orientation and other remote sensing image pre-processing techniques. It further covers concepts and foundations of remote sensing, aerial photography and photogrammetry, visual image interpretation, digital elevation models, characteristics of various remotely sensed systems (i.e. multispectral, thermal, hyperspectral, microwave and lidar), digital image processing techniques, terrain analysis, and accuracy assessment.

Course Code: GEOG3034A**Course Description: Geospatial Sciences for Natural Resources Management****NQF Credits: 18****NQF Level: 7**

This course focuses on the application of geospatial technologies in natural resources management, equipping students with the skills to analyses geospatial data for modelling and monitoring natural resources. It covers key techniques for spatial data collection, analysis, and modelling to support sustainable forest management, water and soil resources, agriculture, and biodiversity. By incorporating emerging trends such as machine learning and real-time natural resources monitoring, students address current and future challenges in natural resources management to enhance productivity, reduce costs, and support environmental sustainability.

Course Code: GEOG3036A**Course Description: Research Design and Professional Practices in Geospatial Science****NQF Credits: 18****NQF Level: 7**

This course covers essential methodologies for conducting independent research projects in the geospatial field. Students will learn to formulate research questions, design research frameworks, plan spatial data collection, and employ field methods for data acquisition. The course covers analysing geospatial data appropriately and communicating findings effectively through verbal presentations and written reports. A significant component involves developing a portfolio of evidence demonstrating practical competencies in geospatial applications. Additionally, the course emphasises professionalism and ethics, addressing topics such as ethical practices in the geospatial field, codes of ethics and conduct for geospatial professionals, relevant legislation, intellectual property rights, copyright, and privacy considerations.

Course Code: GEOG3035A**Course Description: Geospatial Science for Risk and Disaster Modelling****NQF Credits: 18****NQF Level: 7**

This course covers geospatial skills to effectively manage risks and disasters, using tools like GIS, remote sensing, and spatial modelling. Aligned with global frameworks, it enables students to make data-driven decisions that enhance community safety and sustainable development, making them valuable assets in disaster risk reduction and management.

Course Code: GEOG3037A**Course Description: Machine Learning for Geospatial Data Processing****NQF Credits: 18****NQF Level: 7**

This course covers the theory, application, and implementation of machine learning in geospatial sciences. It covers the fundamentals of machine learning, supervised, unsupervised, and reinforcement learning focusing on key tasks such as classification, regression, clustering, and optimisation. Students explore basic foundations of the most common machine learning algorithms in geospatial applications, along with practical implementation methods using real-world geospatial datasets in different applications with more focus on smart cities particularly infrastructure development, transport, environment, security, and resource management - with real-world examples from Singapore and Dubai.

Course Code: GEOG3038A**Course Description: Geospatial Capstone Project****NQF Credits: 30****NQF Level: 7**

This course provides practical training for students to apply the knowledge and skills acquired throughout their academic careers to solve real-world problems and bridge the gap between theory and practice in Geospatial Science. It includes practicing the principles of project design and methodology in geospatial science, such as critical review, planning geospatial data acquisition, field methods for data collection, geospatial data analysis and processing, and effectively communicating the project design plan and results both verbally and in a written scientific and technical report.

Course Code: GEOG4015A**Course Description: Geographical Information Systems****NQF Credits: 24****NQF Level: 8**

This course provides candidates with an advanced and practical understanding of GIS. The course aims to develop skills in pre-processing, analysing and critically assessing a variety of datasets and applying the findings to a range of topics addressed by GIS professionals. In this course, in-depth knowledge of the sourcing of primary quantitative and qualitative data and their processing to create fundamental datasets for spatial analysis and problem solving is presented. Candidates learn to analyse surface terrain characteristics and derived properties (i.e. slope, hydrology, curvature), to create continuous surfaces from a set of points, analyse spatial patterns using geostatistical methods, and integrate GIS with remote sensing.

Course Code: GEOG4034A**Course Description: Environmental Management: Water Challenges in Southern Africa IV****NQF Credits: 20****NQF Level: 8**

This course provides a broad introduction to the fields of water resource management and conservation with a focus on the challenges associated with economic development, population growth, improved access to resources, and global environmental change in a water scarce region. This course discusses concepts and debates in environmentalism, environmental issues around water management, pollution, aquatic ecology, political ecology, and sustainable livelihoods related to water resource use and management.

Course Code: GEOG4036A**Course Description: Research Project: Geography, Archaeology and Environmental Studies****NQF Credits: 40****NQF Level: 8**

A research project on an approved topic in Geography, Archaeology and Environmental Studies.

Course Code: GEOG4038A**Course Description: Research Project: Geography, Archaeology and Environmental Studies****NQF Credits: 40****NQF Level: 8**

A research project on an approved topic in Geography and Environmental Studies.

Course Code: GEOG4041A**Course Description: Understanding Cities in Africa IV****NQF Credits: 20****NQF Level: 8**

This course focuses on development geography and institutional approaches to cities in Africa, urbanisation, poverty, urban agriculture, management and growth in rapidly growing cities, infrastructure delivery, informal economy, development and urban environmental issues.

Course Code: GEOG4044A**Course Description: Global Atmospheric Change IV****NQF Credits: 20****NQF Level: 8**

This course explores Global Atmospheric Change through geologic time periods, from the Great Oxidation event, to the formation of the ozone layer and glacial-to interglacial cycles of carbon storage. Contemporary atmospheric change is then explored, first in the context of increasing concentrations of greenhouse gases, greenhouse gas sequestration, and projections for climate change under an altered atmospheric composition. Isotopic changes in Oxygen, Carbon and Nitrogen are explored as indicators of the changing contemporary atmosphere. This course engages with the contemporary debates regarding the Anthropocene: the timing of commencement, the impact of human activity on the atmosphere, and the absence of prior analogues of contemporary atmospheric and environmental conditions.

Course Code: GEOG4045A**Course Description: Disaster Risk and Geohazards IV****NQF Credits: 20****NQF Level: 8**

This course focuses on the reasons why disasters occur in a global and southern African context, and the relationships of these disasters to aspects of the human and physical environments that can trigger, amplify, or moderate disaster risks and impacts. It addresses the most common types of geohazards globally and locally (earthquakes, tsunamis, storm surges, river floods, droughts, soil erosion), their causes and controls, and uses case studies to analyse their impacts on the human and physical environments, including aspects of vulnerability and adaptation. There is emphasis on predictability, risk and the mitigation of hazard impacts, including their implications for modelling, management and policy.

Course Code: GEOG4046A**Course Description: Nature and Society IV****NQF Credits: 20****NQF Level: 8**

This course draws on debates in political ecology to interrogate different approaches to theorising the relationship between nature and society, and the methodological, practical and political implications of utilising them. It begins with an exploration of theories of the production of nature and the concept 'socio-nature'. It then critically analyses contemporary environmental concepts such as environmental markets, conservation, commodification of nature, eco-system services, circular economy, and environmental justice by exploring the assumptions regarding nature and society that underpin them.

By problematising concepts and issues whose meanings are frequently taken as given (even in academic texts), the course "denaturalises" them and develops students' abilities to identify and critically reflect on the theoretical foundations of literature on the environment, how environmental problems are framed and the assumptions underpinning proposals regarding how they should be addressed. Themes of race, gender, class and intersectionality cuts across the course.

Course Code: GEOG4047A**Course Description: Air Pollution and Health Impacts IV****NQF Credits: 20****NQF Level: 8**

This course focuses on the reasons why environmental health issues occur, in a global and southern African context, and the relationships of these health impacts to aspects of the human and physical environments that can trigger, amplify, or moderate health risks and impacts. It addresses the most common types of environmental health risks globally and locally (through contamination and pollution in air; through biogenic and anthropogenic emissions and pollution), their causes and controls, and uses case studies to analyse their impacts on the human and physical environments, including aspects of vulnerability and adaptation. Throughout, there is an emphasis on predictability, risk and mitigation of environmental health risk hazard impacts, including their implications for modelling, management and policy.

Course Code: GEOG4048A**Course Description: Research Project: Geospatial IV****NQF Credits:40****NQF Level: 8**

This course provides practical training to develop scientific research skills, bridges the gap between theory and practice in Geospatial science, and establishes work and novel research. It includes practising the principle of the scientific research methods, particularly in the field of GIS and Remote Sensing, such as critical review, identifying research gaps, formulating a research question, planning geospatial data acquisition, field methods for collecting data, GIS and remote sensing data analysis and processing, and the appropriate manner to communicate research project results both verbally and in a written scientific report. The candidate chooses a supervisor, designs and writes a research proposal, presents the proposal and the preliminary results as a formal seminar to the School and writes up the project as a formal dissertation for examination.

Course Code: GEOG4049A**Course Description: Advanced Remote Sensing of Environment IV****NQF Credits: 20****NQF Level: 8**

This course provides an in-depth understanding of the theory and practices of remote sensing in environmental applications. It develops skills in advanced algorithms for image processing and analysis. Specifically, it explores the use of a variety of remotely sensed data in different physical and social environments, such as monitoring vegetation dynamics, mining impacts, surface water and urbanisation, etc. The course applies advanced techniques (machine learning and patterns recognition), image enhancement and restoration, vegetation and water indices, images feature extraction, data fusion, digital change detection, and error assessment and management.

Course Code: GEOG4050A**Course Description: Special Topics in Remote Sensing and Geographic Information System IV****NQF Credits: 20****NQF Level: 8**

This course explores state-of-the-art principles, spatial data and remote sensing sensors characteristics, methods and applications in geographic information systems and remote sensing to complement core course work. The theme varies from year to year. For example, the course focuses on multiuser geospatial data management and recent developments in Earth observation data such as imaging radar, LiDAR, hyperspectral sensors, SmallSats and unoccupied autonomous systems (UASs) with emphasis on spatial data legislation and policies.

The course further consists of several current topics in geospatial data analysis, such as spatial statistics and machine learning for spatial and earth observation data and the course content reflects recent GIS and remote sensing trends research and applications for local and global challenges such as vegetation dynamic, precision agriculture, urban environment, spatial epidemiology and living environment, climate science, hydrology, geohazard modelling, and disaster management. The course also covers geospatial professionalism, ethics, practices and the job market.

Course Code: GEOG4051A**Course Description: Geospatial Programming IV****NQF Credits: 20****NQF Level: 8**

This course introduces scripting languages for automating geospatial workflows and visualising geospatial data. It covers modern geospatial programming methods to automate spatial data management, processing, analysis, satellite image processing and visualisation, and basic concepts of programming basics such as expressions and variables, string operations, data structures such as lists and tuples, sets and dictionaries, as well as geospatial programming fundamentals such as conditions and branching, loops, functions, objects, classes and arrays. It also explores the automation of geospatial analysis tasks using open-source scripting languages such as Python and R and will expose candidates to the concepts underlying spatial data science and how to work with Pandas for loading geospatial data. The course will also cover web and mobile GIS design and development, geospatial programming tools, languages and libraries: GeoTools, GDAL, Github, Jupyter Notebooks, Servlet, Google Maps APIs, Leaflet, HTML, CSS and XML as well as geospatial processing and visualisation techniques using Arcpy, Geopandas, QGIS, Numpy, and Matplotlib.

Course Code: GEOG4052A**Course Description: Politics of the Green Economy IV****NQF Credits: 20****NQF Level: 8**

This course introduces students to the concept of a green economy, and related debates about a green economy, by focusing on an analysis of the various principles, proponents, and discourse. The course introduces learners to the key components, actors and discourse in relation to the Global South through engagement with political ecology, political economy and radical feminist scholarship through weekly themes. The course equips learners with the skills to analyse the politics and power relations underlying 'solutions' to climate change, encourages students to consider the limits and opportunities of these solutions, and facilitates the application of theory and conceptual insight to contemporary realities in the Global South.

Course Code: GEOG7000A**Course Description: Research Report: Environmental Studies****NQF Credits: 90****NQF Level: 9**

A research report on an approved advanced topic in Geographical Information Systems and Remote Sensing.

Course Code: GEOG7044A**Course Description: Advanced Applied Remote Sensing****NQF Credits: 15****NQF Level: 9**

This course provides candidates with critical information on advanced and recent trends in Remote Sensing data, techniques and applications, with a focus on sensor characteristics, advanced image processing and analysis techniques, and real-world applications. A wide range of image processing and statistic software is used by candidates to process different remotely sensed data including multispectral, hyperspectral and radar.

Course Code: GEOG7046A**Course Description: Project Management for Geospatial Professionals****NQF Credits: 15****NQF Level: 9**

This course explores current and emerging trends in geospatial project management, covering planning, controlling, organising, and decision-making. It equips students with essential knowledge and skills in human resource and financial management, including labour legislation, procurement, time management, client relations, costing, and resource allocation. The course also teaches technical report writing, risk management, and Health and Safety management. Students will engage with the geospatial community, industry, and state and regional coordinating bodies. The course addresses legislation, ethical considerations, codes of conduct, and professionalism in geospatial practice. Additionally, students will learn about intellectual property rights, copyright issues, privacy concerns, and data-sharing protocols relevant to geospatial practice.

Course Code: GEOG7047A**Course Description: Cloud Computing for Geospatial Analytics****NQF Credits: 15****NQF Level: 9**

This course explores the integration of cloud computing and big data analytics in remote sensing and GIS. Students start with cloud computing fundamentals for geospatial sciences, advancing to handle big data through efficient cloud storage, indexing, and retrieval. The course emphasises cloud-based remote sensing data preparation for advanced analysis using machine learning and deep learning for image classification and environmental monitoring. It integrates multispectral, hyperspectral, and LiDAR data within cloud frameworks, covering spatial databases, web GIS, and spatial modeling. Ethical considerations, along with emerging trends like edge and fog computing, are addressed to prepare students for future challenges in geospatial data processing.

Course Code: GEOG7048A**Course Description: Advanced Applied Geographical Information Systems****NQF Credits: 15****NQF Level: 9**

This course delves into spatial data quality, crucial for GIS projects, by examining errors and aspects like accuracy, resolution, and consistency, and their impacts on GIS analysis reliability. It covers strategies to enhance data quality using standards (FGDC, OGC, ISO) and data management tools. Students will learn advanced spatial analysis techniques such as site suitability, visibility analysis, network analysis, and geostatistical analysis through practical sessions using commercial and open-source platforms. The course also introduces Web GIS, enabling students to create web mapping applications and utilise web services for functionalities like geoprocessing and image analysis. This comprehensive approach provides a theoretical and practical foundation in spatial data handling and geographic content sharing.

Course Code: GEOG7049A**Course Description: Research Methods in GIS and Remote Sensing****NQF Credits: 15****NQF Level: 9**

This course explores contemporary trends and scientific methodologies in geospatial science. It emphasises the scientific research approach in geospatial contexts, including spatial critical thinking, geospatial research design, spatial data sources and acquisition, and in situ data collection sampling and field techniques. Students will learn to utilise geospatial platforms for data analysis and visualisation and develop proficiency in presentation and scientific writing. Additionally, the course addresses research integrity, examining the dynamics of power, politics, and ethics in geospatial research practices.

School of Geosciences**Geology Courses****Course Code: GEOL1000A****Course Description: Geology I****NQF Credits: 36****NQF Level: 5**

This course consists of:

Introduction to Geosciences: The origin of the Universe, the Solar System and the Earth; their chemical compositions; extra-terrestrial impacts; structure of the Earth; evolution of the structure within the Earth; dynamic processes within the Earth.

Surface Processes: Geomorphology and rock weathering; action of rivers, glaciers, winds; soil formation; hydrogeology; ocean dynamics, climate and climatic change.

Origins of Life: Origin and evolution of life; mass extinctions; fossils; evolution of man and man's impact on Earth.

Earth Materials: Introduction to basic crystal chemistry; mineralogy; rocks and rock-forming processes.

Geological History of South Africa: Processes controlling the formation of the stratigraphic record in southern Africa through time and space; introduction to the origin of ore deposits exploited in southern Africa; geological map interpretation; introduction to physical topographic and geological maps, cross-sections and solving structural geological problems.

Course Code: GEOL2019A**Course Description: Geological Mapping Techniques II****NQF Credits: 24****NQF Level: 6**

This course introduces students to practical mapping skills – the ability to make field-related geological observations and collect data from which a geological map can be compiled, and to interpret geological maps – are the fundamental cornerstone to the training of a geologist. This course provides practical-oriented training incorporating tutorials, practicals and fieldwork that expose students to the diverse methods of geological map, aerial photograph and remote sensing data (Google Earth, LANDSAT) interpretation, rock identification, structural measurements, field navigation (orientation, GPS) and mapping techniques and field report writing, as well as issues such as field safety practices.

Course Code: GEOL2020A**Course Description: Igneous Petrology & Processes II****NQF Credits: 12****NQF Level: 6**

This course is designed to provide the students with a comprehensive introduction to magmatic rocks, the processes that operate in a wide variety of magmas, and the effect these processes have on the ultimate magma/rock compositions. The focus of this course is providing the students with the framework with which to classify magmatic rocks based on mineral composition, chemical composition and texture and subsequently understand the processes that these magmas have experienced during the evolution into igneous rocks, from source to final emplacement within or on the Earth's crust.

Course Code: GEOL2021A**Course Description: Introduction to Geochemical Techniques****NQF Credits: 12****NQF Level: 6**

This course is aimed at providing the students with a comprehensive understanding of various geochemical tools, procedures and techniques that are required in many disciplines within the Geosciences, including igneous and metamorphic petrology, sedimentary and surficial geoscience, hydrogeology as well as economic geology. These tools and techniques include whole-rock major, minor and trace element behaviour, mineral/crystal chemistry, aqueous and surficial geochemical principles as well as an introduction to principles of radiogenic and stable isotopes. A focus of this course is the handling and interpretation of geochemical data that apply to all Earth and planetary materials including, rock, soil, air, water, meteorites and fossils.

Course Code: GEOL2022A**Course Description: Metamorphic Petrology & Processes II****NQF Credits: 12****NQF Level: 6**

This course provides students with the crucial introduction to, and understanding of, metamorphic processes which are important for the unravelling of tectonic events. The course covers the description, classification and interpretation of metamorphic minerals, rocks and textures, the basic concepts of metamorphism, the determination of pressure and temperature conditions using various methods, and the determination of metamorphic history of rocks. The course is strongly linked to Advanced Petrology III and Tectonics of the Earth III courses (both Geology III).

Course Code: GEOL2023A**Course Description: Mineralogy and Optical Mineralogy II****NQF Credits: 12****NQF Level: 6**

This course is designed to provide students with a comprehensive introduction to mineralogy and optical mineralogy – two fundamental subjects that each and every student studying geosciences should understand and apply to other disciplines in Earth Sciences. The focus of this course is providing students with the framework with which to identify crystal structures and mineral properties in hand sample, optical properties of minerals under the microscope and microscopic mineral identification and quantification.

Course Code: GEOL2024A**Course Description: Sedimentology, Stratigraphy, and Palaeontology II****NQF Credits: 12****NQF Level: 6**

This course covers sedimentary rocks (their classification, identification, and utility in understanding environmental change), as well as introducing the technique of facies analysis, by which ancient environments are interpreted using observations from the rock record. Both clastic and chemical sedimentary environments are covered. The application of sedimentological knowledge is integrated with palaeontology (vertebrate, invertebrate, and plant) to provide holistic knowledge of past ecosystems and environments on Earth, and how they have changed through time. The interplay of sedimentary environments and plant and animal life, and response of sedimentary environments to biological impetus is emphasised throughout the course.

Course Code: GEOL2025A**Course Description: Geology II****NQF Credits: 48****NQF Level: 6**

This course serves as the theoretical framework underpinning Applied Geology II. It comprises 4 x 12 credit courses: Sedimentology, Stratigraphy & Palaeontology II (GEOL2024A); Mineralogy & Optical Mineralogy II (GEOL2023A); Igneous Petrology & Processes II (GEOL2020A) and Metamorphic Petrology & Processes II (GEOL2022A).

Course Code: GEOL2026A**Course Description: Applied Geology II****NQF Credits: 36****NQF Level: 6**

This course allows students to combine Introduction to Geochemical Techniques (GEOL2021A) and Geological Mapping Techniques (GEOL2019A) for the purposes of majoring in Applied Geology at the second year level.

Course Code: GEOL3041A**Course Description: Tectonics of the Earth III****NQF Credits: 18****NQF Level: 7**

This course introduces students to plate tectonics (which is a unifying theory in Earth Science) and plate tectonic principles which exert major influences on thinking regarding sedimentary, igneous, and metamorphic processes. This course examines a range of geophysical and geological data in the context of plate tectonics, and illustrates processes by examining in detail the tectonostratigraphic development of South African rocks from the Archaean to the modern day.

Course Code: GEOL3042A**Course Description: Advanced Geological Mapping Techniques III****NQF Credits: 18****NQF Level: 7**

This course focuses on the practical observational and data gathering skills and techniques needed to conduct advanced geological mapping, integrate results using a variety of geological techniques, and to report these results in a coherent way. The course builds on the Geological Mapwork II course and requires the application of theoretical knowledge obtained in other courses throughout the Geological Sciences curriculum, such as principles of rock and mineral identification, stratigraphic studies, petrology, geochemistry and structural geology, as well as further developing 3 – D visualisation, statistical, writing and graphicacy skills essential for geological reporting. This course involves a 10 – day off – campus lithological and structural mapping excursion and a series of campus – based activities (underground tunnel mapping, mining – related structural geology exercises, supplementary petrological and geochemical laboratory analysis of field samples, and introduction to field geophysical techniques). This course aims to further develop students' core field skills and advanced geological mapping techniques required by the geosciences profession.

This includes interpretation of rock relationships and modes of formation of rock bodies, collection of spatial datasets and compilation of such datasets into summary documents such as logs of stratigraphic sections and geological maps, integrating fieldwork with laboratory analysis, and the ability to function productively in a field setting with limited support facilities as well as with teams of people. This course is an apex – module in that it allows students to learn by integrating and applying their geological knowledge in a project – oriented manner in which they generate the observational and quantitative data necessary to solve a set of problems. It is, thus, close to the real – world situations they can expect once they are employed as geologists. Assessment is both summative and developmental, and includes both individual and group tasks.

Course Code: GEOL3043A**Course Description: Advanced Petrology III****NQF Credits: 18****NQF Level: 7**

This course is divided into 3 equally weighted components:

Igneous Petrology: the development of classification systems in which chemical and mineralogical features of igneous rocks are correlated satisfactorily, petrography and petrology of igneous rocks including mafic -ultramafic, granitic and alkaline rocks. A key part of the courses include an introduction to ternary and quaternary phase diagrams and their use for solving petrological problems for both volcanic and plutonic rocks.

Topics include: the concept of cumulates and liquids, adcumulus theory, trapped liquid effect, supercooling and superheating of magmas, the role of fluids in petrogenesis and magma processes operating in crustal chambers (dykes, mafic sills and layered intrusions).

Metamorphic Petrology: advanced thermobarometry with practical applications, phase diagrams in metamorphic petrology, recent advances in metamorphic petrology (e.g. Petrochronology) and the application of various software packages. The course is strongly linked to Metamorphic Petrology (Geology II) and Tectonics of the Earth courses (Geology III).

Sedimentary Petrology: primary and diagenetic textures in siliciclastic, carbonate, and organic sedimentary rocks. In each case, sedimentological processes are investigated in the context of energy resources (coal, hydrocarbon sources, and hydrocarbon reservoirs). The link between depositional history, early, and late stage diagenetic processes are investigated.

Course Code: GEOL3044A

Course Description: Hydrogeology and Water Resource Management III

NQF Credits: 18

NQF Level: 7

This course introduces students to the application of water resources management (important in a country like South Africa, which is characterised by arid and semi-arid climate and which has a high water demand for various community developmental activities) and best practice in order to ensure water supply and sustaining the environment. The course provides the link between hydrology and geology through water–rock interaction process in aquifers, understanding aquifer systems and managing water resources in a sustainable manner. The course also provides Geoscience graduates with the knowledge and skills necessary to prepare them for service as scientific personnel who are qualified to contribute to the understanding of the unique hydrogeological regime of the country and thereby help in the alleviation of water shortages. Since groundwater is a natural resource that occurs in the rock interstices, it requires the development of basic techniques to undertake groundwater mining using sustainable and cost–effective methods and, therefore, Geoscience graduates are better equipped with basic techniques that help them to explore for and exploit groundwater in different parts of the country more effectively.

Course Code: GEOL3045A

Course Description: Exploration Methods III

NQF Credits: 18

NQF Level: 7

This course provides geoscience graduates with knowledge of principles underlying the nature and spatial distribution of mineral and energy resources, and the common methods employed for detection and characterisation of such resources. Other aspects that are included in the course relating to exploration include: legislation, practices and codes, GIS, statistics and geophysics. The course is taught using both a factual and process–orientated approach, including case studies, individual student participation and student–group–based project work. As South Africa is well endowed with mineral and energy resources, and its economic future relies heavily on successfully exploring, discovering and mining of commodities, students are exposed to a variety of commodities such as iron and manganese ore, coal, diamonds, among many others. They are exposed to the potential threats exploration and mining may have on environmental degradation (eg acid mine drainage).

Course Code: GEOL3046A

Course Description: Economic Geology and Ore Petrology III

NQF Credits: 18

NQF Level: 7

This course introduces students to the use of reflected light microscopy for the study of opaque (ore) minerals and their inter–relationships at the microscopic level (Ore Petrology). This course further provides an overview of the types and classification of ore deposits, their genesis and the importance of minerals in the South African economy. Magmatic, sedimentary and hydrothermal ores and deposits are considered. For each type, classic world localities and the best South African occurrences are used as examples. Suites of samples from representative deposit types are studied in the laboratory using hand specimens, thin and polished sections and ore blocks. Laboratory classes are fully integrated with the lecture component of the course.

Course Code: GEOL3047A**Course Description: Structural Geology III****NQF Credits: 18****NQF Level: 7**

This course is divided into theoretical and practical components. The lectures in the course cover the theoretical concepts that underpin structural geology (stress, strain and rheology), the description, identification and classification of deformation structures in rocks, and the significance of these structures for reconstructing strain and stress patterns in rocks. The practical component of the course covers aspects related to 3D measurement of geological structural elements and their representation via stereographic projection, and common techniques for the measurement and interpretation of strain patterns in rocks.

Course Code: GEOL3048A**Course Description: Geographical Information Systems & Remote Sensing III****NQF Credits: 18****NQF Level: 7**

This course covers basic skills development in GIS, as relevant to geoscience students, in learning how to combine and integrate geological, geochemical, geophysical and geographical datasets, to extract new data layers that assist in the interpretation of geological terrains and locations, and the development of base maps for exploration and mining. The development of GIS skills lead to training in Remote Sensing that enables the students to mathematically manipulate and filter selected image parameters of non-raster files. The validation of new extracted data layers is key to understanding the geological systems in question.

Course Code: GEOL3049A**Course Description: Geology III****NQF Credits: 72****NQF Level: 7**

This course provides the finishing components required by a scientist seeking a comprehensive background in geology together with the necessary skills to meet this end. It comprises the following courses: Advanced Petrology III (GEOL3043A); Economic Geology and Ore Petrology III (GEOL3046A); Structural Geology III (GEOL3047A) and Tectonics of the Earth III (GEOL3041A).

Course Code: GEOL3050A**Course Description: Applied Geology III****NQF Credits: 72****NQF Level: 7**

This course allows students to combine Advanced Geological Mapping Techniques III (GEOL3042A), Hydrogeology & Water Resource Management III (GEOL3044A), Exploration Methods III (GEOL3045A) and Geographical Information Systems & Remote Sensing III (GEOL3048A) for purposes of majoring in Applied Geology.

Course Code: GEOL4014A**Course Description: Hydrogeology IV****NQF Credits: 10****NQF Level: 8**

This course includes a detailed introductory chapter on physical and chemical hydrogeology which is followed by groundwater recharge estimation which deals with different application formulae. Advanced groundwater exploration techniques are presented in addition to the groundwater occurrences in different rocks. The aqueous geochemistry section includes basic principles, mass transport and groundwater pollution studies. Application of environmental isotopes in hydrogeological problems is addressed in detail. Groundwater modelling and groundwater management are important components of the course, which is given at the end of the program.

Course Code: GEOL4023A**Course Description: Solid Earth Geochemistry IV****NQF Credits: 10****NQF Level: 8**

This is a theoretical course focusing on the formation and differentiation of the Earth, including cosmochemical aspects of solar system and Earth formation. Subject materials include current thinking, as documented in the latest scientific publications, on the origin and evolution of mantle and crustal geochemical reservoirs, especially as constrained by radiogenic isotope systematics of Sr, Nd, Pb, Os, Hf and He. Other subject areas include precise geochronology and geochemical aspects of crust formation and meteoritics.

Course Code: GEOL4024A**Course Description: Surficial Geochemistry IV****NQF Credits: 10****NQF Level: 8**

This course includes: temporal evolution of sedimentary rocks, weathering, soils and biogeochemical cycling, redox in natural waters, compositions of rivers and oceans, environmental geochemistry, isotopic variations in low – temperature systems, atmosphere – biosphere and lithosphere interactions. Lithosphere by integrating knowledge of geodynamic processes on Earth from Archaean to present; and the nature of diamond formation.

Course Code: GEOL4025A**Course Description: Advanced Petrology and Geochemistry IV****NQF Credits: 10****NQF Level: 8**

This course covers the handling and interpretation of geochemical data to understand the petrology (origin) of igneous and metamorphic rocks in different tectonic environments, from the convecting mantle to lithosphere. Geochemical data, including major, minor, trace elements as well as radiogenic and stable isotopes, is used to illustrate the pathways of melt formation from the mantle to crust.

The petrology of the mantle, including its thermal and chemical compositions, is illustrated by investigating oceanic and continental mafic magmas and samples from the cratonic mantle lithosphere. The petrology of igneous rocks is addressed by chemical and mineralogical classification, and discussing their formation through parental magma formation, magma series progression, magma transportation and emplacement, as well as rock classification, supplemented with traditional mineralogical schemes.

Course Code: GEOL4026A**Course Description: Earth Evolution and Global Tectonics IV****NQF Credits: 10****NQF Level: 8**

This course covers principles of geochronology and tectonostratigraphy, with an emphasis on the geochronology and tectonic development of Africa. Using examples of African terranes, the course examines the tectonic evolution of cratons, mobile belts, and sedimentary basins along with their sedimentary cover/fill. Concepts in tectonostratigraphy are analysed using African and global examples.

Course Code: GEOL4027A**Course Description: Exploration, Mining, Economics, and Entrepreneurship IV****NQF Credits: 10****NQF Level: 8**

This course covers mineral economics - common commodity minerals, the geological settings in which they form, selection of appropriate techniques for exploration, mining, and cost calculation of an operation. It also covers the role of the geologist in every step of the minerals industry.

Course Code: GEOL4028A**Course Description: Geographic Information Systems and Remote Sensing in Geology IV****NQF Credits: 10****NQF Level: 8**

This course focuses on the use of Geographic Information Systems (GIS) and Remote Sensing (RS) to solve problems in the Earth Sciences. It begins with an introductory phase in the use of mainstream GIS and RS software and then progresses to data analysis. The course covers the application of GIS and RS in structural geology, environmental geology, and hydrogeology. Candidates use geological datasets to quantify geological events.

Course Code: GEOL4029A**Course Description: Research Project: Geology IV****NQF Credits: 40****NQF Level: 8**

Candidates undertake a Geology Honours Project, under the supervision of an appropriately qualified supervisor. The project entails a literature review (thorough an examination and synthesis of original literature), identification of a scientific problem/issue to be addressed, selection of suitable methods and the collection and interpretation of data. Candidates are required to present their project proposals and final results to the School, and produce a detailed report of their findings.

Course Code: GEOL4030A**Course Description: Structural Geology and Mineralisation Processes IV****NQF Credits: 20****NQF Level: 8**

This course builds on structural principles to cover processes of mineral deposit formation for igneous, igneoushydrothermal, and hydrothermal deposits, focusing on areas of overlap and transitions between different deposit styles. It examines constraints on ore deposit formation in terms of metal and energy fluxes, and transporting mechanisms. Ore deposits in which there is still major controversy over their formation are considered, and the merits of different genetic models are examined. This includes iron-oxide copper-gold deposits (IOCG), Carlin-type gold deposits and skarn systems. In addition, an introduction to metallogenesis and mineral systems science provides a spatial, structural, and temporal consideration of global mineral deposits. Structural geology and mineralisation processes are integrated to look at specific deposits and regional metallogeny.

Course Code: GEOL4031A**Course Description: Solid Earth Geochemistry and Geoanalysis IV****NQF Credits: 10****NQF Level: 8**

This course focuses on the chemical composition and evolution of the major divisions of planet Earth: core, mantle and crust. It draws on the extensive framework of results from cosmochemistry (including meteorites), geochemical and geophysical information on Earth, other terrestrial planets and samples of Earth materials that are forming in the present day, as well as possible equivalents in the geological past. The course further provides a comprehensive understanding of the various analytical methods and instruments available to geologists and geochemists for the analysis of various samples (rocks, minerals, soils, etc), their applications, and most importantly, practical, hands-on experience in each of the important geochemistry instruments.

It focuses on theoretical aspects and actual laboratory analysis of rock and mineral samples using X-ray Fluorescence Spectroscopy (XRF), Inductively-Coupled Plasma Mass Spectrometry (ICP-MS), Secondary Ionization Mass Spectrometry (SIMS) and Electron Microprobe Analysis (EPMA) for most major and trace elements of geological interest, both through in situ and bulk rock measurements.

Course Code: GEOL7022A**Course Description: Hydrogeochemistry****NQF Credits: 15****NQF Level: 9**

This course includes basic description of chemical parameters in rocks (major, minor and trace), physico-chemical and organoleptic property of water, lab measurement methodologies, plotting and interpretation of results.

Course Code: GEOL7023A**Course Description: Environmental Isotopes****NQF Credits: 15****NQF Level: 9**

This course includes basic concepts of isotope fractionation, isotope occurrence in rain, surface water and groundwater, and characteristics of each isotope after it joins the groundwater system.

Course Code: GEOL7024A**Course Description: Physical Hydrogeology****NQF Credits: 15****NQF Level: 9**

This course includes water bearing units, hydrogeological parameters (K,T,S) pumping test analysis (single porosity and double porosity), groundwater occurrence in rocks, groundwater investigation methods, springs and wells, and bore hole drilling methods.

Course Code: GEOL7025A**Course Description: Hydrogeophysics****NQF Credits: 15****NQF Level: 9**

This course covers applied geophysical methods to solve groundwater problems especially in hard – rock terrains. The main focus of the course is on gravity, seismic and electrical methods.

Course Code: GEOL7026A**Course Description: The Geochemical Toolbox for Hydrogeology****NQF Credits: 15****NQF Level: 9**

This course provides candidates with the geochemical skills necessary to tackle subsequent courses in the proposed Geohydrology MSc programme and prepare them for any geochemical aspects of the geohydrological industry. The course focuses on the geochemical tools used in geohydrology, the applications of these tools and how to interpret the data emanating from each of these tools.

Course Code: GEOL7027A**Course Description: Contaminant Hydrogeology****NQF Credits: 15****NQF Level: 9**

This course is intended to present main groundwater pollution sources, control mechanisms and quantification of the dispersion, advection and diffusion of contaminants in an aquifer.

Course Code: GEOL7028A**Course Description: Research Report: Hydrogeology Full – time****NQF Credits: 90****NQF Level: 9**

This research report provides a broad training in all aspects of Hydrogeology. The candidate is required to present a written and oral research proposal. The final written report includes a literature survey, an introduction to the project, a summary of the research question to be addressed, presentation and interpretation of data, and a comprehensive bibliography to the literature cited in the report; this is accompanied by a final oral presentation.

Course Code: GEOL7029A**Course Description: Hydrological Processes****NQF Credits: 15****NQF Level: 9**

This course is intended to present detailed quantification of the hydrological parameters such as precipitation, evapotranspiration, runoff and recharge in order to estimate the water balance of an area. The hydrologic cycle is addressed both at a local and regional level.

Course Code: GEOL7030A**Course Description: Water Resources Management****NQF Credits: 15****NQF Level: 9**

This course includes the relationship of hydrological parameters to water resources management, water management principles and issues, water resources in South Africa, transboundary surface and ground water in Africa, water loss, pollution and protection, water resources and climate change impacts, and water management interventions.

Course Code: GEOL7031A**Course Description: Applied Structural Geology****NQF Credits: 15****NQF Level: 9**

This course involves an in-depth study of Structural Geology theories and applications related to structures that control storage and circulation of groundwater.

Course Code: GEOL7032A**Course Description: An Introduction to Ore Deposit Geology****NQF Credits: 15****NQF Level: 9**

This course considers metal concentration in the crust and concentration factors needed to upgrade metals to mineable proportions. Igneous, sedimentary and hydrothermal processes that contribute to concentrating these metals are considered. Topics include ore deposits in layered complexes, mafic rocks, granites, porphyry copper, pegmatites, laterite and bauxite, VMS, SEDEX, MVT and epithermal ore deposits. Structural controls that help localise the concentrations of metals are discussed. The course ends with a consideration of how various types of ore deposits have formed through time. Regulatory controls that are in place for the reporting of ore deposit resources are also covered. Practical classes involve examining hand samples, thin sections and ores in reflected light.

Course Code: GEOL7033A**Course Description: GIS and Remote Sensing****NQF Credits: 15****NQF Level: 9**

This course introduces basic principles such as datums and projections, coordinate systems, geo-referencing, use of GPS, GIS-based techniques for interpretation, radiation and the atmosphere, and visualisation of geological, structural, geochemical and geophysical datasets. There is a focus on ARCMAP, Landsat and Aster imagery. An introduction to processing, restoration and image enhancement is given and includes interpretation of hyperspectral techniques for mineral exploration and mapping for mineral prospectivity. Case studies are presented. Computer-based practicals form a significant part of the course.

Course Code: GEOL7034A**Course Description: Structural Controls on Ore Deposits****NQF Credits: 15****NQF Level: 9**

This course provides an understanding of tectonic processes from the small – scale to the continent – wide scale. Topics include the 3D visualisation of folds, faults, thrusts, their geophysical expression and the analysis of structures in drill core. The course includes practical training in recognizing structural features in the field and integrating structural data – sets at all scales, and provides a greater understanding of the role of structural controls in focusing the distribution of ore deposits. The objective of the course is to develop (i) confidence in understanding the structural parameters, and (ii) skills in interpreting the effects of structural elements in specific areas relevant to mining. There is an emphasis on practical training and case studies from a variety of ore deposits worldwide are considered.

Course Code: GEOL7035A

Course Description: Magmatic Ore Deposits

NQF Credits: 15

NQF Level: 9

This course introduces the concepts of magmatic ore deposit formation and the geochemical and geophysical methods that can be utilised for further exploration. The various types of deposits studied include layered igneous complexes, mafic complexes, komatiites, kimberlites and carbonatites. Ore deposits associated with felsic igneous rocks are also covered and include ores associated with granites such as tin, tungsten, niobium and rare earths; pegmatites and skarns. There is a focus on mechanisms of concentration of metals. Practical classes include a study of sample suites from around the world using hand specimens, thin sections and ores in reflected light.

Course Code: GEOL7036A

Course Description: Sedimentary Ore Deposits

NQF Credits: 15

NQF Level: 9

This course covers clastic and chemical sedimentary ore deposits. These include: placer diamonds, heavy minerals, gold and gems; the role of sedimentary processes in the Witwatersrand Basin and Central African Copperbelt deposits; and the concentration of laterite and bauxite ores. The chemical behaviour of elements such as uranium, vanadium, copper, iron and manganese are also a major focus for this course. The aim of the course is to develop a better understanding of processes to assist in exploration for new deposits. Practical classes include a study of sample suites from around the world using hand specimens, thin sections and ores in reflected light.

Course Code: GEOL7037A

Course Description: Hydrothermal Ore Deposits

NQF Credits: 15

NQF Level: 9

This course focuses on processes involved in the transport and deposition of metals from hydrothermal fluids in specific geological settings. A consideration is given to the composition of fluids and the Pressure and Temperature conditions of metal deposition. Metal systems in VMS, SEDEX and MVT settings are presented together with an overview of Carlin – type deposits, and the role of fluids in upgrading ore in the Central African Copperbelt and Kupferschiefer of Poland. The course aims to provide an understanding of the different geological settings responsible for the mineralisation and to provide the participant with a greater understanding of genetic models used to explain these deposits. Case studies from the lectures are integrated with a laboratory study of sample suites of ore deposit suites from around the world.

Course Code: GEOL7038A

Course Description: Exploration Targeting – Geochemistry

NQF Credits: 15

NQF Level: 9

This course covers available geochemical exploration techniques and make use of the state –of–the–art software used in the mining and exploration industry to visualise and interpret the relevant data. There is an emphasis on practical training, data presentation, visualisation, and integration of different methodologies. The objective is to understand the relative strengths and weaknesses of the different geochemical techniques in exploration for different types of ore deposits in a variety of terranes and how these can be integrated with geophysical data. Airborne geochemical methods are often the first technique utilised in the search for new ore deposits.

Course Code: GEOL7039A

Course Description: Exploration Targeting – Geophysics

NQF Credits: 15

NQF Level: 9

This course integrates available techniques and make use of the state –of–the–art and geophysical software used in the mining and exploration industry to visualise and interpret the relevant data. There is an emphasis on practical training, data presentation, visualisation, and integration of different methodologies. The objective is to understand the relevant strengths and weaknesses of the different geophysical techniques in exploration for different types of ore deposits in a variety of terranes. Airborne geophysical methods are often the first technique utilised in the search for new ore deposits.

The application of gravity, magnetic and electromagnetic techniques is routine. In addition, the use of 3D seismics in exploration and existing underground operations can now provide structural information ahead of mining in order to guide development planning.

Course Code: GEOL7040A

Course Description: Geometallurgy and Reflected Light Microscopy

NQF Credits: 15

NQF Level: 9

This course is aimed at providing an understanding of how to characterise an ore deposit in terms of its processing (beneficiation) requirements. These include an appreciation of mineralogical speciation of the commodity, blasting, blending, crushing, grinding, liberation, recovery and waste control. Practical training is include a study of ore minerals under the microscope to gain a better understanding of intergrowths in ore minerals, contaminants, optimum grind size to release the required ore mineral, adverse gangue minerals and textural ore complexities that can affect beneficiation. This training leads to an improved understanding by geologists and mineralogists of the roles of mining engineers and metallurgists in the mining value chain. The incorporation of geometallurgical data into geological and resource models are covered.

Course Code: GEOL7041A

Course Description: Geological Modelling

NQF Credits: 15

NQF Level: 9

This course considers how the integration of available geological, structural, geophysical and geochemical data can be used in exploration targeting and analysis of ore deposits. The course considers the key geological, geochemical, geophysical and structural parameters and grade variations that are important in ore–body modelling and the various methods used for data acquisition and manipulation. A brief consideration is given to QA and QC issues in validating data. Practical training is given and includes the use of LEAPFROG software for 3D visualisation for exploration and mining.

Course Code: GEOL7042A

Course Description: Platinum Group Element Deposits

NQF Credits: 15

NQF Level: 9

This course is useful for those people working in the platinum group metal (PGM) industry, who would like to gain a wider understanding of the platinum industry world-wide. It considers the Bushveld, Nkomati, Sudbury, Stillwater, Great Dyke, Norilsk, Muskox and Jinchuan Complexes and focus on the debates about how and why the ore minerals have been concentrated into specific layers. It considers the nature of the platinum minerals and how these vary, even within one horizon such as the Merensky Reef, and how the associated gangue minerals such as serpentine or talc can adversely affect platinum recovery. It considers the security of supply from countries such as South Africa, Zimbabwe and Russia, which are the major world suppliers. Laboratory work includes a study of material from various deposits with a focus on the characteristics of the ore minerals plus an opportunity to study platinum – bearing minerals under the scanning electron microscope.

Course Code: GEOL7043A

Course Description: Gold Deposits

NQF Credits: 15

NQF Level: 9

This course covers all types of gold deposits. This includes a review of the Witwatersrand goldfield with other sedimentary – hosted gold prospects; shear – hosted gold mines in the Barberton area and throughout Africa, IOCG – type deposits of Australia and elsewhere, and Carlin – type gold deposits of western America. The importance of regional structures in the formation of gold deposits is discussed. Case studies of major gold deposits formed at different times in Earth history form an essential part of the course.

Course Code: GEOL7044A

Course Description: Uranium Deposits

NQF Credits: 15

NQF Level: 9

This course covers primary and secondary types of uranium: unconformity – related deposits constitute around 33% of the world's resources, breccia complex ~8%, intrusive – related deposits <10%, sandstone – hosted deposits ~18%, surficial deposits ~4% and quartz – pebble conglomerates of the Wits – type Basin ~13%. Minor occurrences associated with coal and phosphate deposits is discussed. The course provides a greater understanding of the mobility of uranium in igneous, metamorphic, hydrothermal and sedimentary environments with an aim of improved targeting for further exploration. Case studies focus of deposits in Canada, Australia, Kazakhstan, Namibia, Niger, Malawi and South Africa. Africa is a significant producer of uranium, with Niger and Namibia currently the world's fourth and fifth largest producers.

Course Code: GEOL7045A

Course Description: Iron and Manganese Deposits

NQF Credits: 15

NQF Level: 9

This course aims to provide an understanding of the sedimentary, microbial and hydrothermal processes involved in the formation of iron and manganese ores, the role of structural controls in ore deposit formation, and the effect of structural features in mining. The contrasting mineralogy between high – grade and low grade deposits are studied in laboratory – based practicals using hand specimens, thin sections and polished ores in reflected light. Case studies include deposits in Australia, and China as well as South Africa.

Course Code: GEOL7046A

Course Description: Critical Metal Deposits

NQF Credits: 15

NQF Level: 9

This course focuses on those critical metals that Africa can supply. These include cobalt, lithium, rare earths, tantalum–niobium, platinum, antimony, tungsten and germanium. This course aims to provide a better understanding of the deposits with which the strategic metals are related, examples of where and why enrichment has occurred, and the strategic implications of restricted and uncertainty of supply. Case studies are used for a variety of deposit types. Critical metals are metals whose availability is essential for high–technology, green and defence applications, but which are vulnerable to politically or economically driven fluctuations in supply. At present, this designation applies particularly to the rare–earth elements, tantalum, niobium, lithium, molybdenum, germanium and indium, although antimony, platinum group elements, mercury, tungsten, and strontium among others are in short supply although they are not necessarily rare. The course considers metal resources and criticality as defined by different international governments, sources of supply and recycling.

Course Code: GEOL7047A

Course Description: The Central African Copperbelt

NQF Credits: 15

NQF Level: 9

This course investigates the structural setting of sedimentation and subsequent tectonism, and the importance of salt tectonics in the DRC. Topics include argillite–hosted and arenite–hosted ores, the source of the fluids, the source of sulphur, controversies on the source of the metals and the importance of the major types of alteration. Case studies include practical studies of ore suites from Kamoa, Kamoto and Kipushi in DRC and from Nchanga/Chingola, Mufalira and Nkana in Zambia. These are contrasted with similar suites from the Kupferschiefer in Central Europe and White Pine in the USA. The stratabound copper deposits of the Central African Copperbelt lie partly in northern Zambia and partly in the southern DRC. There are dramatic differences between mineralisation in the Zambia and DRC parts of the Copperbelt in terms of stratigraphic setting and structural controls; however, both areas are characterised by three lithostratigraphic elements of continental red beds, evaporites and reducing strata.

Course Code: GEOL7048A

Course Description: Research Report Economic Geology Full–time

NQF Credits: 90

NQF Level: 9

The research report provides a broad training in all aspects of Economic Geology. The candidate is required to present a written and oral research proposal. The final written report includes a literature survey, an introduction to the project, a summary of the research question to be addressed, presentation and interpretation of data, and a comprehensive bibliography to the literature cited in the report; this is accompanied by a final oral presentation.

Course Code: GEOL7049A

Course Description: Research Report Economic Geology Part –time I

NQF Credits: 30

NQF Level: 9

Research Report Part 1 involves preliminary data collection and preparation of an introductory section of the Research Report that is presented orally and in writing.

Course Code: GEOL7050A

Course Description: Research Report Economic Geology Part –time II

NQF Credits: 60

NQF Level: 9

Research Report Part II involves additional research data collection, analysis, interpretation and discussion and the submission of the final oral presentation and written Research Report.

Course Code: GEOL7051A

Course Description: Research Report: Hydrogeology Part –time I

NQF Credits: 30

NQF Level: 9

Research Report Part 1 involves preliminary data collection and preparation of an introductory section of the Research Report that is presented orally and in writing.

Course Code: GEOL7052A

Course Description: Research Report: Hydrogeology Part – time II

NQF Credits: 60

NQF Level: 9

Research Report Part II involves additional research data collection, analysis, interpretation and discussion and the submission of the final oral presentation and written Research Report.

Course Code: GEOL7053A

Course Description: Geology and Exploitation of Coal Deposits

NQF Credits: 15

NQF Level: 9

This course considers what coal is and how is it defined, the types of coal and the depositional environments in which it forms. A major emphasis is on the coal deposits of sub-Saharan Africa and particularly South Africa as these are becoming of greater significance in meeting the energy needs of future generations. The factors that affect the quality and marketability of coal as a resource are presented. The techniques of proximate and ultimate coal analysis, as well as reserves and reporting of resources will form important parts of the course. The course ends with a consideration of the economics of coal deposits, environmental implications of mining and coal burning and how alternative energies might impact the coal industry.

Geophysics Courses

Course Code: GEOP4004A

Course Description: Mathematical and Computational Geophysics

NQF Credits: 16

NQF Level: 8

This course covers signal processing, image processing, inverse theory, and MATLAB programming, all applied to exploration geophysics.

Course Code: GEOP4005A

Course Description: Advanced Potential Theory

NQF Credits: 16

NQF Level: 8

This course covers fundamental aspects of potential field theory and their application to the study of gravity and magnetic fields. It features hands-on practical labs and computer programming assignments. In the theory section, fundamentals of potential theory are derived, starting from basic definitions of potential and work. The theory is expanded to include work on tensors and invariants. The gravity and magnetic sections include work on ground, airborne and satellite applications. An introduction to some of the fundamental image enhancement techniques is also included.

Course Code: GEOP4006A

Course Description: Seismology

NQF Credits: 16

NQF Level: 8

This course is a branch of Geophysics that deals with the mechanical vibrations of the Earth caused by natural sources, such as earthquakes and volcanic eruptions, and controlled sources, such as underground explosions. Seismic waves are analysed to study the mechanisms of earthquakes, the structure and evolution of the Earth's core, mantle and crust, and the effect of shaking on structures such as buildings and mines. Seismological methods are used to explore for minerals and hydrocarbons; support the design, construction and operation of facilities such as mines, dams, nuclear power stations and waste disposal sites; and mitigate the risks posed by earthquakes.

The Seismology course covers: a review of relevant topics in mathematics, signal processing, physics (especially the properties and propagation of mechanical waves) and geology; the causes and effects of natural and mining-induced earthquakes, including methods to assess seismic hazard and mitigate risks; the acquisition, processing and interpretation of refraction and reflection seismic surveys; and imaging of the crust and mantle using teleseismic sources.

Course Code: GEOP4007A**Course Description: Electrical and Electromagnetic Methods****NQF Credits: 16****NQF Level: 8**

This course on Electrical and Electromagnetic Methods includes fundamental theoretical aspects regarding the propagation of electrical currents and of electromagnetic fields within the Earth and its atmosphere, examination of electrical properties of Earth materials, application of these methods in mineral, oil and gas exploration and mining, geohydrology, engineering and environmental disciplines, and case studies.

Course Code: GEOP4008A**Course Description: Research Project: Geophysics****NQF Credits: 30****NQF Level: 8**

The Geophysics Honours Project is designed to provide candidates with basic experience in undertaking a supervised research project. It need not be original research. Project work includes project design, a literature survey, preparation of a project proposal, scientific research and presenting the findings orally and in a research report.

Course Code: GEOP4009A**Course Description: Geophysics for Geologists****NQF Credits: 10****NQF Level: 8**

This course covers the main aspects and applications of four geophysical methods: magnetics, gravity, seismic, and resistivity. These methods are used to introduce candidates to planning, collecting, interpreting and integrating geophysical data sets as applied to the exploration for a variety of resources. Examples include the search for South African and global resources such as water, diamonds, gold, and platinum. Real data sets from geophysical surveys are used to stress the importance of good field practice and to learn techniques for handling imperfect data.

Course Code: GEOP4010A**Course Description: Global Geophysics****NQF Credits: 16****NQF Level: 8**

This course includes an introduction to geology (for candidates who have as yet not received geology training; discussion of relevant aspects of the inner planets and meteorites for understanding the Earth; an introduction to mathematical and physical concepts of most of the main fields of geophysics; study of the physics of the Earth's interior; study of global geophysical patterns; and study of the physics of global tectonics.

Course Code: GEOP4011A**Course Description: Africa Array Field School****NQF Credits: 10****NQF Level: 8**

This course involves training in survey design and tendering for contracts, training in field safety, extensive field work on an actual mine or exploration project, use of most modern geophysical equipment and methods, data interpretation and integration, and a project report. It is also offered to selected international candidates and provides hands-on training for practical geophysicists and consultants.

Palaeontology Courses**Course Code: PALP4010A****Course Description: Comparative Osteology, Quantitative Methods and Field Techniques****NQF Credits: 10****NQF Level: 8**

Students will learn to recognize skeletal elements of different vertebrate groups that will build in their knowledge in the anatomical and taxonomic identifications of fossils elements. The course includes lab lectures aiming to the practical knowledge of skull and postcranial anatomy of mammals, reptiles and birds. Students will have a short field trip to the Cradle of the Humankind to learn field techniques.

Course Code: PALP4011A**Course Description Phylogenetics****NQF Credits: 10****NQF Level: 8**

This course provides a basic knowledge of techniques to build, interpret and assess relationships between taxa by means of cladograms. Topics to be covered include character data–matrix and coding of characters; build of phylogenetic trees and optimisation of characters; character fit, consensus tree and weighting of characters; evaluation of trees: branch support and resampling techniques.

Course Code: PALP4012A**Course Description: Statistics and Geometric Morphometrics****NQF Credits: 10****NQF Level: 8**

This course provides an introduction to basic statistic methodology and use of geometric morphometrics to explore evolution of morphology, including use of software. Topics include basic statistical methods; X – ray physics / computed tomography (CT); computed tomography in palaeontology; variability of organism forms – pattern versus process, basic principles of multivariate analysis; basic principles of geometric morphometrics; principal component analysis (PCA).

Course Code: PALP4013A**Course Description: Hominid Evolution and Osteology****NQF Credits: 10****NQF Level: 8**

This course provides knowledge on fossil, archaeological and genetic evidence of the evolution and development of hominid. Topics include: phylogeny (human ancestors and primate cousins); the earliest hominins; the origins of bipedal locomotion; the evolution of the brain and intelligence; stone tool technologies; diet and subsistence; the origin and rise of modern humans; the evolution of culture; human migration and settlement.

Course Code: PALP4015A**Course Description: Terrestrial and Marine Micropalaeontology****NQF Credits: 10****NQF Level: 8**

This course covers the introduction to fossil microorganisms of the terrestrial and marine realms, oldest to modern groups, their classification and application to dating, oil and coal industry, and biostratigraphy. Case studies are given, shortfalls, limitations and processing methods.

Course Code: PALP4016A**Course Description: Taphonomy and Biostratigraphy****NQF Credits: 10****NQF Level: 8**

This course comprises:

Stratigraphy – this part of the course comprises a combination of background reading, four lectures and discussion sessions, and candidates are required to submit an essay at the end. The goal of this part of the course is to teach candidates the principles of stratigraphic and sedimentological analysis using the Karoo Supergroup as a case study, with the purpose of understanding how to undertake a basin analysis. The first lecture is on the principles of stratigraphy, lecture second is lithostratigraphy, lecture third is biostratigraphy, and lecture fourth is basin analysis and palaeoenvironments.

The course includes a four days field excursion to the Karoo. Taphonomy – includes six theoretical-practical lectures and the presentation of an essay by the candidates. The topics include theoretical background (definition, terminology, considerations, approaches); diagenesis (mineral replacement); bone modification (weathering, fracture patterns, surface features and their implications); case studies; review of agents responsible for modifying and accumulating Plio–Pleistocene faunal assemblages (Human Evolution stream); review of taphonomic studies in the Permian – Triassic – Jurassic (Karoo stream). Practical (data collection: macroscopically at the assemblage level, including taxon, age, minimum number of individuals morphometrics, fracture patterns, surface modifications, weathering, etc); techniques (microscopic analysis)

Course Code: PALP4017A

Course Description: Archosaurs Evolution

NQF Credits: 10

NQF Level: 8

This course provides candidates with the knowledge of the evolution of archosaurs, a group that include dinosaurs, crocodiles and birds. Topics to be considered include archosaur diversity, phylogeny, and biogeography; pneumaticity of the archosaur skeleton; cranial anatomy of archosaurs; body size evolution, disparity, and evolutionary rates in archosaurs; digital homology in the archosaur forelimb; genome size evolution in archosaurs; evolution of feathers; postcranial anatomy of archosaurs and archosaur locomotion.

Course Code: PALP4018A

Course Description: Synapsid Evolution

NQF Credits: 10

NQF Level: 8

This course provides a background to the various synapsid taxonomic groupings showing the range of morphological diversity. As South Africa has an exceptionally rich record of fossil therapsids emphasis is given to the morphological evolution of mammals.

The topics covered include main evolutionary landmarks of synapsids; distribution of the group in the fossil record; pelycosaurus, biarmosuchids, dinocephalians, anomodonts, gorgonopsians, theropcephalians and non-mammaliaform cynodonts.

Course Code: PALP4019A

Course Description: Evolution of Terrestrial Ecosystems

NQF Credits: 10

NQF Level: 8

This course consists of the evolution from simple to complex ecosystems, with emphasis particular on plants. Topics to consider include origin of the Earth; origin of life; early life in the ocean; early plants on land; evolution of the various plant groups and the development of complex ecosystems containing plants, animals and insects.

Course Code: PALP4020A

Course Description: Evolution of Mammals

NQF Credits: 10

NQF Level: 8

This course consists of the ancient history of mammals. Topics include lineages of living mammals and their histories during the Mesozoic; dental evolution of Mesozoic mammals; main groups of mammals represented during the Mesozoic; differences between evolution of monotremes, marsupial and placentals; conflicts in the timing of evolution of main mammal lineages; mammals during the Cenozoic; megaherbivores and megacarnivores.

Course Code: PALP4024A

Course Description: Research Project: Palaeontology

NQF Credits: 40

NQF Level: 8

This course provides the first experience of candidates with a research project. The course is directed to the understanding of the mechanics of research investigation, data collection activity, framing of research questions, integration of new data with data previously known; elaboration of a written report (modelled based in an academic research paper) and presentation of the results of the investigation. The presentation of the results of the project orally represents the first experience of the candidate to understand the activity developed in scientific congress or conferences.

Course Code: PALP4025A

Course Description: Research Project Palaeontology and Geology

NQF Credits: 40

NQF Level: 8

This course provides the first experience of candidates with a research project. The course is directed to the understanding of the mechanics of research investigation, data collection activity, framing of research questions, integration of new data with data previously known; elaboration of a written report (modelled based in an academic research paper), presenting the results of the investigation.

Course Code: PALP4026A

Course Description: Plio – Pleistocene Palaeoecology

NQF Credits: 10

NQF Level: 8

This course consists of the theoretical background for palaeoclimate reconstruction; the use of various proxy data and comprehends the environment and climatic conditions of South and East Africa during the Plio – Pleistocene.

School of Law (Faculty of Commerce, Law and Management)

Course Code: LAWS7215A

Course Description: Environmental Law and Sustainability I (non-core)

NQF Credits: 30

NQF Level: 8

This course concerns the suite of legislation relevant to environmental management in South Africa. This course focuses on the National Environmental Management Act 107 of 1998, the Promotion of Access to Information Act 2 of 2000, the Promotion of Administrative Justice Act 3 of 2000 and selected regulatory interventions in the National Environmental Management: Protected Areas Act 57 of 2003 and the National Environmental Management: Biodiversity Act 10 of 2004. This course equips candidates with an understanding of the NEMA-SEMA statutory scheme, the regulatory tools embedded in the above mentioned legislation, the extent to which the legislation advances the realisation of the environmental right contained in section 24 of the Constitution, methods of enforcement and challenges of implementation.

School of Literature, Language and Media (Faculty of Humanities)**Course Code: AFRL1003A/1004A****Course Description: Elementary IsiZulu Language and Culture IA and IB****NQF Credits: 18****NQF Level: 5**

This course is designed for students who have no knowledge of IsiZulu. It is offered in two consecutive terms. The course familiarises students with speaking, reading, writing and hearing IsiZulu. An understanding of grammatical structures is gradually introduced through the close reading of simple graded texts. Students are taught to function in situations that require basic knowledge of IsiZulu.

Course Code: AFRL1005A/1006A**Course Description: Elementary SeSotho Language and Culture IA and IB****NQF Credits: 18****NQF Level: 5**

This course is designed for students who have no knowledge of SeSotho. The course familiarises students with speaking, reading, writing and hearing SeSotho. An understanding of grammatical structures is introduced through the close reading of simple graded texts. Students are taught to function in situations that require basic knowledge of SeSotho.

Course Code: DLL7015A**Course Description: Fantasy Science Fiction and the Fiction of the Unreal****NQF Credits: 30****NQF Level: 9**

This course investigates various aspects of fantasy, science fiction and the unreal as represented in literature from the early nineteenth century until the present. Fantasy encompasses the uncanny and the unreal as well as the Doppelgänger in Calvino. Science Fiction counts the cost of modernity and technology. Magical realism does not draw a clear line between the real and the supernatural. The course discusses the fantastic in literature from a historical, theoretical and stylistic perspective.

Course Code: WCRW4000A**Course Description: Working Concepts in Creative Writing****NQF Credits: 23****NQF Level: 8**

This course facilitates theoretical reflection, and introduces the procedures and practices relating to the writing and analysis of creative work. Candidates are expected to analyse short fiction and non-fiction, reflect on representational and narrative practices and their effects, engage in critical and literary debates, write short fiction and non-fiction works, and reflect on and critique their own creative projects.

Course Code: SLLS5027A**Course Description: Social Media Analysis in and for the Global South****NQF Credits: 12****NQF Level: 8**

The course combines conceptual and practical components aimed at collecting and analysing interactions on social media from a Global South perspective. Most existing frameworks used to analyse phenomena such as hate speech or mis/disinformation tend to assume universal characteristics of engagement, work outward from English-language sources and experiences of users in affluent and highly connected countries. They not only are inadequate to capture the rich socio-political trajectories characterising different societies, but also offer limited opportunities to learn from taking diversity (in political engagement, representation, trust) seriously. At the end of the course students will be able to use tools for data collection (e.g., Academic Twitter API, CrowdTangle) and analysis/representation (e.g., community detection algorithms, natural language processing), as well as to combine them with qualitative methods to examine how users make sense and make use of data and interpret them through scholarly work emerging from the Global South.

Course Code: SOSS5036A

Course Description: Visualising African Societies with Data

NQF Credits: 12

NQF Level: 8

This course introduces data visualisation methods and their use to analyse societies in Africa. It cultivates a critical perspective on the quality and biases of social data, combined with a computational approach to producing effective and reproducible visualisations. Applications range from graphing statistical distributions to using spatially referenced data to make thematic maps. Participants will learn principles of analytic design and how to apply them using tools for data visualisation.

Course Code: SLLS7078A

Course Description: Communicating for Social Change

NQF Credits: 30

NQF Level: 9

This course examines the paradigmatic shifts within international development cooperation, from the top-down modernisation strategies of the 1950s and 1960s to today's process-oriented models that emphasise participation and dialogue. This specialisation examines potential and techniques for utilising mainstream, community and social media to involve stakeholders in development initiatives.

School of Mathematics

Course Code: MATH1034A (MATH1044A PT)

Course Description: Algebra I

NQF Credits: 15

NQF Level: 5

This course focuses on developing the deductive and logical skills of students. The course consists of real numbers, proof by mathematical induction, inverse trigonometric functions, polar coordinates and polar graphs, the binomial theorem, conics, vectors in two and three dimensions including equations of lines and planes, linear equations and Gaussian elimination, matrix algebra and determinants, complex numbers.

Course Code: MATH1036A (MATH1045A PT)

Course Description: Calculus I

NQF Credits: 21

NQF Level: 5

This course focuses on developing the analytical skills of students with regard to introductory undergraduate calculus. The course consists of the following topics: functions; limits; continuity; differentiability; integration; differentiation techniques; applications of differentiation; hyperbolic functions; integration theory and applications; advanced integration techniques; improper integrals; infinite sequences and series and convergence; and first order differential equations. These topics include an introduction to the students of key concepts in: trigonometric, logarithmic and exponential functions; partial differentiation; implicit differentiation; rates of change; maxima and minima; applications to curve sketching; antiderivatives; the indefinite and definite integral; Riemann sums; and Taylor and Maclaurin series.

Course Code: MATH1041A

Course Description: Auxiliary Mathematics I

NQF Credits: 36

NQF Level: 5

This course introduces students to mathematical concepts required for those who major in biological and earth sciences. It is a terminating course which does not lead into second year. It consists of a calculus and an algebra component:

Calculus: This component focuses on developing the analytical skill of students. Material includes: Points and vectors in the plane. Rules for differentiation, Applications of differentiation. Techniques of integration, areas, volume. Parametric equations, arc length and curved surface area. Partial differentiation, chain rule and first approximation. First order differential equations.

Algebra: This component focuses on developing the deductive and logical skill of students. Material includes: Radian measure and trigonometric functions. Proof by mathematical induction, series and polynomials. Algebra of matrices, inverses, laws of determinants, system of linear equations, Cramer's rule. Three dimensional vectors and geometry, equations of lines and planes, distances between points, lines and planes. Complex numbers arithmetic.

Course Code: MATH1048A

Course Description: Engineering Mathematics 1A

NQF Credits: 15

NQF Level: 5

The aim of the course is to provide engineering students with a basic foundation in definite integrals and integration techniques, and simple applications, binomial theorem and simple series. The course covers topics selected from calculus and algebra which are applicable in the engineering sciences courses, and for subsequent mathematics courses. Topics also include the principle of mathematical induction; the use of different co-ordinate systems; trigonometric identities and equations; limits; derivatives, anti-derivatives, and differentiation; and logarithmic, exponential, and other transcendental functions.

Course Code: MATH1049A

Course Description: Engineering Mathematics 1B

NQF Credits: 15

NQF Level: 5

The aim of the course is to provide engineering students with a basic foundation in differentiation and integration techniques, and solution of differential equations, matrices, and vector algebra. The course covers topics selected from calculus and algebra which are applicable in the engineering sciences courses, and for subsequent mathematics courses. Topics also include: more advanced trigonometric functions; expressing functions as power series; partial derivatives; dot and cross products of vectors in three-dimensional space; and the equations of lines and planes in three-dimensional space.

Course Code: MATH2001A (MATH2029A PT)

Course Description: Basic Analysis II

NQF Credits: 8

NQF Level: 6

This course focuses on developing the basic analytical skills of students. Material includes : limits of sequences and series; completeness of R, supremum and infimum, and density of Q in R; limits and proofs of their rules; continuity and the properties of continuous functions on closed bounded intervals; differentiation, Rolle's theorem and the 1st mean value theorem.

Course Code: MATH2003A

Course Description: Differential Equations II

NQF Credits: 8

NQF Level: 6

This course provides the student with practical results on the solution of differential equations. This course consists of solution of nth order constant co-efficient linear differential equations, Laplace transforms; Fourier series, solution of boundary value and initial value problems for constant coefficient partial differential equations.

Course Code: MATH2007A (MATH2032A PT)

Course Description: Multivariable Calculus II

NQF Credits: 8

NQF Level: 6

This course provides applicable results in calculus of several variables. Materials covered include: differentiation of maps from R^n to R^m ; differentials, divergence, gradient and curl; path integrals over regions in R^2 ; change of variables in R^2 ; Jacobians; extrema; Green's theorem is proved.

Course Code: MATH2035A

Course Description: Mathematics (Engineering) II

NQF Credits: 24

NQF Level: 6

This course augments techniques and simple applications of the algebra and the calculus introduced in the first-year courses, MATH1048A – Engineering Mathematics IA and MATH1049A – Engineering Mathematics IB. The course enhances students' ability to apply first principles of mathematics to solve engineering problems. Topics include: complex numbers; tests of series convergence; linear algebra including eigenvalues and eigenvectors; diagonalization; Cayley-Hamilton theorem; orthonormality; unitary and Hermitian matrices; Fourier series; linear differential equations; vector differentiation; curvature and torsion; trajectories; quadric surfaces; directional derivatives; del operator; potential functions; stationary points on surfaces scalar and vector path integrals; double integrals; and Green's theorem.

Course Code: MATH2012A

Course Description: Mathematics II

NQF Credits: 13

NQF Level: 6

This course augments techniques and simple applications of the algebra and the calculus introduced in Mathematics 1A and Mathematics 1B. The course enhances students' ability to apply first principles of mathematics to solve engineering problems. Topics covered in this course include: complex numbers, series, linear space, orthonormality, linear equations and operators, d-operators, complementary functions, particular integrals, complex exponentials, stability, vector differentiation, curvature torsion, trajectories and quadric surfaces.

Course Code: MATH2015A (MATH2028A PT)

Course Description: Abstract Mathematics II

NQF Credits: 8

NQF Level: 6

This course concentrates on discrete and algebraic aspects of mathematics. The course consists of the following concepts: finite, countable and uncountable sets; equivalence relations and classes; mappings and their inverses; binary operations; Well – ordering axioms; the division algorithm; modulo arithmetic; groups and rigid motions.

Course Code: MATH2016A (MATH2033A PT)

Course Description: Advanced Analysis

NQF Credits: 8

NQF Level: 6

This course focuses on developing the analytic skill of students. Material includes: properties of suprema and infima; construction of the Riemann integral; metric spaces; open and closed sets; completeness; compactness; fixed point theorems; existence and uniqueness of solutions to ordinary differential equations.

Course Code: MATH2019A (MATH2031 PT)

Course Description: Linear Algebra II

NQF Credits: 8

NQF Level: 6

This course introduces students to the fundamental concepts of Linear Algebra. Linear Algebra together with Calculus form a basis of higher mathematics taught in universities. They have important applications to natural and social sciences. Linear Algebra arose from solving systems of linear equations. This course introduces the student with the fundamental concepts of a vector space, a linear transformation, an inner product, and other related notions, in particular, those of linear independence, basis, dimension, orthogonality, matrix of a linear operator, eigen – values, eigenvectors. The notions, facts, and techniques presented in the course are widely illustrated by considering examples and solving exercises.

Course Code: MATH3001A**Course Description: Number Theory III****NQF Credits: 12****NQF Level: 7**

This course provides the student with an introduction to number theory. Topics covered include a selection of the following: Exact and asymptotic enumeration of sums; prime numbers and factoring; basic techniques of enumeration, inclusion – exclusion, identities; enumeration under symmetries; continued fractions, arithmetical functions, sums of squares; partitions of integers, q – series.

Course Code: MATH3003A**Course Description: Coding and Cryptography III****NQF Credits: 12****NQF Level: 7**

This course focuses on the basic mathematics of coding and cryptography. The topics covered include classical cryptosystems; Ceasar and affine ciphers; block and stream ciphers; one – time pads; public key cryptosystems; the RSA cryptosystem; digital signatures; discrete logs and the ElGamal cryptosystem; primality testing and factoring; pseudorandom numbers; error detecting codes.

Course Code: MATH3004A**Course Description: Complex Analysis III****NQF Credits: 12****NQF Level: 7**

This is an introductory course in complex analysis which explores properties of analytic functions of one complex variable. The topics covered include complex differentiability, the Cauchy – Riemann equations and analytic functions; functions defined by power series; path integrals in the complex domain; the index of a closed curve; Cauchy's Integral Theorem, Cauchy's Integral Formula and Taylor Series; singularities and Laurent Series; the Residue Theorem and Rouch'e's Theorem; evaluation of integrals of real valued functions via complex methods; Open Mapping Theorem, Maximum Modulus Theorem, Schwarz's Lemma.

Course Code: MATH3006A**Course Description: Group Theory III****NQF Credits: 12****NQF Level: 7**

This course focuses on elementary group theory and provides the students with insight into the structure of an algebraic system. The course introduces many diverse groups through which the properties of groups may be viewed. This course consists of the theory of groups, subgroups, cyclic groups, normal subgroups, quotient groups and direct product groups, homomorphisms and isomorphism theorems, group action on sets, orbits stabilisers and conjugacy, Lagrange and Cauchy theorems, simplicity and An and the Sylow Theorems.

Course Code: MATH3009A**Course Description: Rings and Fields III****NQF Credits: 12****NQF Level: 7**

This course focuses on elementary ring and field theory and builds on the theory of groups providing the students with another example of the structure of an algebraic system. The course introduces many diverse rings and fields through which the properties of rings and fields may be viewed. This course consists of the theory of rings, subrings, ideals, factor rings, homomorphisms; integral domains, Euclidean domains, principal ideal domains, unique factorisation domains, Eisenstein's criterion, Gauss' lemma and field extensions.

Course Code: MATH3010A**Course Description: Topology III****NQF Credits: 12****NQF Level: 7**

This course provides an introduction to the theory of topological spaces. Contents covered include basic definitions (topological spaces, subspaces, closed sets); bases for topologies; closure, limit points and convergence; continuous maps and homeomorphisms; the Hausdorff condition and other separation axioms; connectedness and path connectedness; compactness.

Course Code: MATH3031A

Course Description: Differential Geometry III

NQF Credits: 12

NQF Level: 7

This course provides students with an introduction to the theory of differentiable manifolds and calculus on them. Contents include differential forms; oriented manifolds; vector fields and differential forms on manifolds; integration of differential forms over oriented manifolds; and the generalised Stoke's Theorem.

Course Code: MATH3033A (MATH3039A PT)

Course Description: Mathematical Methods (Industrial)

NQF Credits: 9

NQF Level: 7

This course covers mathematical methods in Industrial Engineering, including a basic understanding of Laplace transformations; linear programming including the simplex method, duality, sensitivity analysis and the branch and bound algorithm; game theory topics such as the Prisoner's dilemma; Markov Chains topics such as steady-state probabilities and ergodic chains.

Course Code: MATH3047A

Course Description: Advanced Real Analysis III

NQF Credits: 12

NQF Level: 7

This course further develops students' understanding of analytical properties of real functions and analysis of metric spaces. Topics include limit superior and limit inferior; applications to convergence of series; differentiability of functions of several variables; the Implicit and Inverse Function Theorems; completeness and compactness in metric spaces; uniform convergence in metric spaces; Fourier Series and the Weierstrass Approximation Theorem; and an introduction to Lebesgue integration.

Course Code: MATH3048A

Course Description: Real Analysis III

NQF Credits: 12

NQF Level: 7

This course includes the following topics: Riemann sums; refinements; Riemann integrals; metric spaces; completeness; open and closed sets; power series; existence and uniqueness of solutions to ordinary differential equations; improper integrals and fixed-point theorems.

Course Code: MATH3049A

Course Description: Positive Linear Systems III

NQF Credits: 12

NQF Level: 7

This course introduces the mathematical theories and foundation of modern economics. Topics covered include equilibrium in linear economic models; Hawkins – Simon condition; outputs and prices; profit rate; matrices and linear mappings, convergence in \mathbb{R}^n ; The Frobenius Theorem; Non-negativity constraints; Non-negative Eigenvalue problem; irreducible matrices; product planning in activity analysis; convex sets; and Koopman's postulates.

Course Code: MATH4016A

Course Description: Algebra IV

NQF Credits: 12

NQF Level: 8

This course consists of a selection from the following topics:

Rings and Modules: This course is an introduction to the theory of associative rings and their modules. Review the fundamental concepts of algebras. Topics covered include the complete ring of quotients of commutative rings, prime ideas and prime ideal spaces, primitive rings and radicals and completely reducible rings and modules. Artinian and Noetherian rings and idempotents. Injective and projective modules. Introduction to homological algebra.

Automorphisms Galois Theory: This course introduces the study of field extensions. The main idea of Galois Theory is to consider the relation of the group of permutations of the roots of a polynomial to the algebraic structure of its splitting field. The course includes the Fundamental Theorem of Galois Theory, composite extensions and simple extensions, the Galois group of polynomials, solvability and radical extensions leading to the result on the insolvability of the quintic.

Finite Dimensional Vector Spaces: The purpose of this course is to treat linear transformations on finite dimensional vector spaces by simple geometric notions common to many parts of mathematics and in a language that is used in the theory of integral equations and Hilbert Theory. The course builds on the elementary notions of vectors spaces over fields and introduces dual spaces, quotient spaces and the direct sum of vector spaces. Central to the development is the introduction of bilinear forms and inner products and the Riesz Representation Theorem with the ideas of adjoint and self-adjoint linear transformations. The course includes a survey of orthogonal projections, eigenvalues and the Spectral Decomposition Theorem.

Course Code: MATH4017A

Course Description: Asymptotics/Approximation Theory IV

NQF Credits: 12

NQF Level: 8

This course is a continuation of the Honours Topic Combinatorics.

This course includes a selection from the following topics: General principles of enumeration; symbolic computer algebra with Mathematica; methods of asymptotic enumeration. This last topic includes; asymptotics of sums; asymptotics of recurrence relations; Mellin transforms; Rice's method; singularity analysis; saddle point method; and limiting distributions.

Course Code: MATH4018A

Course Description: Calculus of Variations IV

NQF Credits: 12

NQF Level: 8

This course deals with the Invariance approach to the analysis of variational differential equations as introduced by Sophus Lie.

The course comprises of:

Differential Geometric Preliminaries (Manifolds, Groups, Lie Groups, Lie group transformations); Lie point symmetries of ordinary differential equations (methods and applications); Calculus of Variations (Introduction and definitions, Euler Lagrange equations, Inverse problems, conservation laws); Noether symmetries; Noether's theorem (conservation laws); Association between symmetries and first integrals; Symmetries of PDEs; and Conservation laws of variational PDEs.

Course Code: MATH4019A

Course Description: Combinatorics IV

NQF Credits: 12

NQF Level: 8

This course introduces the candidate to the fundamental concepts of enumerative combinatorics.

This course consists of a selection from the following topics:

permutations and combinations; binomial coefficients; Stirling numbers and combinatorial identities; the principle of inclusion and exclusion; recurrence relations; ordinary and exponential generating functions; the exponential formula and trees; Lagrange inversion; the symbolic method of enumeration; discrete probability; bivariate generating functions and combinatorial parameters; and Polya's Theory of Counting.

Course Code: MATH4020A**Course Description: Complex Analysis IV****NQF Credits: 12****NQF Level: 8**

This course is an advanced course in complex analysis which presents properties of analytic functions, in particular relating to zeros and poles of analytic functions. The results emphasise the rich structure of analytic functions. The course content includes: Möbius transformations; Montel's theorem; Riemann mapping theorem; infinite products of analytic functions; approximation of analytic functions; analytic continuation; harmonic functions; entire functions of finite order; the range of analytic functions.

Course Code: MATH4021A**Course Description: Functional Analysis IV****NQF Credits: 12****NQF Level: 8**

This course introduces the candidate to key concepts in functional analysis. It is a foundational course and as such it requires, as a prerequisite, only knowledge of classical real analysis. The course consists of: normed linear spaces, inner product spaces, Banach spaces and Hilbert spaces; properties and characterisation of bounded linear operators on normed linear spaces; the principle of uniform boundedness, the open mapping theorem, the Hahn – Banach theorem or the Hilbert space analogues thereof in terms of orthogonality (depending on the focus for that year); the Riesz – Fischer Theorem, duality and reflexivity; spectral theory of compact operator; and bounded self – adjoint operators.

Course Code: MATH4022A**Course Description: Geometry and Algebraic Topology IV****NQF Credits: 12****NQF Level: 8**

This course is an introduction to algebraic topology with geometric applications. It is aimed at honours candidates who have some knowledge of basic topology and differential geometry, such as what is provided by the third – year courses MATH3010A and MATH3031A offered at Wits. Topics covered include the fundamental group, covering spaces, homology and cohomology groups, as well as geometric applications, such as de Rham cohomology, the classification of closed surfaces, and the Jordan Curve Theorem.

Course Code: MATH4023A**Course Description: Graph Theory IV****NQF Credits: 12****NQF Level: 8**

This course introduces the fundamental concepts of Graph Theory. The course covers elements of topological graph theory, graph colourings, graph polynomials, connectivity, and embeddings in graphs.

The Major part of the course is devoted to some or all of the following parts:

Basic Graph Theory. Basic concepts and results in graph theory and introduction to open problems. Traversals (Eulerian graphs, Hamiltonian graphs), connectivity and planarity. Research in graph theory on these topics.

Graph Colouring, specifically vertex colourings and map colourings.

Topological Graph Theory. Fundamental concepts of the relationship between graph theory and Knot theory. Some knot invariants calculated via the corresponding graphs: pathwidth, component number, the Kauffman polynomial, the Jones polynomial and the Alexander polynomial.

Graph Polynomials. Fundamental concepts of graph colouring and graph operations. Graph polynomials namely chromatic polynomial, the Tutte polynomial, the Martin polynomial and Penrose polynomial.

Course Code: MATH4024A**Course Description: Number Theory IV****NQF Credits: 12****NQF Level: 8**

This course focuses on the mainstream and advanced concepts and trends in Elementary, Analytic and Algebraic theory of Numbers. The course is made up of three independent parts of which only one component is offered in a given year.

Elementary Number Theory. The first part explores the essential and advanced properties of the positive integers. The content consists of the topics: infinitude of primes; primes numbers of different kinds; solution of Diophantine equations and congruences; arithmetic functions; Euler function, quadratic residues; irrational numbers and continued fractions; decimal expansions of real numbers. Analytic Number Theory. The second part investigates the application of methods of mathematical analysis in the solution of problems about integers. The content consists of the topics: algebraic properties of arithmetical functions; pseudo-convergence; average values; densities; the zeta function; the n th prime; Prime Number Theorem; Dirichlet characters; Ramanujan expansions; orders of magnitude.

Algebraic Number Theory. The third part explores the interplay of abstract algebraic theory and the properties of integers and rational numbers. The content consists of the topics: ring localisations; integral elements; prime and maximal ideals; Dedekind domains; unique factorisation of ideals; algebraic number fields; integral bases; discriminants; norms; class number.

Course Code: MATH4025A

Course Description: Measure Theory IV

NQF Credits: 12

NQF Level: 8

This is a foundational course in measure theory and as such it requires as a prerequisite only knowledge of classical real analysis. The topics covered in the course are: Algebras and sigma algebras of sets, definition and properties of measures, completions of measures, the monotone class theorem and the Caratheodory construction of measures, properties of measurable functions, construction of the Lebesgue integral, Fatou's Lemma, the Lebesgue monotone convergence and dominate convergence theorem, the space of Lebesgue integrable functions, signed measures and the Hahn–Jordan decomposition, the Radon–Nikodym–Lebesgue decomposition.

Course Code: MATH4026A

Course Description: Research Project: Mathematics IV

NQF Credits: 36

NQF Level: 8

This course consists of a research project on a pure mathematics topic which is carried out under standard exploratory, investigative and analytical principles under supervision by a supervisor. The stages consist of Topic selection, Proposal Construction, Approval of Proposal, Project Work, Project Report Writing and Report Submission.

Course Code: MATH4027A

Course Description: Topology IV

NQF Credits: 12

NQF Level: 8

This course is the branch of mathematics concerned with the properties of space that are preserved under continuous deformations. It may be considered as a modern geometry. This course introduces the candidate with the fundamental concepts of a topological space and a continuous mapping, with basic constructions and results. The list of presented topics includes cardinal invariants of spaces, separation axioms, compact spaces, Urysohn's lemma which says that any two disjoint closed subsets of a normal space can be separated by a continuous function, and Tychonoff theorem which says that the product of compact spaces is compact.

Course Code: MATH4028A

Course Description: Mathematical Logic IV

NQF Credits: 12

NQF Level: 8

This course introduces the field of Mathematical Logic. It consists of propositional logic, first-order logic and non-classical logic. The course explores the syntax, semantics and proof systems for each logic considered, pursuing these themes up to and including soundness and completeness theorems and the characterisation of expressivity in terms of model-theoretic invariance results.

Course Code: MATH7021A

Course Description: Measure Theory

NQF Credits: 22

NQF Level: 9

This is a foundational course in measure theory and as such it requires as a prerequisite only knowledge of classical real analysis.

The course comprises:

algebras and sigma algebras of sets; definition and properties of measures; completions of measures; the monotone class theorem and the Caratheodory construction of measures; properties of measurable functions; construction of the Lebesgue integral; Fatou's Lemma, the Lebesgue monotone convergence and dominate convergence theorem; the space of Lebesgue integrable functions; signed measures and the Hahn–Jordan decomposition; the Radon–Nikodym–Lebesgue decomposition; and compulsory project in this field of study.

Course Code: MATH7022A

Course Description: Topology

NQF Credits: 23

NQF Level: 9

This course comprises of:

General Topology: Axiom of Choice, cardinal arithmetic, a topological space, a continuous mapping, cardinal functions, separation axioms, Urysohn's lemma, compact spaces, Tychonoff theorem; Algebraic Topology: Homology and Cohomology, Winding Numbers, Covering spaces, topology of surfaces, de Rham cohomology of surfaces, the Mayer–Vietoris sequence, classification of compact surfaces, Riemannian surfaces; and Differential Geometry: Manifolds, vector bundles, differential forms, integration of differential forms, introduction to Stokes' theorem. Introduction to Riemannian geometry (connections, curvature, covariant differentiation).A compulsory project in this field of study.

Course Code: MATH7023A

Course Description: Algebra

NQF Credits: 22

NQF Level: 9

The course comprises a selection from the following topics:

Rings and Modules

This course is an introduction to the theory of associative rings and their modules. Review the fundamental concepts of algebras.

Topics covered include the complete ring of quotients of commutative rings, prime ideals and prime ideal spaces, primitive rings and radicals and completely reducible rings and modules. Artinian and Noetherian rings and idempotents, injective and projective modules, an introduction to homological algebra. Automorphisms and Galois Theory.

This course introduces the study of field extensions. The main idea of Galois Theory is to consider the relation of the group of permutations of the roots of a polynomial to the algebraic structure of its splitting field. The course includes the Fundamental Theorem of Galois Theory, composite extensions and simple extensions, the Galois group of polynomials, solvability and radical extensions leading to the result on the insolvability of the quintic. Finite dimensional Vector Spaces.

The purpose of this course is to treat linear transformations on finite dimensional vector spaces by simple geometric notions common to many parts of mathematics and in a language that is used in the theory of integral equations and Hilbert Theory.

The course builds on the elementary notions of vectors spaces over fields and introduces dual spaces, quotient spaces and the direct sum of vector spaces. Central to the development is the introduction of bilinear forms and inner products and the Riesz Representation Theorem with the ideas of adjoint and self-adjoint linear transformations. The course includes a survey of orthogonal projections, eigenvalues and the Spectral Decomposition Theorem. Algebra project (compulsory) in one of the above areas.

Course Code: MATH7024A

Course Description: Functional Analysis

NQF Credits: 23

NQF Level: 9

This is a foundational course in functional analysis and as such it requires as a prerequisite only knowledge of classical real analysis.

This course comprises:

Normed linear spaces, inner product spaces, Banach spaces & Hilbert spaces; properties and characterisation of bounded linear operators on normed linear spaces; the principle of uniform boundedness, the open mapping theorem, the Hahn–Banach theorem or the Hilbert space analogues thereof in terms of orthogonality, depending on the focus for that year; the Riesz–Fischer Theorem, duality and reflexivity; spectral theory of compact operators; bounded self-adjoint operators; and a compulsory project in this field of study.

Course Code: MATH7025A

Course Description: Research Report: Mathematics

NQF Credits: 90

NQF Level: 9

This course consists of a research report on a pure mathematics topic which is carried out under standard exploratory, investigative and analytical principles. The stages consist of Topic selection, Proposal Construction, Approval of Proposal, Project Work, Project Report Writing and Report Submission. The report should not exceed 35 printed pages on A4 sized paper. The following items are recommended for the proposal: title; aim; problem statement; research questions; methodology; contents; literature review; further work or results; and references.

School of Molecular and Cell Biology

Course Code: MCBG2037A

Course Description: Molecular and Cell Biology IIC: Applications

NQF Credits: 48

NQF Level: 6

This course explores the theory and practical techniques behind the latest research within four broad topic areas. Molecular Basis of Disease investigates the molecular underpinnings and therapeutic approaches of diseases such as cancer and inherited disorders, and focuses on modes of inheritance, epigenetics and gene-environment interactions.

Drug Discovery looks at the processes and principles behind identification of drug targets and drug discovery, mechanisms of action and side effects, trials and commercialisation. Current Topics in Microbiology considers the role of viruses, bacteria and fungi in the environment, human health and agricultural biotechnology. Genetic Innovations studies genetics and genomics in forensic science, disease diagnosis, pharmacogenomics and personalised medicine, and considers genetic manipulation for the improvement of human health and the environment.

Course Code: MCBG2038A

Course Description: Molecular and Cell Biology IIA: Molecular Processes

NQF Credits: 48

NQF Level: 6

Restricted course

This course consists of two components, Biological Chemistry & Macromolecules, and Genes & Genomes. It provides a thorough overview of chemical structures and reactions of functional groups leading to the study of macromolecules from an organic chemistry perspective. The course introduces students to the interplay between DNA, RNA and proteins, as fundamentals to the study of molecular biology. The impact of genome architecture and epigenetics, on DNA transmission, inheritance of genetic traits, transcription and translation will be explored, including relevant statistical analysis such as for population genetics. Students acquainted with wet lab methods and bioinformatics tools for DNA analysis and manipulation and for investigating protein structure and function.

Course Code: MCBG2039A

Course Description: Molecular and Cell Biology IIB: Cells and Organisms

NQF Credits: 48

NQF Level: 6

This course covers molecular and cell biology at the cellular and organismal levels. Students are introduced to key concepts in cell biology by looking at cell structure, signalling and interactions. Students use thermodynamics and enzyme kinetics to describe the fundamental pathways of intermediary metabolism and further apply these concepts to learning how dysregulated cellular processes can cause disease, and how cells interact to produce immune responses in human immunology. The course also focuses on the diversity of micro-organisms, including bacteria, viruses and fungi, their ecology and their interaction with their hosts. Students are equipped with fundamental laboratory skills in cell biology and microbiology.

Course Code: MCBG3004A

Course Description: Biochemistry and Cell Biology III

NQF Credits: 72

NQF Level: 7

This course includes the study of the chemistry of life by investigating the structure and function relationships of life's building blocks (e.g. proteins, carbohydrates, fats, and nucleic acids) and examines their roles in a range of cellular processes and contexts including during disease and in the immune response. The course covers the theory behind biochemical processes and cellular biology, complemented with practical skills in these areas, using both wet-lab and bioinformatics techniques. Components of this course include advanced enzymology, advanced protein biochemistry and biotechnology, advanced immunology and advanced cell biology.

Course Code: MCBG3033A

Course Description: Applied Bioinformatics III

NQF Credits: 72

NQF Level: 7

This course covers the use of various tools to study and interpret computational results generated from biological experiments. Students develop the ability to identify the appropriate bioinformatics tool for the task at hand, explain the underlying theory behind these tools, demonstrate the utility of different computational approaches, compare databases and portals, assess the limitations of algorithms and tools, and evaluate results of bioinformatics experiments. Students will also develop an appreciation of the breadth and shortcomings of available computational approaches. The course is comprised of the semester course Introduction to Bioinformatics III and the student must also select one semester of courses from any other MCBG III major that does NOT form part of their other MCBG III major.

Course Code: MCBG3034A

Course Description: Genetics and Developmental Biology III

NQF Credits: 72

NQF Level: 7

This course covers the roles and functional significance of genes and genomes at the molecular, cellular and organismal levels. The course builds on the fundamental concepts and theories covered at the second year, then explores these further by applying them to a range of advanced processes such as developmental biology, understanding inheritance of genetic traits, the development and prediction of disease and therapeutic approaches from the cell to and population levels. These topics are complemented by a range of practical skills in these areas, including both wet-lab and bioinformatics techniques. Components of this course include gene regulation in eukaryotes, population genetics, genomes and genomics and advanced developmental biology.

Course Code: MCBG3035A

Course Description: Microbiology and Biotechnology III

NQF Credits: 72

NQF Level: 7

This course comprises the study of microbes including bacteria, viruses, yeasts and fungi. Students examine the various groups of microbes, their morphology, metabolism, genetics and taxonomy. The functional significance of these microbes is studied across various fields, including environmental biotechnology, industrial microbiology, plant genetic engineering and food and medical microbiology. Students study both the background of these organisms as well as gain practical experience in a range of microbiological methods using wet-lab skills and bioinformatics. Components of this course include advanced bacteriology, advanced virology, biotechnology of fungi, microbial food security, plant and invertebrate pathology, and biotechnology and engineering.

Course Code: MCBG4027A

Course Description: Current Topics in Molecular and Cell Biology

NQF Credits: 24

NQF Level: 8

This course/unit consists of a number of current topics in the field of molecular and cell biology of which the candidate chooses two to provide the theoretical component for one of four Honours programmes offered by the School of Molecular and Cell Biology. This course provides specialised knowledge to consolidate and deepen the candidate's expertise in the discipline.

Course Code: MCBG4028A

Course Description: Laboratory Techniques in Molecular and Cell Biology

NQF Credits: 36

NQF Level: 8

This nine-week laboratory-based course trains the candidates in the most widely used techniques and analytical tools in the field of molecular and cell biology. The techniques covered include preparations of buffer, solutions and culture media, chromatography, polymerase chain reaction and cloning, spectroscopic methods, gel electrophoresis and Western blotting, microarrays, tissue culture and cell biology techniques, centrifugation, crystallization and a range of bioinformatics and in silico biology tools and techniques.

Course Code: MCBG4029A

Course Description: Research Project in Biochemistry and Cell Biology

NQF Credits: 60

NQF Level: 8

This course constitutes the research component in Biochemistry and Cell Biology. Candidates are grounded in the research process, from conceptualisation and design of the project to its execution and dissemination and discussion of its findings. The programme enables candidates to become independent researchers and to develop professional attitudes and skills.

Course Code: MCBG4030A

Course Description: Research Project in Applied Bioinformatics

NQF Credits: 60

NQF Level: 8

The course constitutes the research component in Bioinformatics. Candidates are grounded in the research process, from conceptualisation and design of the project to its execution and dissemination and discussion of the findings. The programme enables candidates to become independent researchers and to develop professional attitudes and skills.

Course Code: MCBG4031A

Course Description: Research Project in Genetics and Developmental Biology

NQF Credits: 60

NQF Level: 8

This course constitutes the research component in Genetics and Developmental Biology. Candidates are grounded in the research process, from conceptualisation and design of the project to its execution and dissemination and discussion of its findings. The programme enables candidates to become independent researchers and to develop professional attitudes and skills.

Course Code: MCBG4032A

Course Description: Research Project in Microbiology and Biotechnology

NQF Credits: 60

NQF Level: 8

This course constitutes the research component in Microbiology and Biotechnology. Candidates are grounded in the research process, from conceptualisation and design of the project to its execution and dissemination and discussion of its findings. The programme enables candidates to become independent researchers and to develop professional attitudes and skills.

Course Code: MCBG5017A

Course Description: Professional Skills in Industry Practice

NQF Credits: 10

NQF Level: 8

This course introduces students to the skills required in various work settings from food and beverage to pharmaceutical industries. The course covers basic training in safety and risk, budgets and finance affairs, project design and planning, quality control and accreditation processes, data management, ethics and intellectual property considerations.

Course Code: MCBG5018A

Course Description: Microbial Food Safety and Quality Control

NQF Credits: 20

NQF Level: 8

This course focuses on microbial food safety and quality control, which are integral to the food and beverage industries, as well as water and environmental management, and any setting where microbial contamination needs to be considered. Students use various microbiological techniques to analyse and determine microbial contamination, as well as perform basic identification of microorganisms.

Course Code: MCBG5019A

Course Description: Bioanalytical Techniques

NQF Credits: 40

NQF Level: 8

This course introduces students to fundamental laboratory equipment such as balances and centrifuge essential in a laboratory. The course covers the theory and practice of key analytical skills such culture, extractions and electrophoretic techniques. The course examines methods to analyse, present and interpret data, including fundamental statistical analysis.

Course Code: MCBG5020A

Course Description: Molecular Analysis and Diagnostics

NQF Credits: 20

NQF Level: 8

This course explores how molecular biology methods are used to aid in diagnosis. The course covers the theory behind various methods in detail, such as polymerase chain reaction and next generation sequencing. Students examine how these various methods are applied, including pathogen detection and identification, identification of genetic disorders, pharmacogenomics and personalised medicine, diagnosing and subsequently treating cancer, and forensic DNA analysis. Students perform various molecular wet and dry lab techniques including relevant bioinformatics analysis.

Course Code: MCBG5021A

Course Description: Chemical Analysis for Industry

NQF Credits: 15

NQF Level: 8

This course looks at the theory and practice of a range of chemical analysis methods. Students examine various aspects of chemical analysis, including handling samples, selecting the most appropriate method of analysis, carrying out the methods and interpreting the data acquired.

Course Code: MCBG5022A

Course Description: Enzyme Technology for Industrial Applications

NQF Credits: 15

NQF Level: 8

This course explores the varied uses of enzymes in industry. The course covers an introduction to the basic structure and function of enzymes, and methods of enzyme production. The course also focuses on the use of enzymes, including their uses in the food and beverage industry, pharmaceutical and medical sectors and in the environment and waste management.

School of Mining Engineering (Faculty of Engineering and the Built Environment)

Course Code: MINN2016A

Course Description: Engineering Surveying

NQF Credits: 16

NQF Level: 6

This course introduces students to engineering surveying concepts and equips them with skills to perform engineering surveying calculations. They are introduced to surveying and surveying calculations as well as surveying technologies and software. The course further develops students' ability to work in teams and produce an integrated practical work report.

Course Code: MINN7007A

Course Description: Statistical Valuation of Ore Reserves

NQF Credits: 20

NQF Level: 9

The course covers the following topics: Definition of ore reserves; classical statistics; normal and lognormal distributions; confidence on mean and variance; grade tonnage calculations; correlations and least squares regression; multi-variable regression; trend surfaces; hypothesis testing for mean; variance and relationship; two-sample tests.

Course Code: MINN7012A

Course Description: Study and Control of Mining Induced Seismicity

NQF Credits: 20

NQF Level: 9

The course covers the following topics: Properties of vibrations and waves. Vibrations of systems of one degree of freedom. Wave propagation in geological media. Fault rupture process. Size of the seismic event. Frequency – magnitude relation. Focal mechanism. Fault plane solutions. Quantitative models of seismic events. Source radius; stress drop; apparent stress. Intensity of ground motion. Frequency content of ground motion. Measurement of seismic vibrations. Analysis of seismograms.

Course Code: MINN7014A**Course Description: Mineral Economics****NQF Credits: 20****NQF Level: 9**

The course covers the following topics: Exhaustible resource scarcity; classification of mineral resources; physical and economic measures of scarcity; scarcity and economic growth. Theory of mineral supply; optimal rate of mineral depletion; intertemporal equity and conservation; intertemporal efficiency.

Course Code: MINN7025A**Course Description: Mining and the Environment****NQF Credits: 20****NQF Level: 9**

The course covers the following topics: Overview of the theory and concepts relevant to mining and its impacts on the biophysical environment. Provide detail on the different mining techniques and processes throughout the mining lifecycle and the impacts of these on water; air quality; biodiversity /ecosystem services and local communities. The requirements of legislation; international guidelines and best practices for managing and mitigating the various impacts; will be addressed. Environmental management from exploration to closure.

Course Code: MINN7048A**Course Description: Coal and the Environment****NQF Credits: 20****NQF Level: 9**

This course covers the following topics: Coal and gas-based environmental issues.

1. Land: Impact of coal mining and gas extraction; sealing of underground and open cast mined areas; land rehabilitation; stockpiling; spontaneous combustion.
2. Water: Surface and ground water hydrological impacts; physical; geochemical and socio-economic impacts.
3. Air: Source and distribution of particulate and gaseous emissions; monitoring; land and plant protection. Health and safety legislations; economic; national and international considerations.

Course Code: MINN7050A**Course Description: Mineral Resource Management****NQF Credits: 20****NQF Level: 9**

This course covers the following topics: Mineral resource management process. Geological ore body models in the strategic; tactical and operational context. Definition of business objectives and translation into a business plan. Skills and competencies for effective mineral resource management. Critical success factors in practical Mineral resource management. Tools of the trade. Models; systems and optimisation. The stages of planning and linkages to feasibility studies.

Course Code: MINN7066A**Course Description: Open Pit Planning and Optimisation****NQF Credits: 20****NQF Level: 9**

This course covers the following topics: Latest developments in pit optimisation software. Use of Whittle software - hands on activity. Aspects of pit design and optimisation; including resource estimation; block modelling; pit economics; pit design; pit optimisation; pushback sequence; haul road design; blending and stockpiling strategies.

Course Code: MINN7092A**Course Description: Mine Financial Valuation****NQF Credits: 20****NQF Level: 9**

This course provides a comprehensive understanding of the role of mine financial valuation and its application in mine planning and optimisation. In order to remain relevant to new developments in the subject matter; content may include but will not be limited to: purpose of mine financial valuation; interpreting concept of 'value'; basic business premise; optimising the balance sheet; project evaluation model; cash and accounting cash flow evaluation model; types and behaviour of costs; balancing flexibility in terms of costs; mineral price cycles and forecasting models; capital investment and ranking decisions; financing of mining projects; mining taxation; depreciation amortisation and impairment decisions; equipment replacement decisions; evaluating risk in valuation; analysis of financial statements; valuation methods and valuation codes; course project assignment.

School of Physics

Course Code: PHYS1000A

Course Description: Physics I (Major)

NQF Credits: 36

NQF Level: 5

This course provides the student with a solid grounding in the basic techniques and concepts of physics. The course consists of a theoretical component (covered in lectures and tutorials) and a practical component (covered in the laboratory sessions). Topics covered include: foundations of physics; mechanics; waves; fluids; thermal physics; electricity and magnetism; and optics.

Course Code: PHYS1001A

Course Description: Physics I (Auxiliary)

NQF Credits: 36

NQF Level: 5

This course is designed to equip students with the fundamental understanding of the following topics: Dimensional analysis and scaling; vectors; classical mechanics; elasticity; fluids; gases, thermal physics; waves and sound; electricity and magnetism; geometrical and physical optics; polarisation; atomic; and nuclear physics.

A selection of set experiments is covered in the laboratory component of the course.

Course Code: PHYS1026A

Course Description: Introduction to Astronomy

NQF Credits: 18

NQF Level: 5

This course gives an overview of modern astronomy. It consists of a selection of topics. A historical review of the accumulation of astronomical knowledge is given, starting from the ancient geo-centric world view to the big-bang cosmology and the currently accepted view of an expanding Universe. The techniques of modern telescopes are introduced. The course familiarises students with the necessary background of stars and their evolution; planetary systems and galaxies within the cosmological framework. The aim of this course is to provide students with current knowledge of the Universe and basic insights into the mathematical description of various phenomena.

Course Code: PHYS1027A

Course Description: Modern Astrophysics

NQF Credits: 18

NQF Level: 5

This course covers three major topics in astrophysics, which uses all aspects of physics and chemistry to model and explain astrophysical phenomena, in detail. These are gravitation; electromagnetic radiation and cosmic rays. Key concepts include: how structure formation in the Universe is driven by gravitation; how electromagnetic radiation is the main messenger of celestial objects and events and a major participant in shaping them; how the formation of stars and galaxies would be impossible without the dissipation of gravitational energy via electromagnetic radiation and how cosmic rays provide an additional source of information about astrophysical processes. Illustrative examples of astrophysical processes provide the student with an arsenal of tools than can be applied to a variety of related problems.

Course Code: PHYS1031A**Course Description: Applied Physics I****NQF Credits: 12****NQF Level: 5**

This course gives a student a solid grounding in the basic techniques and concepts of statics in Engineering Physics. The topics covered include force systems; equilibrium and distributed forces. The engineering mathematical modelling component of the course provides students with the basic skills required to build mathematical descriptions of simple real world situations, with the emphasis on systems requiring differential equations or difference equations to describe them. The topics covered include ordinary differential equations and continuous and discrete mathematical models. Problem solving skills are enhanced in this course, developing the intellectual self-reliance of the students.

Course Code: PHYS1032A (PHYS1037A PT)**Course Description: Engineering Physics 1A****NQF Credits: 18****NQF Level: 5**

This course provides the student with a solid grounding in the basic techniques and concepts of physics. There is both a theoretical component (covered in lectures and tutorials), and a practical component (covered in the laboratory sessions), to the course. The topics covered include foundations of physics; mechanics; fluids and statistical physics.

Course Code: PHYS1033A (PHYS1038A PT)**Course Description: Engineering Physics 1B****NQF Credits: 18****NQF Level: 5**

This course provides the student with a solid grounding in the basic techniques and concepts of physics. There is both a theoretical component (covered in lectures and tutorials), and a practical component (covered in the laboratory sessions), to the course. Topics covered include waves; electricity and magnetism and optics.

Course Code: PHYS1034A (PHYS1035A PT)**Course Description: Applied Physics****NQF Credits: 12****NQF Level: 5**

This course gives a student a solid grounding in the basic techniques and concepts of statics in Engineering Physics. The topics covered include force systems; equilibrium and distributed forces. The engineering mathematical modelling component of the course provides students with the basic skills required to build mathematical descriptions of simple real world situations, with the emphasis on systems requiring differential equations or difference equations to describe them. The topics covered include ordinary differential equations and continuous and discrete mathematical models. Problem solving skills are enhanced in this course, developing the intellectual self-reliance of the students.

Course Code: PHYS2001A**Course Description: Physics IIA (Major)****NQF Credits: 24****NQF Level: 6**

The following components are covered: Classical Mechanics and Thermal Physics. Students are required to complete practical work in set experiments associated with concepts in the 2nd year Physics Major curriculum. The classical mechanics section includes the following: a) development of mathematical background; b) revision and extension of Newtonian mechanics; c) an introduction to Lagrangian and Hamiltonian mechanics. The thermal physics section begins with a short review of the relevant material covered in the 1st Year Physics Major course, and then proceeds to introduce the laws of thermodynamics; the thermodynamic potentials and the Maxwell relations. The module concludes with a discussion of phase equilibrium and phase changes.

Course Code: PHYS2002A**Course Description: Physics IIB (Major)****NQF Credits: 24****NQF Level: 6**

The following components are covered: Quantum Mechanics, Special Relativity and Electromagnetism. Students are required to complete practical work in set experiments associated with concepts in the 2nd year Physics Major curriculum. The quantum mechanics and special relativity components are basic introductions to the subjects. The electromagnetism section begins with the development of mathematical background needed for the course, including vector calculus. Electrostatics is then developed, including specialised techniques to treat Laplace's equation. After developing electrostatics in matter, magnetostatics is studied. The course concludes by developing Maxwell's equations.

Course Code: PHYS2011A**Course Description: Introduction to Reactor Physics II****NQF Credits: 12****NQF Level: 6**

This course introduces the student to basic concepts of nuclear reactors. The course focuses on the following topics: introduction to nuclear energy; nuclear fusion and fission; uranium enrichment; types of nuclear power reactors; neutron moderation; neutron life cycle; neutron transport; reactor control and nuclear security.

Course Code: PHYS2012A**Course Description: Basic Nuclear Physics II****NQF Credits: 12****NQF Level: 6**

This course focuses on the following: basic concepts including nuclear properties; nuclear reactions; radioactive decay of nuclei; nuclear models and simulation using the software code (SRIM).

Course Code: PHYS2015A**Course Description: Modern Radio and Gamma-ray Astronomy II****NQF Credits: 12****NQF Level: 6**

This course focuses on modern techniques of radio and gamma-ray astronomy and provides a theoretically-based understanding of the fundamental observations in these fields. It consists of a historical overview of the two fields, together with a basic description of the physical processes involved in emission, propagation and detection of the respective radiations. It covers the principles underlying modern radio and gamma-ray telescopes, with a particular emphasis on interferometric (radio) and stereoscopic (gamma-ray) systems consisting of many interconnected telescopes.

Course Code: PHYS2016A**Course Description: Relativity: The Basis of Cosmology and Astrophysics II****NQF Credits: 12****NQF Level: 6**

This course provides a working knowledge of the special theory of relativity and also explains the need for a general theory. It introduces the concept of space-time together with the mathematics needed for its description, develops the theory of kinematics and dynamics in relativistic form and introduces the law of the conservation of four-momentum and the relativistic form of Newton's Second Law. It further explains why gravity cannot be incorporated into special relativity and indicates some of the modifications that need to be made to obtain a relativistic theory of gravity, introducing the principle of equivalence and using it to explain important phenomena such as the gravitational red-shift; the bending of light by gravitational fields and gravitational waves.

Course Code: PHYS3000A**Course Description: Quantum Mechanics III****NQF Credits: 11****NQF Level: 7**

This course provides the student with an introduction to fundamental concepts in quantum mechanics. The course explores the basic formalism of quantum mechanics, the Schrödinger equation and its application to simple systems and angular momentum.

Course Code: PHYS3001A**Course Description: Applications of Quantum Mechanics III****NQF Credits: 11****NQF Level: 7**

This course focuses on applying the laws of quantum mechanics. The course introduces students to atomic, nuclear and condensed matter systems of fundamental importance. In order to analyse these systems, the course introduces students to perturbation theory and the variational principle, two important approximation methods.

Course Code: PHYS3002A**Course Description: Statistical Physics III****NQF Credits: 11****NQF Level: 7**

This course provides students with the tools to understand thermal phenomena from a fundamental perspective. The course begins with a short crash course in statistics (counting and probability) and then proceeds to show how a statistical analysis leads to the neat solution of several complex classical and quantum mechanical systems. The course builds on the foundations laid during the second year Thermal Physics course, and provides a fundamental description of the thermodynamic quantities (like entropy) introduced in PHYS2002.

Course Code: PHYS3003A**Course Description: Relativity: Waves and Modern Optics III****NQF Credits: 11****NQF Level: 7**

This course expands on prior coursework in geometric optics and introduces the concepts of waves and their properties, before focusing on the wave nature of light; the propagation of light using physical optics arguments and the polarisation properties of light.

The course takes a modern view of optics, introducing new concepts in diffraction and interference, coherence, the creation of coherent light from lasers and digital holography as a modern optical tool.

Course Code: PHYS3004A**Course Description: Introduction to Geophysics****NQF Credits: 11****NQF Level: 7**

This course focuses on the fundamentals of geophysics and how physics principles can apply to key concepts such gravity and the shape of the earth, tides and tidal potential, gravity in the interior of the Earth, how the structure of the Earth's interior can be determined using seismic sources, processing of geophysical data, image processing and signal processing and mineral and energy exploration.

Course Code: PHYS3006A**Course Description: Advanced Experimental Physics and Project****NQF Credits: 28****NQF Level: 7**

This course provides students with an introduction to advanced level Experimental Physics and an overview of the research interests of academics within the School of Physics. During the course, students cover an experimental programme comprising an introduction to electronics and a suite of set experiments. One third of the course consists of a selected, supervised Experimental Major Project or a Theoretical/ Computational Physics Major Project. Students provide both a written report and an oral report on the work undertaken during the Major Project.

Course Code: PHYS3007A

Course Description: Relativity: The Basis of Cosmology and Astrophysics

NQF Credits: 18

NQF Level: 7

This course gives students an understanding and a working knowledge of the special theory of relativity. It also explains the need for a general theory. It is a necessary prerequisite for several courses at Honours level, including Electrodynamics, General Relativity and Cosmology. The course first introduces the concept of space-time together with the mathematics needed for its description. It then develops the theory of kinematics and dynamics in relativistic form and introduces the law of the conservation of four-momentum and the relativistic form of Newton's Second Law. It ends with a discussion of why gravity cannot be incorporated into special relativity and indicates some of the modifications that need to be made to obtain a relativistic theory of gravity. In this context, it introduces the principle of equivalence and uses it to explain important phenomena such as the gravitational red-shift; the bending of light by gravitational fields and gravitational waves.

Course Code: PHYS3010A

Course Description: Advanced Astrophysics III

NQF Credits: 36

NQF Level: 7

This course introduces the three topics fundamental to astrophysics namely, astrophysical fluid dynamics; thermodynamics and radiative processes. In many astrophysical systems, the mean free path of its constituents is small compared with the size of the system. These systems can be modelled as fluid. Such systems are thermodynamic in nature which can absorb, store, transport and expel energy. Astrophysical thermodynamics studies the laws and processes that govern the transport of energy in astrophysical systems. Radiation is an important mechanism for the transport of energy through both matter and empty space. The theory of radiative processes studies the laws and mechanisms responsible for the generation of radiation, its interaction with matter and the transport of energy.

Course Code: PHYS3011A

Course Description: Cosmology: The Origin and Evolution of the Universe III

NQF Credits: 36

NQF Level: 7

This course introduces the concepts of modern cosmology, providing insight into the dynamics of the Universe, its physical description and observational manifestations. It begins with a survey of the basic observations which have led to our current view of the universe, including the Big Bang Theory and the expansion of the universe, and discusses the thermal history of the Universe and Big Bang nucleosynthesis. It also introduces the concept of inflation as a resolution of the homogeneity, flatness and magnetic monopole problem. The course emphasises the dynamic nature of the theory by investigating the evolution of the large scale structure of the Universe and presents the essential observations for determining the Cosmological Parameters.

Course Code: PHYS4011A

Course Description: Quantum Mechanics

NQF Credits: 13

NQF Level: 8

This course is the basis of non-classical physics and is essential to all candidates of physics. The course builds on the undergraduate courses ensuring that the candidates have all the essential tools to be considered competent in the course.

Course Code: PHYS4012A**Course Description: Statistical Physics****NQF Credits: 13****NQF Level: 8**

This course is a subtopic in physics that finds application in almost all fields of physics. Knowledge of statistical physics is essential to all candidates of physics. At the honours level the statistical physics course builds on the knowledge candidates have from undergraduate courses in thermal physics and statistical physics. It covers revision of thermodynamics and re-examines the foundations of statistical physics. The formalism of statistical physics is then developed, including micro canonical, canonical and grand canonical formulations. The course concludes with a brief introduction to critical exponents. Concepts are illustrated with examples and assignments are used to consolidate understanding.

Course Code: PHYS4013A**Course Description: The Physics of Nano systems****NQF Credits: 13****NQF Level: 8**

This course gives a survey of the basic physical aspects and important technological applications of nanosized solid and biological systems. After some general introduction demonstrating the utility of shrinking technologies towards the nanoscale, the course develops appropriate quantum mechanical and semi-classical pictures to describe physics at the nanoscale. The candidates are familiarised with the general toolset available to manipulate nano systems and they learn how the materials properties are changing by going from the macroscale, to the microscale and to the nanoscale. The course also describes possible future technologies like quantum computing and nano-optics, which are based on nanotechnology and which do not have an analogue among existing technologies.

Course Code: PHYS4014A**Course Description: Nuclear Physics I****NQF Credits: 13****NQF Level: 8**

The main content of this course includes nuclear properties, interactions between nucleons, fundamentals of nuclear decay and radioactivity, the nuclear models describing the structure and organisation of the nucleus and the principles of operation of nuclear accelerators and detectors.

Course Code: PHYS4015A**Course Description: Electrodynamics****NQF Credits: 13****NQF Level: 8**

This course introduces the candidates to Maxwell's equations, carefully explaining the physical meaning of the various fields and their sources. It then examines in general densities, currents and conservation laws, and shows how the laws of conservation of energy, momentum and angular momentum are expressed in electromagnetism.

The course then introduces the concept of electromagnetic potentials and gauge transformations and deduces the equations that govern the potentials in different gauges. Next, some general solutions to the wave equation are considered, covering free-space and waveguided modes. The course then introduces concepts from special relativity and formulates the principal equations and results of electrodynamics covariantly in spacetime. The course concludes with a selection of special topics, for example, vector beams, orbital angular momentum and plasmonics.

Course Code: PHYS4016A**Course Description: Solid State Physics I****NQF Credits: 13****NQF Level: 8**

This course gives an overview of modern solid state physics. It contains all the fundamental concepts of solid state physics like crystalline and non-crystalline.

This course introduces the underlying principles and laws of classical fluid dynamics. Fluid dynamics is a general topic of very wide applicability, able to describe all systems in which the mean free path of the constituents is much smaller than the characteristic size of the system.

It is thus able to describe not only familiar fluids such as gases and liquids, but also more exotic systems such as stars, nebulae, globular clusters, galaxies, the interstellar and intergalactic media and the distribution of galaxies in the cosmos. This course introduces the principles of conservation of mass, momentum and energy for a continuum. It uses these concepts and principles to construct and apply the Euler equations for a variety of astrophysical systems.

Course Code: PHYS4017A

Course Description: Solid State Physics II

NQF Credits: 13

NQF Level: 8

This course builds on the material covered in the Honours Solid State I course. In the course the concept of quasi-particles is introduced as bridge between the non-interacting particle picture used in Solid State I and the interacting many-body nature of real materials. A pedestrian introduction to concepts in quantum field theory related to the solid state is given and many-body perturbation theory is discussed. Density functional theory, an approach that is very successful in describing properties of materials numerically, is reviewed. The conventional Bardeen-Cooper-Schrieffer theory of super-conductivity is introduced and discussed. Optional topics in many body related phenomena can be included in the course.

Course Code: PHYS4019A

Course Description: Mathematical Methods for Physics

NQF Credits: 13

NQF Level: 8

This course focuses on the needs of a theoretical physicist who must have fluency in the methods of mathematics. This is not a formal mathematics course as the emphasis is on the utilisation of mathematics to address problems in physics. The importance of the course is on methods in geometry, algebra (including group and representation theory), analysis, differential geometry, differential equations, topology, and special functions. Some emphasis is placed on algorithms, numerical solutions and programming.

Course Code: PHYS4020A

Course Description: Astrophysical Fluid Mechanics

NQF Credits: 13

NQF Level: 8

This course introduces the underlying principles and laws of classical fluid dynamics. Fluid dynamics is a general topic of very wide applicability, able to describe all systems in which the mean free path of the constituents is much smaller than the characteristic size of the system. It is thus able to describe not only familiar fluids such as gases and liquids, but also more exotic systems such as stars, nebulae, globular clusters, galaxies, the interstellar and intergalactic media and the distribution of galaxies in the cosmos. This course introduces the principles of conservation of mass, momentum and energy for a continuum. It uses these concepts and principles to construct and apply the Euler equations for a variety of astrophysical systems.

Course Code: PHYS4021A

Course Description: General Relativity I

NQF Credits: 13

NQF Level: 8

This course provides the candidate with an introduction to the Einstein's general theory of relativity which is currently our best theory of gravity. After a review of flat space, the course explores tensors, static black holes, differential geometry and the Einstein equation. In addition some optional topics are covered which could include gravity waves, cosmology, rotating black holes, the Einstein-Hilbert action and more advanced differential geometry.

Course Code: PHYS4022A**Course Description: Experimental Physics Techniques I****NQF Credits: 13****NQF Level: 8**

This optional course in Experimental Physics Techniques builds on the foundations laid in the experimental and theoretical courses in the three undergraduate years, and compulsory modules taken in the first semester of the Physics Honours programme. The module introduces candidates to the experimental techniques employed in experimental physics at WITS. Emphasis is placed on the background necessary to understand the fundamental aspects of these techniques, while making use of recent publications originating from research done in the School of Physics. Topics covered include optical spectroscopic techniques, hyperfine spectroscopic techniques, magneto-transport techniques and high energy experimental particle physics.

Course Code: PHYS4023A**Course Description: Introduction to Cosmology I****NQF Credits: 13****NQF Level: 8**

This course covers topics that include: Hubble's law; the large-scale structure of spacetime; the Friedmann–Robertson–Walker Universe; equations of state; dark energy; dark matter; the age of the Universe; the acceleration parameter; the hot Big Bang; the cosmic microwave background; Big Bang nucleosynthesis; inflation; structure formation; the future history of the Universe and observational cosmology.

Course Code: PHYS4024A**Course Description: Introduction to Computational Materials Science I****NQF Credits: 13****NQF Level: 8**

This course focuses on computational approaches and techniques that have developed to a point where some properties of materials can be predicted accurately. The introduction to the materials science course covers first principles techniques used to calculate electronic structure, phonons, displacive phase transition, excitation energies and optical properties.

Course Code: PHYS4025A**Course Description: Introduction to the Standard Model I****NQF Credits: 13****NQF Level: 8**

This course reviews the relevant theory and history in the construction of the Lagrangian for the Standard Model of particle physics. That is, the interactions and dynamics of the fundamental particles of nature (including scalar, fermion and spin-1 boson fields) are developed, along with a study of symmetries, including symmetry breaking, the Goldstone theorem and the Higgs mechanism. The course concludes with a study of electroweak symmetry breaking and a calculation of the tree-level Higgs, W and Z masses.

Course Code: PHYS4026A**Course Description: Nuclear Physics II****NQF Credits: 13****NQF Level: 8**

This optional course in Nuclear Physics builds on the foundation core course Nuclear Physics I which addressed the basic properties of the atomic nucleus. Scattering experiments are required in order to investigate nuclear properties requiring a number of different probes ranging from photons to heavy-ions. Details of the dynamics of the scattering process are presented from which the physical properties of the interacting nuclear systems can be extracted. The determination of nuclear properties is illustrated through computer modelling assignments.

Course Code: PHYS4027A**Course Description: Physical Cosmology****NQF Credits: 13****NQF Level: 8**

This course consists of an astrophysics study of cosmic sources which is an essential ingredient for the study of cosmology and of the physics of the Universe. Knowledge of the physics of Cosmology is essential to all candidates that want to address a postgraduate career in astrophysics, radio astronomy and high – energy astronomy. At the honours level the Physical Cosmology course provides up – to – date information on this matter for candidates with general physics background. It covers fundamentals of cosmology, structure formation models, detailed description of emission mechanisms, fundamentals of astro – particle physics and modern observational techniques in radio, gamma – ray and multi – frequency astronomy. The course concludes with an outline of the most recent challenges in astrophysics and cosmology. Concepts are illustrated with examples and exercises are used to consolidate understanding.

Course Code: PHYS4028A**Course Description: Introduction to Quantum Field Theory****NQF Credits: 13****NQF Level: 8**

This course based on Quantum Field Theory is a framework in physics that finds application in almost every field in physics. Any candidate in physics should have some exposure to the ideas and methods of quantum field theory. The course starts by quantising the free scalar field, following an intuitive approach. This result is then reproduced, first by using standard canonical quantisation and then by using the path integral formulation. Wick's theorem is derived using both formulations. Interacting theories are then studied and the Feynman rules are introduced.

The usual UV infinities that plague perturbative treatments of quantum field theory are exhibited and the renormalisation procedure is explained. Renormalised perturbation theory is used to renormalise the theory to one loop. Regularisation methods are introduced to accomplish this. The same problem is studied, using Wilson's renormalisation group formalism. The course ends with a derivation of the Callan – Symanzik equation as well as a computation of one loop anomalous dimensions and beta functions.

Course Code: PHYS4029A**Course Description: Introduction to Experimental Particle Physics****NQF Credits: 13****NQF Level: 8**

This course starting from basic concepts of particle physics, builds up to how an experimental analysis is performed. This is achieved by covering the workings of accelerators and detectors, examining what comes out of collisions and end with an introduction to event generators and analysis software used in actual research in the field.

Course Code: PHYS5023A**Course Description: Radiation Protection 11: Training the trainers****NQF Credits: 9****NQF Level: 8**

This course focuses on the training needs, being a lecturer, setting up a training course and a practical exercise.

Course Code: PHYS5024A**Course Description: Radiation Protection 10: Intervention in Situations of Chronic and Emergency Exposure****NQF Credits: 12****NQF Level: 8**

This course is design to equip the candidate with the general principles and types of events, basic concepts for emergency response, basic concepts for emergency preparedness for a nuclear accident or radiological emergency, developing a national capability for response to a nuclear accident or radiological emergency, overview of assessment and response in a radiological emergency, overview of assessment and response in a nuclear reactor emergency, monitoring in a nuclear accident or radiological emergency, medical management of radiation injuries, communication with the public, international co-operation and a practical exercise.

Course Code: PHYS5025A

Course Description: Radiation Protection 9: Exposure to the Public due to Practices

NQF Credits: 12

NQF Level: 8

This course explores the sources of exposure of the public, responsibilities and organisation, safe transport of radioactive material, safety of radioactive waste management, environmental dose assessment, source and environmental monitoring, consumer products and a practical exercise.

Course Code: PHYS5026A

Course Description: Radiation Protection 8: Medical Exposures in Diagnostic Radiology, Radiotherapy and Nuclear Medicine

NQF Credits: 15

NQF Level: 8

This course provides the candidate with the scope and responsibilities, justification of medical exposures, optimisation of protection for medical exposures, quality assurance, accidental exposures in medical applications and a practical exercise.

Course Code: PHYS5027A

Course Description: Radiation Protection 7: Protection against occupational exposure

NQF Credits: 15

NQF Level: 8

This course covers organisation and management, methods of protection and the safe use of radiation sources – optimisation, individual and workplace monitoring, health surveillance, potential exposures, protection against occupational exposure in industrial radiography, protection against occupational exposure in industrial irradiators and accelerators, protection against occupational exposure in the use of nuclear gauges, protection against occupational exposure in the use of tracers, protection against occupational exposure in well logging devices, protection against occupational exposure in radioisotope production plants, protection against occupational exposure in diagnostic radiology, protection against occupational exposure in nuclear medicine, protection against occupational exposure in radiotherapy, protection against occupational exposure in nuclear installations and protection against occupational exposure in mining and processing of raw materials.

Course Code: PHYS5028A

Course Description: Radiation Protection 6: Assessment of External and Internal Exposures

NQF Credits: 13

NQF Level: 8

This course consists of the assessment of occupational exposure due to external sources of radiation and the assessment of occupational exposure due to intakes of radionuclides.

Course Code: PHYS5029A

Course Description: Radiation Protection 5: Regulatory control

NQF Credits: 12

NQF Level: 8

This course provides the candidate with the legal framework for radiation protection and the safe use of radiation sources, the regulatory system, the assessment of effectiveness of the regulatory programmes and a practical exercise.

Course Code: PHYS5030A**Course Description: Radiation Protection 4: Principles of radiation protection and the international framework****NQF Credits: 5****NQF Level: 8**

This course focuses on the conceptual framework, the role of international organisations in radiation protection, the development of safety culture and a practical exercise.

Course Code: PHYS5031A**Course Description: Radiation Protection 3: Biological effects of ionising radiation****NQF Credits: 9****NQF Level: 8**

This course consists of the effects of radiation at the molecular and cellular level, deterministic effects, stochastic somatic effects, stochastic hereditary effects, effects on the embryo and foetus, epidemiological studies and issues, the concept of radiation detriment and a practical exercise.

Course Code: PHYS5032A**Course Description: Radiation Protection 2: Quantities and measurements****NQF Credits: 15****NQF Level: 8**

This course provides the candidate with information on quantities and courses, dosimetric calculations and measurements, principles of radiation detection and measurement and a practical exercise.

Course Code: PHYS5033A**Course Description: Radiation Protection 1: Review of Fundamentals****NQF Credits: 0****NQF Level: 8**

This course consists of basic physics and mathematics used in radiation protection, interaction of radiation with matter, sources of radiation and includes a practical exercise.

Course Code: PHYS5049A**Course Description: Innovation and Research Commercialisation in Science and Engineering****NQF Credits: 30****NQF Level: 8**

The course explores the path from science to innovation through to commercialisation. Topics covered include connecting research and innovation; interdisciplinary, multidisciplinary and transdisciplinary research, innovation and learning; taking your ideas to market including innovation intelligence by planning, building, protecting and monetising a technology; innovation for next-generation products and services; and the innovation ecosystem within and around a 21st Century university. Students explore the transition of science and engineering ideas into products and investigate case studies to look at products in which science and engineering principles have played an important role.

Course Code: PHYS5050A**Course Description: Research Project in Innovation and Entrepreneurship****NQF Credits: 40****NQF Level: 8**

The Research Project gives the student the opportunity to experience the process of ideation and develop an innovative concept that has the potential to be commercialised. During this project, the student will consider the innovation, the scope for commercialisation and the possible routes to take the idea to market.

Course Code: PHYS7052A**Course Description: Advanced Brachytherapy****NQF Credits: 8****NQF Level: 9**

This course presents an overview of the current status of techniques and technologies in the field of brachytherapy.

Course Code: PHYS7053A

Course Description: Advanced Dosimetry

NQF Credits: 19

NQF Level: 9

This course consists of an overview of the current status of dosimetry techniques and technologies in the field of metrology related to clinical dosimetry.

Course Code: PHYS7054A

Course Description: Dosimetry

NQF Credits: 15

NQF Level: 9

This course covers the following topics: Historical exposure based calibrations and equipment, application of Bragg – Gray Cavity Theory to radiotherapy modalities, Air KERMA and absorbed dose calibrations of medical radiation sources (diagnostic and therapeutic). The course includes instrumentation and standards – reference and field apparatus, dose calibration reference conditions, uncertainties in dosimetry and familiarity with International Codes of Practice in Dosimetry.

Course Code: PHYS7055A

Course Description: Dosimetry Standards, Uncertainties and Traceability

NQF Credits: 8

NQF Level: 9

This course provides an overview of the current status of dosimetry standards in the field of metrology (traceability, transfer and uncertainty).

Course Code: PHYS7056A

Course Description: Medical Physics of Imaging

NQF Credits: 18

NQF Level: 9

This course covers an overview of imaging as applied to diagnosis in the nuclear medicine and radiology disciplines. The use of non – ionising radiation modalities in radiology is also covered.

Course Code: PHYS7057A

Course Description: Medical Physics of Radiation Oncology

NQF Credits: 11

NQF Level: 9

This course focuses on the interaction of radiation oncology sources with matter and materials of relevance to radiation oncology, characterisation of radiation fields, relative and absolute dosimetry. The following topics are included: fundamentals of imaging and treatment planning in radiation oncology and brachytherapy (high and low dose rate) principles.

Course Code: PHYS7058A

Course Description: Radiation Physics for Medical Physicists

NQF Credits: 7

NQF Level: 9

This course provides an overview of the fundamental radiation physics that informs the medical physics application in the clinical environment.

Course Code: PHYS7059A

Course Description: Advanced Radiation Oncology

NQF Credits: 17

NQF Level: 9

This course gives an overview of the current status of techniques and technologies in the field of radiation oncology.

Course Code: PHYS7060A**Course Description: Clinical Dosimetry in Radiotherapy****NQF Credits: 10****NQF Level: 9**

This course provides an overview of the current status of clinical non – reference dosimetry as applied to radiotherapy practice.

Course Code: PHYS7061A**Course Description: Radiation Protection and Control****NQF Credits: 9****NQF Level: 9**

This course provides the candidate with an overview of the philosophical basis of radiation protection, and be able to implement radiation protection programmes in the radiation medicine environment through interpretation and application of regulatory requirements.

Course Code: PHYS7062A**Course Description: Radiobiology for Medical Physicists****NQF Credits: 3****NQF Level: 9**

This course gives an overview of radiobiological terminology and principles as applied to radiation medicine, and radiation protection and control. The course provides an understanding of the interaction of radiation at the cellular level leading to a biological and/or clinical effect.

Course Code: PHYS7063A**Course Description: Accuracy in Radiotherapy Medical Physics****NQF Credits: 10****NQF Level: 9**

This course focuses on an overview of the factors affecting the accuracy and uncertainty of the radiotherapy process.

Course Code: PHYS7064A**Course Description: Advanced General Relativity****NQF Credits: 18****NQF Level: 9**

This course is centred on General Relativity, which is a theory of gravitation regarded as one of the greatest intellectual achievements of the 20th century. This course is concerned with a study of several key topics in advanced general relativity. It is assumed that candidates have already some basic understanding of general relativity. This course introduces the candidate to topics such as: Black holes (Schwarzschild, Reissner–Nordstrom, Kerr and Penrose diagrams), the Cauchy problem in general relativity, linearised field equations and gravitational waves and conservation laws and variational principles.

Course Code: PHYS7065A**Course Description: Cataclysmic Variables****NQF Credits: 18****NQF Level: 9**

This course focuses on interacting binary stars which are double stars that transfer mass from one component to the other. Often the transfer creates an accretion disc around the accreting star. In most of the interesting interacting binaries the accretor is degenerate i.e. a white dwarf, a neutron star, or a black hole. Accretion discs also occur in the early stages of star formation, and around black holes in the centres of galaxies. This course looks at the physical mechanisms that are important in the class of interacting binaries known as Cataclysmic Variable Stars, which include the Novae.

Course Code: PHYS7066A**Course Description: Computational Astrophysics****NQF Credits: 18****NQF Level: 9**

This course details the use of computers which has contributed profoundly to our current understanding of the Universe in many ways. Today, data acquisition (observation), data analysis and theoretical modelling are heavily computerised research fields. The goal of this course is to provide an overview of computational techniques in modern astrophysics. In particular, numerical simulations and analysis techniques as well as basic image manipulation algorithms are discussed and corresponding programming examples are worked through. The programming language is Python.

Course Code: PHYS7067A

Course Description: Extragalactic Astronomy

NQF Credits: 18

NQF Level: 9

This course provides an advanced discussion of extragalactic astronomy and concentrates on the properties of normal and active galaxies in the local Universe and in the early Universe. There is a strong emphasis on reading current and topical papers (published in the astrophysical journals), deconstruction of the methods used and analysis of the results. For the purpose of the exercises, the methods learned in lectures and through the reading material related to the latest data from international databases (e.g. NASA Extragalactic Database) is utilised.

Course Code: PHYS7068A

Course Description: High Energy Astrophysics and Pulsars

NQF Credits: 18

NQF Level: 9

This course focuses on the Universe which is not only visible through radio, optical and X-ray "eyes", but also through gamma-ray "eyes". In fact, the gamma-ray spectral range alone covers more decades in energy or frequency compared to the eleven decades in energy covered between radio waves and hard X-rays alone. There are several ways to probe high-energy processes: through the direct measurement of high-energy particles, or cosmic rays, and the direct measurement of non-thermal emission in the radio, optical, X-rays up to the gamma-ray range. In the case of pulsars, we find that this emission is associated with rapidly rotating neutron stars, which accelerate charged particles as a result of the dynamo processes.

Particle acceleration occurs in our galaxy, as well as in extragalactic objects. This course covers the fundamental principles of this process in a few types of cosmic sources. Those accelerated particles, which escape from a source, finally contribute to the bulk of cosmic rays in our galaxy, and some of these particles are detectable at Earth. The second part of the course concentrates on neutron stars and pulsars: Emphasis is given in their properties, observable phenomena, their gamma-ray emission.

Course Code: PHYS7069A

Course Description: Observational Cosmology

NQF Credits: 18

NQF Level: 9

This course provides a preparation for research in observational cosmology and the testing of theoretical models of the early and late universe. The emphasis is on building experience in cutting edge techniques needed for research on the key topics of cosmology in the coming decade. A secondary emphasis is on familiarising the candidates with the use of the Southern African Facilities (SALT, KAT/SKA and H.E.S.S.) effectively for cosmology. Tutorials focus on modelling and data analysis.

Course Code: PHYS7070A

Course Description: Plasma Physics

NQF Credits: 18

NQF Level: 9

This course deals with plasmas which are ubiquitous in the universe and thus an understanding of plasma behaviour is essential for astrophysics. This course provides a basic introduction to a range of plasma phenomena. Applications to natural plasmas are given with a view to providing the necessary foundation for the modelling of astrophysical phenomena.

Course Code: PHYS7071A**Course Description: Stellar Structure and Evolution****NQF Credits: 18****NQF Level: 9**

This course focuses on the physics of stellar structure which is still an on-going and exciting research area. One of the most interesting recent discoveries is the apparent solution to the solar neutrino problem, long thought to indicate inadequacies in stellar structure theory. Now indications are that the solar neutrino problem was a problem of particle physics. In this course candidates go through the physics of the structure of atmosphere, envelope and core of stars. Attempts are made throughout the course to relate theory to observations. Stellar evolution is covered towards the end of course.

Course Code: PHYS7072A**Course Description: Theoretical Cosmology****NQF Credits: 18****NQF Level: 9**

This course provides details of Cosmology which is the study of the origin, current state, and future of our universe. Although this task is far from complete, the last decade has seen remarkable progress towards answering many of the fundamental questions about the nature and evolution of the universe. It is a uniquely stimulating discipline, drawing on just about every branch of physics and astronomy.

This course aims to provide a comprehensive introduction to modern cosmology giving an account of the key topics which shape the subject today. The course provides candidates with a physical and intuitive understanding of the subject, together with the basic tools needed to enter a research programme in cosmology.

Course Code: PHYS7073A**Course Description: Time Series and Data Analysis****NQF Credits: 18****NQF Level: 9**

This course focuses on the periodic signals from astrophysical sources which comprise a wealth of information. However, due to intrinsic or measurement related conditions the periodicity is often not obvious. It requires sophisticated analysis tools. This course focuses on statistical analysis methods of time series. It discusses mathematical and numerical means to extract and study periodicity in a time series.

Course Code: PHYS7074A**Course Description: Research Report: Astrophysics****NQF Credits: 90****NQF Level: 9**

This course consists of an investigation of an approved research topic on which a Research Report must be presented for formal assessment. The Research Report shall demonstrate the successful completion of a programme of training in research methods, a thorough understanding of the scientific principles underlying the research and an appropriate acquaintance with the relevant literature.

Course Code: PHYS7075A**Course Description: Review of Fundamentals****NQF Credits: 0****NQF Level: 9**

This course consists of physics and mathematics used in radiation protection, -radioactive processes, nuclear reactions and statistical methods and includes a practical exercise.

Course Code: PHYS7076A**Course Description: Quantities and Measurements****NQF Credits: 11****NQF Level: 9**

This course consists of radiometric, dosimetric and operational quantities and and their calculations and measurements, the principles of radiation detection and measurement, and a includes a practical exercise.

Course Code: PHYS7077A

Course Description: Biological Effects of Ionising Radiation

NQF Credits: 7

NQF Level: 9

This course consists of the effects of radiation at the molecular and cellular level and; tissue reactions that can result in stochastic and deterministic health effects, epidemiological models used to estimate risk coefficients for stochastic effect and includes a practical exercise.

Course Code: PHYS7078A

Course Description: International System of Radiation Protection and the Regulatory Framework

NQF Credits: 13

NQF Level: 9

This course covers the role played by international organisations in radiation protection and the international system of radiation protection including international standards, the legal and statutory framework, regulatory control measures as well as safety culture and radiation protection competency building and covers the role of international organisations and the associated international framework for radiation protection together with the associated international standards and includes practical exercises.

Course Code: PHYS7079A

Course Description: Assessment of External and Internal Exposures (non-Medical)

NQF Credits: 10

NQF Level: 9

This course explores the measurement, monitoring, calculation and interpretation of doses to individuals due to external and internal sources exposure to radiation and the design of individual and workplace monitoring programmes and includes a practical exercise.

Course Code: PHYS7080A

Course Description: Planned Exposures: Generic Requirements

NQF Credits: 4

NQF Level: 9

This course covers the generic requirements for radiation protection with respect to planned exposure situations for all categories of exposure including occupational, public and medical exposure and includes practical exercises.

Course Code: PHYS7081A

Course Description: Planned Exposures: Applications in the Nuclear Industry

NQF Credits: 10

NQF Level: 9

This course covers the practical application of radiation protection principles and concepts in planned exposure situations in the nuclear industry covering; nuclear reactors, nuclear fuel cycle facilities, transport of nuclear fuel cycle components and nuclear-industry radioactive waste management.

Course Code: PHYS7082A

Course Description: Planned Exposures: Applications in Mining and Industry

NQF Credits: 9

NQF Level: 9

This course covers the practical application of radiation protection principles and concepts in planned exposure situations in mining and industry including: industrial radiography, industrial irradiators and accelerators, nuclear gauges and well logging sources, use of tracers, radioisotope production plants, mining and processing and transport of raw materials, management of NORM and TENORM and consumer products.

Course Code: PHYS7083A

Course Description: Planned Exposures: Applications in Medicine

NQF Credits: 8

NQF Level: 9

This course covers the practical application of radiation protection principles and concepts in planned exposure situations in medical applications including: general considerations, Diagnostic Radiology and Image Guided interventional Procedures; Nuclear Medicine: diagnosis and therapy; Radiation Therapy and include practical exercises.

Course Code: PHYS7084A

Course Description: Emergency Exposures and Emergency Preparedness and Response

NQF Credits: 7

NQF Level: 9

This course covers the practical application of radiation protection principles and concepts in emergency exposure situations and the associated preparedness and response planning and covers: basic requirements and principles, the planning basis for emergency exposure situations, protection strategies for emergency exposure situations, protection of the public and workers, emergency management systems and operations, radiological assessment, medical response in emergency exposure situations, instruction and communications with the public in a nuclear or radiological emergency, plans and procedures training and exercises and international arrangements.

Course Code: PHYS7085A

Course Description: Existing Exposure Situations

NQF Credits: 4

NQF Level: 9

This course covers the practical application of radiation protection principles and concepts in existing exposure situations, their causes, their mitigation and associated exposure requirements application including: basic requirements and principles, remediation of areas contaminated by residual radioactive material; exposure to radon, exposure to radionuclides in commodities, cosmic radiation and include practical exercises.

Course Code: PHYS7086A

Course Description: Training the Trainers

NQF Credits: 7

NQF Level: 9

The course covers training needs, organising and implementing training, development of didactic skills and includes a practical exercise.

School of Physiology (Faculty of Health Sciences)

Course Code: PHSL2000A

Course Description: Physiology II

NQF Credits: 48

NQF Level: 6

This course aims to provide a broad introduction to mammalian physiological principles principles and processes. The course consists of a number of sections that examine different physiological systems such as blood and other body fluids, excitable tissue and neuromuscular physiology, autonomic nervous system, the cardiovascular and respiratory systems, renal function, acid-base balance, central and sensory nervous system, the gastro-intestinal tract, nutrition, endocrines, exercise and energetics and temperature regulation. (Physiology II is a full course offered at 2nd year of study and is a prerequisite for PHSL3002/3006 offered in the 3rd year of study.)

Course Code: PHSL3002A

Course Description: Applied and Experimental Physiology III

NQF Credits: 72

NQF Level: 7

This course focuses primarily on human physiology from the perspective of obtaining and interpreting experimental data, with a view to understanding physiological mechanisms. The course builds on 2nd year knowledge obtained from PHS1 2000. PHS1 3002 consists of various modules and a research project which is carried out in the 4th teaching block. The modules taught are: experimental physiology and statistics, introduction to research methods, body fluid balance physiology, respiratory physiology, acid-base balance, cardiovascular physiology, molecular physiology, exercise physiology, central nervous system physiology, gastrointestinal physiology and nutritional disorders and temperature regulation.

Course Code: PHS13006A

Course Description: Human Physiology III

NQF Credits: 72

NQF Level: 7

This course focuses on the analysis of physiological data from the perspective of understanding the processes underlying abnormal human physiology. The course builds on 2nd year knowledge obtained from PHS1 2000. PHS1 3006 consists of a data set assignment (carried out in the 4th teaching block) and various modules. The modules taught are: introduction to research methods, experimental physiology and statistics, respiratory physiology, body fluid balance physiology, acid-base balance physiology, cardiovascular physiology, molecular physiology, exercise physiology, central nervous system physiology, gastrointestinal physiology and nutritional disorders, temperature regulation, and pregnancy and neonatal physiology.

Department of Psychology (Faculty of Humanities)

Course Code: PSYC1009A/PSYC1010A

Course Description: Psychology I

NQF Credits: 36

NQF Level: 5

This course provides the student with a general overview of the discipline, emphasising both the complexity and diversity inherent in the study of human behaviour. The course covers different perspectives, basic terminology, concepts and methods within the discipline and consists of the following topics: the biological bases of behaviour, cognition, human development, personality and social psychology.

Course Code: PSYC2005A/PSYC2012A

Course Description: Psychological Research Design and Analysis IIA

NQF Credits: 24

NQF Level: 6

This course introduces the student to conducting and analysing scientific research in psychology. The course consists of an introduction to a variety of research designs, an analysis of issues such as reliability and validity,, and different methods of organisation and analysis of data. Also included is an introduction to probability theory, statistical tests and psychometrics.

Course Code: PSYC2006A/PSYC2013A

Course Description: Psychological Research Design and Analysis IIB

NQF Credits: 24

NQF Level: 6

This course is designed to equip students with an advanced level of understanding of qualitative and quantitative psychological research. The course consists of an introduction to multivariate research design and statistical analyses, theoretical and practical aspects of psychological assessment and qualitative research methods and techniques of data analysis.

Course Code: PSYC2020A/PSYC2021A

Course Description: Psychology II

NQF Credits: 48

NQF Level: 6

This course expands on the content introduced in first year and equips the student with a critical foundation in core theories of cognition, social cognition and social psychology. The course covers both "normal" and "abnormal" personality and human development by exploring key theories of attention, perception, memory, thought, language, knowledge representation, problem solving and decision making as well as key theories and research on social thinking, social influence, intergroup relations and social identity.

Course Code: PSYC3001A/PSYC3024A

Course Description: Abnormal Psychology III

NQF Credits: 18

NQF Level: 7

This course introduces the student to psychological abnormality. The course consists of four themes: the nature of abnormality and the criteria for identifying abnormal functioning; historical and current approaches to abnormality; the different approaches to abnormal behaviour such as the traditional approaches, psychodynamic and cognitive-behavioural schools; and specific forms of abnormality, their symptoms, and interventions for their treatment.

Course Code: PSYC3013A/PSYC3028A

Course Description: Cognitive Neuropsychology III

NQF Credits: 18

NQF Level: 7

This course expands on the first year Psychology course by examining the structure and function of the normal human nervous system and the neuro-cognitive consequences of brain disorders. The course consists of topics that have particular relevance for the Neuropsychologist in South Africa, including: traumatic brain injury, substance abuse, HIV-AIDS, and developmental difficulties related to birth, early childhood, age- related cognitive decline and dementia.

Course Code: PSYC3015A/PSYC3032A

Course Description: Health Psychology III

NQF Credits: 18

NQF Level: 7

This course introduces students to Health Psychology, which is a relatively new but fast growing field. The course consists of an analysis of the debates surrounding the complex relationships between mind and body; the contribution of Health Psychology to the study and treatment of illness; prevention, early intervention and management of chronic conditions such as HIV/AIDS, Diabetes, Stroke, Cancer, Chronic pain and Stress.

Course Code: PSYC3016A

Course Description: Community Psychology III

NQF Credits: 18

NQF Level: 7

This course provides a critical introduction to the concepts, methods and applications of Community Psychology. The course content consists of various theoretical frameworks used to understand the interdependence of human behaviour and the different contexts in which such behaviour occurs; the different paradigms and methods of research used in community settings and the critical role of the community psychologist in community development.

Course Code: PSYC3017A

Course Description: Psychotherapeutic Interventions III

NQF Credits: 18

NQF Level: 7

This course provides a detailed study of psychological healing interventions in Western, African, and Asian traditions. The course covers the history, efficacy and contemporary critiques of psychotherapy.

Course Code: PSYC3018A

Course Description: Child and Adolescent Psychology III

NQF Credits: 18

NQF Level: 7

This course provides students with a basic knowledge of: the key social, emotional and physical developmental trends during childhood and adolescence; the psychosocial challenges of childhood and adolescence in contemporary society, including family life and education; abnormality and pathology in children, and interventions appropriate to children and adolescents.

Course Code: PSYC3019A

Course Description: Critical Social Psychology III

NQF Credits: 18

NQF Level: 7

This course introduces students to critical approaches to social psychology and includes content not generally covered in mainstream psychology. The course consists of alternative approaches to the study of social psychological phenomena, including feminist, Foucaultian and postcolonial approaches. Other topics include: space, discourse, ideology, media, racism, sexism, xenophobia, whiteness, masculinity, genocide, prejudice and discrimination.

Course Code: PSYC3020A

Course Description: Organisational Behaviour III

NQF Credits: 18

NQF Level: 7

This course introduces students to some of the core concepts concerned with the behaviour of people in organisations and the dynamics between people and organisations including employee needs, employee attitudes and employee values. The course consists of topics such as approaches to organisations, work motivation, leadership, organisational change and development and organisational culture.

Course Code: PSYC3021A/PSYC3030A

Course Description: Employee Well-being III

NQF Credits: 18

NQF Level: 7

This course provides students with knowledge of key theories and approaches to the issue of employee-well-being. The course includes the following topics: work stress and its impact on the individual and the organisation; job satisfaction; career development/individual development within the work context; workplace safety and health; and work-family conflict and balance.

Course Code: PSYC3022A

Course Description: Employment Relations III

NQF Credits: 18

NQF Level: 7

This course focuses on the study of groups and group dynamics in an organisational setting, emphasising social psychological theories within the South African context. The course content consists of theories of groups and group behaviour, as well as the interface between individual and group functioning; issues of power, conflict and justice; applications of theory to labour relations, unions and unionisation, union-management relations (including the role of the state within a tripartite framework); industrial action and group behaviour.

Course Code: PSYC3023A/PSYC3031A

Course Description: Organisational Effectiveness III

NQF Credits: 18

NQF Level: 7

This course examines the human-organisation interactions important in effective organisational functioning. The course content includes: defining the work and organisational environment; components of the person-environment fit (including job analysis, recruitment, selection, job design and the impact of alternative work schedules); human performance appraisal systems and their consequences (e.g. training and development); and human-machine interactions (including systems and the socio-technical environment).

Course Code: PSYC3033A**Course Description: Select Topic in Psychology III****NQF Credits: 18****NQF Level: 7**

This course provides the student with an in-depth analysis of an advanced topic in the theory and research in psychology.

Course Code: PSYC3034A**Course Description: Cognitive Studies III****NQF Credits: 18****NQF Level: 7**

This course provides the student with an in-depth examination of an advanced topic in the theory and research of cognition.

Course Code: PSYC4007A**Course Description: Cognitive Neuroscience****NQF Credits: 23****NQF Level: 8**

This course integrates the perspectives of the different disciplines concerned with aspects of the structure and functioning of the brain and the nervous system, including: neurology, neuropsychology, neurophysiology cognitive psychology, cognitive neuropsychology and cognitive science. The course consists of the study of selected areas of human behaviour from an integrated perspective, uniting neuropsychology and cognitive psychology.

Course Code: PSYC4009A**Course Description: Community Psychology****NQF Credits: 23****NQF Level: 8**

This course explores an approach to psychology that locates the individual and psychological problems within a community or social context. The course examines the applied preventative interventions that are most successful with larger groups or populations as well as a range of theoretical models emerging from community psychology as a sub-discipline.

Course Code: PSYC4016A**Course Description: Group Processes in Organisations****NQF Credits: 23****NQF Level: 8**

This course provides the candidate with a detailed analysis of group processes in organisations. The course comprises four components: The Nature and Functions of Groups examines different group types and their roles in organisations, differences between teams and groups, different stages of group functioning, and important organisational groups in South Africa (including unions); Group Dynamics covers conflict, power and justice in groups, and group decision-making; Management of Group Functioning examines diversity in groups, leaders and groups, and the impact of the environment on group functioning; Assessment & Intervention in Group Functioning explores different methods and tools for assessing group functioning and group effectiveness, and group interventions such as team building and diversity management strategies.

Course Code: PSYC4019A**Course Description: Individual Well-being and Effectiveness at Work****NQF Credits: 23****NQF Level: 8**

This course provides a detailed exploration of individual well-being and work effectiveness. The course consists of two components:

Individual Well-being at Work, focusing on issues related to the psychological health and well-being of individuals in the South African workplace, stress, emotion and emotional work, life stages at work, well-being assessment and diagnosis, and person-environment fit.

Individual Effectiveness at Work, dealing with issues concerned with an individual's psychological effectiveness in the workplace, including work, job and organisation design, job satisfaction, work motivation, and training and development.

Course Code: PSYC4026A

Course Description: Mind, Brain and Behaviour

NQF Credits: 23

NQF Level: 8

This course explores a range of debates and theories in psychology and neuroscience, critically examining the current and future prospects of psychology in an increasingly interdisciplinary (and especially neuroscientific) era. The course consists of core topics including evolutionary psychology and its impact on and relevance to contemporary psychology; the importance (and problems) of studying consciousness in psychology and neuroscience; and the complex interplay between mind, language and society.

Course Code: PSYC4029A

Course Description: Personality and Psychopathology

NQF Credits: 23

NQF Level: 8

This course critically examines description, classification, etiological theories and intervention strategies for a range of psychological problems. The course consists of definitions of pathology and abnormality, specifically in relation to theories of normal and abnormal personality development and dominant taxonomies of mental and psychiatric illnesses - most notably the DSM system of classification.

Course Code: PSYC4032A

Course Description: Psychoanalytic Theory

NQF Credits: 23

NQF Level: 8

This course introduces candidates to psychoanalytic thinking and spans classical psychoanalysis, through object relations theory to intersubjective psychoanalysis. The course consists of the psychoanalytic theory of normal and abnormal psychological functioning and the application of theory to practice (with particular reference to both clinical and group settings within the South African context and in relation to key social issues).

Course Code: PSYC4034A

Course Description: Psychological Assessment

NQF Credits: 23

NQF Level: 8

This course focuses on the core theoretical issues of psychological assessment particularly in the South African Context. The course consists of the nature and use of psychological assessments; measurement integrity (e.g. different forms of assessment reliability, content validity, construct validity, criterion validity, predictive validity, and item analysis); types of assessments and their relationship to psychological theory (e.g. assessing intelligence, assessing personality, computerised assessment, dynamic assessments; assessment practices (e.g. applicable norm groups, cross-cultural issues, appropriateness of assessments, etc.), ethics in assessment, and the development of questionnaires and scales).

Course Code: PSYC4035A

Course Description: Psychological Interventions

NQF Credits: 23

NQF Level: 8

This course provides candidates with a historical and contemporary view of several leading contemporary psychotherapeutic modalities. The course consists of the major schools of psychotherapy for example: Psychoanalytic, Person Centred, Jungian, Feminist, Systemic, Cognitive-Behavioural and Narrative psychotherapy, as well as a consideration of African indigenous healing modalities. Theories of psychotherapeutic cure and the evidence for them is explored and evaluated, as well critiques of psychotherapy. Candidates gain theoretical knowledge about principles and techniques of psychotherapy/ counselling practice.

Course Code: PSYC4042A

Course Description: Qualitative Programme and Evaluation Techniques

NQF Credits: 23

NQF Level: 8

This course introduces candidates to the central paradigms in qualitative and programme evaluation research. The course consists of basic and advanced principles of qualitative and multi-method design and data collection; techniques that derive from ethnographic, participatory action research, empowerment-based and social construction approaches.

Course Code: PSYC4044A

Course Description: Research Essay

NQF Credits: 30

NQF Level: 8

This course requires candidates to complete a research essay on an approved topic, which is supervised by staff members in the department. The course consists of regular research seminars and the execution of a research essay following a structured, goal-setting approach.

Course Code: PSYC4045A

Course Description: Research Methods in Psychology

NQF Credits: 23

NQF Level: 8

This compulsory course focuses on the theory and practical use of research methods and analytic techniques in Psychology. The module integrates qualitative and quantitative research designs, the interpretation and critical analysis of a range of paradigms, methodologies, and practices in psychological research. Special emphasis is on the criteria of evaluation of research. The course also provides practical experience in computer-based analysis software for statistics and for qualitative analyses.

Course Code: PSYC4046A

Course Description: Social Psychology: Intergroup Relations

NQF Credits: 23

NQF Level: 8

This course introduces candidates to intergroup relations, focusing on processes specific to social groups and their interactions with each other. The course consists of the following:

1. Ways of understanding prejudice asymmetries between social groups, and intergroup conflict.
2. The consequences and manifestations of prejudice.
3. Ways of reducing conflict and prejudice.

Classical and contemporary theories of intergroup relations and the research underpinning these are also explored.

Course Code: PSYC4053A

Course Description: Theoretical Foundations of Organisational Psychology

NQF Credits: 23

NQF Level: 8

This course focuses on the theoretical foundations of organisational psychology.

The course comprises of two interlinked components. The first component introduces candidates to a range of theories relevant to the study and practice of organisational psychology such as clinical psychology, social psychology, cognitive psychology, organisational behaviour, organisational theory and management science. In the second component candidates will be required to apply their knowledge of these theories to understanding different approaches to organisations, organisational assessment, research, practices and interventions.

Course Code: PSYC4057A

Course Description: Health Psychology

NQF Credits: 23

NQF Level: 8

This course introduces postgraduate candidates to the contribution of the specialized field of health psychology in health management. The course covers health research, health-seeking behaviour, and adherence to medical advice, stress, chronic illness (i.e. cardiovascular disease and HIV and AIDS), gender-based violence, substance abuse, pain management and the role of exercise.

Course Code: PSYC4058A

Course Description: Developmental Psychology

NQF Credits: 23

NQF Level: 8

This course critically examines theory as it applies to the developmental context of contemporary South African society, by focusing on constructionist and socio-cultural theorists such as Vygotsky, Piaget and Bronfenbrenner, as well as psychodynamic theorists including Freud, Klein and Winnicott. The course consists of themes such as orphans & vulnerable children (OVC); the legacy of apartheid; parenting; socio-economic status; violence and trauma; child abuse & neglect.

Course Code: PSYC4070A

Course Description: Educational Psychology in the South African Context

NQF Credits: 23

NQF Level: 8

This course introduces candidates to educational psychology in the South African context, the realities of the system and the impact on practice.

Course Code: PSYC4072A

Course Description: Everyday Life and Social Interaction

NQF Credits: 23

NQF Level: 8

This course introduces candidates to a theoretical framework and analytic approach for studying everyday life and social interactions. The course consists of materials (both classical and contemporary) from the phenomenological, ethnomethodological, conversation analytic and discursive psychological traditions. It includes examination of a number of fundamental social scientific issues including:

Everyday (and scientific) practical reasoning.

The nature of intersubjectivity.

Theories of social action.

The social constitution of knowledge, and 5) structures of social interaction.

Course Code: PSYC4073A

Course Description: Narratives of Youth and Identity

NQF Credits: 23

NQF Level: 8

This course explores narrative approaches to understanding personhood, particularly focusing on the construction of youth identities or subjectivities. The course raises questions about the ways in which the stories (or texts) that we tell about our lives and those of others may work to construct particular histories and future possibilities. Contemporary critiques of these approaches are also addressed, asserting the importance of material conditions, practice and embodiment in the making of subjectivity.

Course Code: PSYC4074A**Course Description: Gender in Psychology****NQF Credits: 23****NQF Level: 8**

This course focuses on the construction of gender from various theoretical positions and introduces candidates to a solid theoretical awareness of the nature of gender identity, sexuality and various forms of gender difference. The course consists of a focus on the underlying epistemologies and tenets of theoretical models; their points of contestation and convergence; areas of exclusion and admittance; as well as the consequences of these for a fuller understanding of knowledge production in gender studies. The content focuses on how gender is present in multiple aspects of human functioning and society, with particular focus on the role of gender within sociohistorical contexts such as health, violence, family, education, crime and mass media.

Course Code: PSYC4075A**Course Description: Educational Psychology in the South African Context****NQF Credits: 23****NQF Level: 8**

This course consists of a selection of topics on educational psychology in the South African context. The course consists of two components:

1. Learning and development, which examines the provision of education for candidates with individual differences and barriers to learning in the context of psycho-educational support services; the Eco-systemic framework; ways in which teachers in inclusive classrooms can be supported to enhance candidates' development and learning; the role of the educational psychologist in establishing and contributing to collaborative partnerships to enhance the accommodation of children with barriers to learning.
2. Accommodating diversity, which examines exemplary methods in the teaching of literacy and numeracy and methods to support teachers in designing the teaching of maths and reading/ writing to suit individual needs in inclusive classrooms, including methods of metacognition.

School of Public Health (Faculty of Health Sciences)**Course Code: COMH7221A****Course Description: Health and Society****NQF Credits: 15****NQF Level: 9**

This course aims to enable candidates to develop a critical understanding of the complex interaction of social determinants and context on population health and wellbeing. Candidates examine a range of social determinants including gender, income inequality, rural/urban, health systems, social exclusion and migration. The course explores current socio-political issues in the sub-Saharan Africa region and how they impact on health.

Course Code: COMH7227A**Course Description: Research, Monitoring and Evaluation****NQF Credits: 15****NQF Level: 9**

This course focuses on research, monitoring and evaluation as applied specifically to social and behaviour change communication. It aims to develop candidate's capacity to undertake formative research used to. This course aims to develop candidates' practical skills in designing and conducting formative research, which is used to inform the development of interventions, messages and programmes. The course also enables candidates to differentiate between and critique different evaluation designs and introduces key concepts for effective monitoring and evaluation of SBCC interventions and programmes.

School of Social Sciences (Faculty of Humanities)**Course Code: HIST1011A****Course Description: Global Encounters and Contemporary Realities IA****NQF Credits: 18****NQF Level: 5**

This introductory course leads to a set of topics that address key issues relevant to the contemporary world: the massive economic and political influence of the United States, the contemporary environmental crisis, the gap between rich and poor regions of the world, the emergence of syncretic cultural forms, the rise of China and radical Islam. The course focuses on broader historical transnational flows and networks and offers a more detailed case study on the rise of the United States during the twentieth century. Students are able to choose between two different case-study based courses both linked coherently to the introductory course.

Course Code: HIST1012A**Course Description: Global Encounters and Contemporary Realities IB****NQF Credits: 18****NQF Level: 7**

This course offers more detailed case studies on the history of China and the Middle East. It begins by comparing China, Europe and other regions of the world in the 1300s and 1400s and establish why it did not become a great imperial power, turning in on itself rather than expanding outwards. The course deals with dramatic events of the twentieth century: the great civil war between the nationalists and communists; the communist revolution ; the 'Cultural Revolution'; the pragmatic rapprochement with the United States and the 'liberalisation' of the 1980s, culminating in the particular brand of market communism which characterises China today. The course further discusses some of the salient historical processes that have shaped the Middle East and its multiple connections to other parts of the world. It probes the historic role of imperialism, the centrality of oil and the role of ruling elites in the shaping of contemporary Middle East. The historic spread of Islam are considered by discussing how it has shaped the political landscape of the Middle East, as well as large parts of Africa and the Far East, and how, in turn, this religion has been shaped by the local social and cultural contexts where it took root.

Course Code: HIST1013A**Course Description: Global Encounters and Contemporary Realities IC****NQF Credits: 18****NQF Level: 7**

Following the introductory course (HIST1011A Global Encounters A) this course includes case studies of Africa and Latin America. African diaspora in the Americas, both anonymous Africans and iconic figures, retained some elements of their cultures, adapting them to the new contexts in which they had to make sense of their lives. Through a variety of case-studies, this section will then analyse how imported items and cultural forms (music styles, clothes, movies) were received, debated and 'localised' in different African regions during the colonial and postcolonial periods. The course also focuses on the space now known as Latin America and concentrates on issues of ecology and disease.

Course Code: HIST1015A**Course Description: Global Encounters and Contemporary Realities 1D****NQF Credits: 18****NQF Level: 5**

This course offers a combination of TWO case studies out of FOUR currently on offer in Global Encounters B and C. The first case study covers the political and economic progress of China from the 1400s until the 1990s, but especially focusing on China under Communist Party rule. The second looks at the historical processes that shaped the Middle East and its multiple connections to other parts of the world, especially imperialism, the centrality of oil and the role of ruling elites and the spread of Islam. The third study examines the space now known as Latin America, dealing with issues of ecology, disease and the Columbian Exchange, the wars of independence and the Cold war period. The fourth case study examines Africa's historical encounters with the rest of the world over many centuries, focusing particularly on cultural exchange, hybridisation and diaspora.

Course Code: HIST7030A**Course Description: Oral and Documentary History: Theory and Practice****NQF Credits: 30****NQF Level: 9**

This course looks at contemporary trends in the theory and practice of history. The course deals with the possibility of objective truth, the boundaries between fiction and historical writing, social history, gender theory, and the implications of post-colonial and post-modern theories for historical research and writing. The course also concentrates on the theoretical debates and practical skills of oral history.

Course Code: INTR1010A/1011A**Course Description: The International Relations of South Africa and Africa****NQF Credits: 18****NQF Level: 5**

This course builds on the knowledge established in the introductory course especially that pertaining to foreign policy decision-making and theory. This also serves to reinforce the content learnt in the introductory course and apply the theory to practice.

Course Code: PHIL1002A**Course Description: Introduction to Ethics I****NQF Credits: 18****NQF Level: 5**

This course introduces students to ethical reasoning and its applications. Examples of topics include theories of right and wrong, the relativity or objectivity of ethics, ethics and religion, equality and justice, selected ethical issues in the contemporary world.

Course Code: PHIL1003A**Course Description: Introduction to Philosophy: Knowledge and Reality I****NQF Credits: 18****NQF Level: 5**

This course introduces students to philosophy through a focused selection of topics in epistemology and metaphysics (the theories of knowledge and reality) along with the required background on the identification and evaluation of arguments.

Course Code: POLS1007A/POLS1009A(PT)**Course Description: Introduction to Political Studies****NQF Credits: 18****NQF Level: 5**

This course introduces students to foundational themes in political studies such as ideologies, concepts and approaches to politics. The course focuses on South Africa in a globalised world, focusing on contemporary politics and issues that confront this generation in the twenty first century.

Course Code: POLS7006A**Course Description: Development Theory****NQF Credits: 30****NQF Level: 9**

This course introduces students to the major social, economic, and political, assumptions underpinning 'development studies', and, most importantly, to the strategies that might best be adopted to 'promote' or 'manage' development. In this way, the 'problem of development' in three loosely defined and interconnected areas of social life, the market, the state, and the community.

Course Code: POLS7056A**Course Description: Equality****NQF Credits: 30****NQF Level: 9**

This course provides a philosophical interrogation of equality as a concept and normative ideal. Questions such as humans seek equality and demands for recognition are interrogated. The course examines the answers critically within a range of philosophical and political traditions, including market libertarianism, liberal egalitarianism, anarchism, Marxism, feminism, conservatism, communitarianism and republicanism, and to develop its own synthesis. South African-specific concerns around race redress and recognition figure prominently within an exercise that seeks to not only elaborate but also to critically apply philosophical concepts.

Course Code: SOCL1013A/SOCL1008A

Course Description: Southern Africa in the Era of Globalisation I

NQF Credits: 18

NQF Level: 5

This course examines the process of globalisation especially in the Southern African context. Using both historical and contemporary material, it explores globalisation with related sociological questions of social change, development, culture and social inequality. The course develops students' research and critical thinking skills, to make sense of the changing social world.

Course Code: SOCL1014A/SOCL1009A

Course Description: Identity and Society I

NQF Credits: 18

NQF Level: 5

This course is an introduction to the theoretical and conceptual foundations of sociology. It locates the discipline's key concerns with the relationship between individuals and the social context, and examines sociological debates around modernity, social change and identity. This is achieved by an in-depth exploration of the ideas of central classical theorists. The course also develops students' content knowledge, and reading and writing skills.

Course Code: SOCL7009A

Course Description: Development as Ideology and Practice

NQF Credits: 30

NQF Level: 9

This course tracks the trajectories of the successive 'development' models, looking at their origins, influence, and strengths and weaknesses, and the manner in which 'development' is imagined. Theoretical models have real implications, and the course also examines specific areas of 'development' policy and practice. Case studies of particular 'development' sectors provide a picture of 'development' in operation, and provide candidates with insights into development work.

Course Code: SOCL7010A

Course Description: Economic Sociology: Institutions, Capitalism and Markets

NQF Credits: 30

NQF Level: 9

This course introduces students to the main paradigms that shape modern economic policy debates and positions. Although it is not an economics course, it provides candidates in the social sciences with a solid grounding in economic and social theory in a manner that enables effective policy advocacy and critique. Sophisticated theoretical discussions, plus detailed readings and policy analysis, forms the core of the course, which is designed to give students an in-depth understanding of the capitalist system, and its limitations.

Course Code: SOCL7011A

Course Description: The Political Economy of Nature and Development

NQF Credits: 30

NQF Level: 9

The course illuminates a number of global, regional, national and local environmental issues, through a political economy and sociological lens, drawing on a wide range of theorists. Environmentalism has spawned numerous approaches, ranging from neo Malthusianism, through to ecofeminism, deep ecology, radical ecology and ecosocialism. Linkages between the environment and development are drawn, including linkages between the natural and social sciences. The rise of a global environmental social movement is traced, including the environmental justice movements in South Africa and elsewhere. Students are encouraged to address a particular environmental problem as part of their written contribution to the course.

Course Code: SOCL7043A

Course Description: Sociology of Land and Agrarian Reform in South Africa

NQF Credits: 30

NQF Level: 9

The course introduces candidates to some of the key debates that have come to characterise land and agrarian reform in post-apartheid (1994) democratic South Africa and by extension the Southern and Eastern African region. The course equips candidates with the knowledge base and skills required to critically engage with policy debates on land and agrarian issues. The central thrust of the course is to understand the protracted nature of land reform policy making process in countries undergoing democratization, the normative limits of land reform policies and the implementation problems that beleaguer their success. Detailed policy analysis of the three sub-programmes namely restitution, tenure and redistribution will form the basis of developing a critical understanding of some of the policy dilemmas, tensions, and challenges that define South Africa's land reform policy. Use of South Africa's case studies to illuminate the themes discussed herein, are used as evidence to substantiate these claims.

School of Statistics and Actuarial Science

Course Code: STAT1002A

Course Description: Actuarial Science I

NQF Credits: 18

NQF Level: 5

This course introduces students to the fields of the mathematics of finance and actuarial demography. Topics include: the theory of interest; simple and compound, effective and nominal rates of interest; discounting and the rate of discount; equations of value; annuity theory; analysis of the annuity; sinking funds; the force of interest; fixed interest securities; life table theory; elementary demography; an introduction to the principles on insurance and pensions.

Course Code: STAT1003A

Course Description: Mathematical Statistics I

NQF Credits: 18

NQF Level: 5

This course introduces students to the field of mathematical statistics. Topics include: An introduction to exploratory data analysis which covers descriptions of types of data, descriptive statistical techniques with computer based assignments in R. An introduction to Probability and Probability Distributions that includes set theory; counting methods; permutations and combinations; probability theory; basic concepts; estimating probabilities using simulations in R; Bayes theorem; distribution theory: discrete and continuous random variables and probability distributions; binomial, poisson, geometric, hypergeometric, normal and exponential distribution; random generation of distributions in R; joint probability distributions (discrete case), simulations of probabilistic scenarios, law of large numbers. An introduction to inference that includes parameter estimation, confidence intervals and sample size effects on parameter estimation. Correlation and regression; least squares fitting of lines, with computer based assignments in R.

Course Code: STAT2005A

Course Description: Mathematical Statistics II

NQF Credits: 48

NQF Level: 6

Probability; conditional probability; Bayes theorem; random variables; distributions and their properties; generating functions; bivariate distributions; marginal and conditional distributions; transformations of random variables; order statistics; introduction to sampling; introduction to sums of random variables and sampling distributions. Sums of random variables; sampling distributions; law of large numbers; Chebychev's inequality; Central Limit Theorem; point estimation; interval estimation; hypothesis testing; ANOVA; Chi-squared tests; sufficient statistics; theory of hypothesis testing; Monte Carlo simulation; review of matrix theory; multivariate normal distribution; introduction to multiple regression.

Course Code: STAT2008A

Course Description: Actuarial Science II

NQF Credits: 48

NQF Level: 6

The course will consist of the following material: Further theory of finance; valuation of securities; capital gains tax; consumer credit; stochastic interest rate models; yield curves; theory of immunisation; loan schedules; types of investments; forward contracts; term structure of interest rates; log-normal distribution; net present value; internal rate of return; inflation adjustments. Single Life Contingencies: Introduction to annuities and assurances on one life; reserving; cashflow emergence. practical computing skills; spreadsheet skills; presentation skills; actuarial report writing skills; concept of business materiality and commercial relevance; capital projects; environmental impact assessments; business risk management. Business applications and an overview of all the areas of both traditional actuarial practice and newer fields like banking and enterprise risk management.

Course Code: STAT2012A

Course Description: Introduction to Mathematical Statistics

NQF Credits: 8

NQF Level: 6

This course introduces the student to mathematical statistics and is comprised of the following topics: Descriptive Statistics; Permutations & Combinations; Probability; Discrete & Continuous Random Variable; Sampling & Distributions & Tests of Hypothesis about a Mean; Correlation & Regression.

Course Code: STAT2013A (STAT2014A PT)

Course Description: Basic Statistics for the Natural Sciences II

NQF Credits: 12

NQF Level: 6

Students work through an elementary coverage of common statistical methods applied in the Natural Sciences. These include descriptive statistics (graphical as well as numeral summaries), simple random sampling, basic probability concepts, key probability distributions, correlation, simple linear regression, basic inferential statistics - both parametric and non-parametric tests. The above concepts are reinforced and applied with the use of a statistical software. On completion of this course, the student should be able to identify, and distinguish between, different statistical techniques; select an appropriate statistical test required to analyse data and; analyse data and correctly interpret the result obtained from the analysis

Course Code: STAT3010A

Course Description: Life Contingencies III

NQF Credits: 18

NQF Level: 7

This course extends the coverage of life insurance mathematics in Actuarial Science II. This course covers the valuation of life insurance and annuity contracts that offer level, increasing or decreasing benefits at either a simple or compound rate. It extends to cover the pricing of and reserving for life insurance contracts and annuities in terms of calculating gross or net premiums, payable annually or more frequently, and the corresponding policy values and reserves. Reserves are determined on a prospective and retrospective basis. Valuing, pricing and reserving are extended to policies that cover two or more lives and two or more decrements. All of the principles are combined into profit testing of contracts by applying discounted cash flow techniques. The course also covers heterogeneity in populations and techniques to summarise and standardize population data.

Course Code: STAT3015A**Course Description: Actuarial Economics III****NQF Credits: 24****NQF Level: 7**

This course provides an understanding of the following fields: the application of expected utility theory to financial problems; the application of stochastic dominance to asset selection problems; measures of investment risk; the assumptions of mean-variance portfolio theory and its principal results; the properties of single- and multiple-factor models of asset returns; the incorporation of liabilities into portfolio selection models and the process of asset-liability modelling; equilibrium models of returns on capital assets, including the principal results and assumptions and limitations of such models; the various forms of the efficient markets hypothesis and the evidence for and against them; stochastic models of the behaviour of security prices and the estimation of parameters for asset-pricing models; models of the term structure of interest rates; the properties of option prices, factors affecting such prices, and the upper and lower bounds of such prices; numerical procedures used in derivative pricing; Black-Scholes analysis and arbitrage-free pricing.

Course Code: STAT3021A**Course Description: Computers and Communications for Actuaries III****NQF Credits: 18****NQF Level: 7**

This course covers the use of computers in actuarial work. Both scientific and commercial applications are covered. In addition, it covers basic communication and presentation skills required to present actuarial results obtained to relevant audiences.

Course Code: STAT3030A**Course Description: Actuarial Reserving Techniques III****NQF Credits: 14****NQF Level: 7**

This course covers the theory and application of survival modelling using estimation procedures for lifetime distributions and transition intensities. Topics include: mortality projections and the application of graduation and graduation tests; the theory and application of probability of ruin in finite and infinite time, using the Poisson Process, the application of run-off triangles using the Chain-ladder, the Average Cost per Claim and Bornhuetter-Ferguson methods, as well as simulation techniques to value benefit guarantees.

Course Code: STAT3031A**Course Description: Multivariate Data Analysis III****NQF Credits: 14****NQF Level: 7**

This course covers the inherent attributes of multivariate data analysis by using statistical predictive and dimension reduction techniques. These techniques include studying the multivariate normal distribution, copulas and other related distributions, regression techniques and modelling inferences, such as hypothesis testing, confidence regions and multivariate analysis of variance and covariance of samples, dimension reduction techniques, principal component analysis, factor analysis, correspondence analysis, multidimensional scaling, cluster analysis, discriminant analysis and canonical correlation analysis. The course focusses on the theoretical overview of these methods and the practical use and interpretation using statistical packages.

Course Code: STAT3032A**Course Description: Risk Theory III****NQF Credits: 14****NQF Level: 7**

This course introduces the nature of general insurance risks, which serve as the primary motivation for the consideration of various types of statistical techniques and models. These techniques and models include: loss distributions, which are used to describe the amounts of individual claims arising from a portfolio of general insurance policies; extreme value distributions, which are used for modelling low probability/high impact events; and risk models (in the form of compound distributions), which consider the amounts of individual claims and the total number of claims jointly so as to model the aggregate claims of general insurance policies.

Course Code: STAT3033A

Course Description: Statistical Elements of Machine Learning III

NQF Credits: 14

NQF Level: 7

This course introduces students to how statistical and actuarial applications use machine learning methods to solve problems. It discusses the relationship between statistical, actuarial and high level machine learning concepts. Key supervised and unsupervised statistical learning and machine learning techniques in modelling continuous and categorical responses (regression and a variety of classification methods) as well as the differences between generative and discriminative models. Appropriate statistical packages will be used to complement the link between theoretical statistical machine learning and applications to statistical modelling, actuarial underwriting, pricing and other parts of insurance risk management.

Course Code: STAT3034A

Course Description: Stochastic Processes III

NQF Credits: 14

NQF Level: 7

This course is a study of discrete time Markov chains and continuous time Markov jump processes, including properties of states such as recurrence, transience and periodicity. It studies classic problems such as the gambler's ruin problem and asymmetric random walks, as well as the Poisson process.

Course Code: STAT3035A

Course Description: Survival Analysis III

NQF Credits: 14

NQF Level: 7

This course introduces the problem of censoring in lifetime data and the implications on modelling and analysis of such data. The Kaplan-Meier estimator for the survivor function and the Nelson-Aalen estimator integrated hazard are derived and applied to lifetime data. It describes and applies the proportional hazards model and defines and implements several methods for checking the fit of survival models to lifetime data. It further formulates models for describing lifetimes subject to multiple states. It explains and incorporates the concepts of frailty and cure in the context of survival analysis.

Course Code: STAT3036A

Course Description: Time Series III

NQF Credits: 14

NQF Level: 7

This course covers the theory and application of exponential smoothing and Box Jenkins time series methods. These include model building and model checks, of both integrated time series, e.g. ARCH & GARCH models and co-integrated time series. The course also covers special non-stationary and non-linear time series models and an introduction to spectral analysis: time series in the frequency domain. Statistical packages will be used to apply these methods.

Course Code: STAT3037A

Course Description: Introduction to Spatial Statistics III

NQF Credits: 18

NQF Level: 7

This course provides an overview of basic theory and applications of spatial statistics. It focuses on the ecological applications of spatial autocorrelation and autoregression. It also introduces key concepts of graphical methods, Stochastic processes, the spatial weights matrix, global measures of spatial association and local measures of spatial associations as well as the performance of spatial statistical analysis using Geographic Information Mapping Services (GIS) software and R.

Course Code: STAT4092A**Course Description: Actuarial Liability Management****NQF Credits: 15****NQF Level: 8**

The aim of this course is to provide candidates with the ability to apply a wide range of actuarial concepts to simple traditional and non-traditional situations. It includes: Professionalism; Stakeholders; general environment; risk management; provisioning; project planning; input validation; determining and reporting of results; capital and capital management; mergers and acquisitions; experience monitoring.

Course Code: STAT4093A**Course Description: Actuarial Marketing and Product Development****NQF Credits: 20****NQF Level: 8**

This course aims to provide candidates with an understanding of the financial risks facing individuals and how insurance and retirement funds assist in managing these risks. On completion of the course candidates should also be able to make a contribution to the design and pricing of insurance policies and retirement fund benefits. Topics covered include: the general commercial and economic environment including tax, regulation, public relations and compliance, the lifecycle, benefit providers, an overview of benefit funds, an overview of general insurance, life risk and investments products, the product design process, marketing theory, distribution, selling and incentives, contract design, Pricing methodology and techniques, assumption setting and sourcing statistics, expenses, macro pricing, claims processes, reinsurance, persistency and discontinuance.

Course Code: STAT4094A**Course Description: Investment and Asset Management****NQF Credits: 20****NQF Level: 8**

The aim of this course is to provide candidates with the ability to apply the principles of actuarial planning and control to the appraisal of investments, and to the selection and management of investments appropriate to the needs of investors.

Topics covered include: economic and other influences on investment markets, the relationship between returns on asset classes, money markets, bond markets, property markets, equity markets, futures and options, collective investment schemes, overseas markets, valuation of individual investments, valuation of asset classes and portfolios, investment strategies for institutions and individuals, developing an investment strategy, capital project appraisal, capital management, accounting and disclosure.

Course Code: STAT4095A**Course Description: Research Project: Actuarial Science****NQF Credits: 35****NQF Level: 8**

This course provides grounding in the collaborative and independent research skills required for Actuarial practice, including the skills required to explain Actuarial concepts intelligibly both to peers and to other candidates.

Course Code: STAT4097A**Course Description: Actuarial Practice in Life Assurance****NQF Credits: 24****NQF Level: 8**

This course aims to provide candidates with a practical understanding of the actuarial work involved in Life Assurance companies and covers the main aspects of the F102 course for the examinations of the Actuarial Society of South Africa. Topics covered include: the general commercial and economic environment, life assurance products, health and care products, risks and data management, reinsurance and underwriting, methods of distributing profits, management of unit-linked life assurance contracts, product design, models in life assurance, surrender values and alterations, cost of guarantees and options, supervisory reserves, earnings statements, investments, monitoring experience and setting assumptions.

Course Code: STAT4099A**Course Description: Actuarial Practice in General Insurance****NQF Credits: 24****NQF Level: 8**

This course aims to provide candidates with a practical understanding of the process of General Insurance together with an understanding of the actuarial work involved in a General Insurance Company. It covers all aspects of the F103 course for the Actuarial Society of South African examinations. Topics covered include: the general commercial and economic environment, accounting principles and methods, the interpretation of accounts, general insurance products, reinsurance, risk management, the purpose and methodology of reserving, rating methodologies and practicalities, investment principles including asset-liability matching, data, capital models, monitoring experience.

Course Code: STAT4100A**Course Description: Actuarial Financial Theory and Application****NQF Credits: 24****NQF Level: 8**

This course aims to provide candidates with a practical understanding of the actuarial work involved in finance and investments and covers the main aspects of the F105 course for the examinations of the Actuarial Society of South Africa. Topics covered include: the general commercial and economic environment, the regulation of financial services, applications of the legislative and regulatory framework, derivatives, specialist asset classes, the theory of finance, fundamental share analysis, valuation of investments, industry classification, investment indices, performance measurement, overall risk control, actuarial techniques, portfolio management and taxation.

Course Code: STAT4101A**Course Description: Advanced Distribution Theory****NQF Credits: 12****NQF Level: 8**

This course covers the development and underlying theory of special distributions, inequalities and either quadratic forms or systems of distributions.

Topics included are :Transformations and special distributions: General and Orthogonal transformations (including Helmert). Non-central t, x^2 , F. Dirichlet distributions. Asymptotic distributions of Order Statistics ($-A_s$, Weibull, Fréchet, Gumbel; Extreme order statistics, Mills Ratio). Moment inequalities: Markov, Chebychev, Kolmogorov, Jensen, Cauchy-Schwartz, Holder, Minkowski, r th root of the r th absolute moment, Bonferroni. Convex Ordering. Quadratic forms: Idempotent Matrices (Properties and more on non-central x^2). Mgf and cumulants of Q.F. conditions for QF $\sim x^2 (\lambda)$. Independence of QFs (and linear functions and QFs). Simultaneous Orthogonal Diagonalization. Cochran's Theorem (and simple applications to ANOVA). Systems of Distributions: Pearson, Gram-Charler, Johnson systems of distributions.

Course Code: STAT4102A**Course Description: Applied Sampling****NQF Credits: 12****NQF Level: 8**

This course covers both theoretical and practical aspects of Survey Sampling and includes: questionnaire design and piloting; definition of types of sampling (simple random, stratified, systematic, cluster, double, snowball, convenience, complex) and their advantages and disadvantages in theory and practice; proportional vs disproportional allocation for stratified sampling and reasons for their choice; sample size calculation; in general and for different methods, including optimal allocation; estimation of means, totals and proportions, and the variances of the estimators; margin of error tables and nomograms; weighting of surveys; cell weighting vs raking; household vs personal weights; design effects: calculation and implementation of: cost vs efficiency; dealing with missing values; using complete data, imputation via means and regression; an introduction to data fusion: criteria for fusing of data sets, methods of performing data fusion (donor to recipient, one to one, many to one, many to many, transportation algorithm, once-off fusion, customised fusion) and of assessing the quality of the fusion.

Course Code: STAT4103A**Course Description: Biostatistics****NQF Credits: 12****NQF Level: 8**

This course provides a background into the basic methodology of the area:

Definitions of population and community; Rates and proportions: numerators and denominators. Estimation of totals vs proportions. Prevalence versus incidence. Cohorts vs parallel groups vs longitudinal studies. Odds ratios, relative risk, sensitivity, specificity, PPV, NPV. ROC curves. Topics from: Experimental design: review of 1, 2 and multi factor analyses, analysis of covariance, randomised blocks, BIBD, crossover and other designs. Linear mixed models. Repeated measures analysis including AUC. Nonparametric survival analysis including left, right and interval censored models. Mantel – Haentzel and other tests. Applications of logistic regression. Inter – rater comparison including intra class correlation analysis and kappa coefficients, sample size calculations. Growth curves. Meta analysis. Introduction to epidemiology.

Course Code: STAT4104A**Course Description: Extreme Value Theory****NQF Credits: 12****NQF Level: 8**

This course provides the candidate with an understanding of the modelling and analysis of data concerning the extremes of a distribution, and includes the following topics: Introduction to and examples of extreme value data. Review of the asymptotic likelihood theory required for the analysis of extreme values and of the relevant model diagnostic plots. Distributions of extreme values: Gumbel, Fréchet and Weibull. The Generalised extreme value (GEV) distribution. Inference for the GEV distribution. Threshold data and the Generalised Pareto (GP) distribution for modeling threshold excesses. Inference for the GP distribution. Modeling and analysis of extremes of stationary (dependent) series. Extremes of non – stationary series.

Course Code: STAT4106A**Course Description: Point Processes****NQF Credits: 12****NQF Level: 8**

This course introduces candidates to point processes. In operations research, point processes are tools for stochastically modelling flows of customers arriving at a service station (queueing theory). In particular, in insurance, point processes are used to mathematically model claim number processes. In the natural sciences, point processes are used to quantify and predict the number of randomly occurring events such as births, deaths, natural disasters, cosmic particles.

Course Code: STAT4107A**Course Description: Spatial Statistics****NQF Credits: 12****NQF Level: 8**

This course provides the candidate with an understanding of the modelling and analysis of data which are spatially distributed, and in which the correlation between two observations is a function of the distance between them. Topics covered include: Introduction to spatial random variables and spatial data. Definition of the variogram and its properties. Models for the variogram and its estimation, either nonparametrically or via maximum likelihood. Spatial prediction and kriging. Simple and ordinary kriging. Change of support and block kriging. Co – kriging and universal kriging.

Course Code: STAT4108A**Course Description: Statistical Aspects of Data Mining****NQF Credits: 24****NQF Level: 8**

This course introduces candidates to the statistical aspects of data mining. Data mining refers to a family of techniques used to detect interesting relationships/knowledge in data in the form of pattern recognition, statistical and machine learning (supervised and unsupervised), data science and data analysis/analytics. The main topics covered include Data pre – processing, Resampling methods (k – fold, CV, LOOCV,

Bootstrap, etc.), Classification and Prediction (Regression, Bayes, LDA, QDA, etc.), Clustering (K – nearest neighbours, K – means, PAM, Hierarchical, etc.), Associations and Rule Generation (Basket analysis, etc.), Model Evaluation, Support Vector Machines, Artificial Neural Networks and Tree – Based Methods as well as tree induction and rule learning. More recent developments, including Ensemble Methods or Committee Machines (Bagging, Boosting, etc.) and Big Data, are introduced. The course also provides the practical background required to apply these techniques to practical problems using training and validation data subsets, to evaluate the models using R/other software, and to interpret and present the results.

Course Code: STAT4109A

Course Description: Stochastic Processes with Applications in Finance

NQF Credits: 12

NQF Level: 8

This course covers stochastic processes used to model the development in time of share prices, credits, interest rates, exchange rates and so on. The course includes: basic definitions and concepts from the theory of stochastic processes; martingales and the optional stopping theorem; derivation of characteristic properties of Wiener processes and their transformations, and the suitability of Wiener processes for modelling finance parameters Wiener processes as a martingale and the application of the optional stopping theorem in solving finance related problems; exact derivation of the Balck – Scholes – Merton – formula; solution of some optimum option pricing problems.

Course Code: STAT4110A

Course Description: Operations Research Techniques

NQF Credits: 12

NQF Level: 8

This course provides an introduction to the algorithms and techniques behind supply chain optimisation. This includes the mathematical background as well the practical application of these techniques. Topics covered include Forecasting, Transportation systems, Transportation models and algorithms; Genetic algorithms and simulated annealing, Inventory management systems and algorithms, Continuous and discrete point location algorithms, Supply chain models, Neural networks for the optimisation of supply chains; Manufacturing systems, Manufacturing scheduling models, Material handling models and algorithms, Warehousing systems.

This topic deals with those point processes that have proved to be most adequate for modelling these and other phenomena: homogeneous and non – homogeneous Poisson processes, mixed Poisson processes, renewal processes, and Pólya – Lundberg processes. To be able to take into account the cost and other superimposed aspects, the corresponding compound (aggregate, cumulative) processes are discussed as well. As a special application, exact and approximate formulas for the actuarial risk are given.

Course Code: STAT4111A

Course Description: Reliability and Maintenance Theory

NQF Credits: 12

NQF Level: 8

This course introduces candidates to reliability and maintenance theory. Reliability and safety analysis as well as maintenance planning play an important role in engineering, but increasingly also in banking and communication. The first part of the course deals with the key problem of reliability theory, namely with the investigation of the mutual relationship between reliability criteria of a system and reliability criteria of its subsystems within the framework of binary monotone systems. The second part of the course introduces non parametric classes of probability distributions and their relationship to modelling the wear and tear of technical systems.

Course Code: STAT4112A

Course Description: Research Project: Operations Research

NQF Credits: 36

NQF Level: 8

This course provides grounding in the collaborative and independent research skills required for operations research practice, including the skills required to explain statistics and operations research methods intelligibly both to peers and to other student.

Course Code: STAT4113A**Course Description: Research Project: Mathematical Statistics****NQF Credits: 36****NQF Level: 8**

This course provides grounding in the collaborative and independent research skills required for statistical practice, including the skills required to explain statistical methods intelligibly both to peers and to other students.

Course Code: STAT4116A**Course Description: Operations Research Techniques IV****NQF Credits: 12****NQF Level: 8**

This course covers an introduction to the algorithms and techniques used in Operations Research. The first part of the course covers model building, linear programming encompassing simplex method, pitfalls of the simplex method, revised simplex algorithm, dual theorem and complementary slackness theorem. The second part of the course covers integer programming which encompasses the branch and bound algorithm, cutting plane algorithm, and knapsack problem. The last part of the course covers manufacturing scheduling models, transportation systems, continuous and discrete point location algorithms, network models, deterministic and probabilistic Inventory models and associated algorithms and material handling models and algorithms. Throughout the course, use of statistical software is explored.

Course Code: STAT4117A**Course Description: Advanced Multivariate Methods IV****NQF Credits: 12****NQF Level: 8**

This course covers pre-analysis data screening which include methods of handling missing data, effects of outliers, assessment of adequacy of fit between data and assumptions of specific multivariate techniques and sensitivity analysis. Methods of finding structure in the data and modeling underlying latent variables forms the basis of the second part of the course. In particular, the following topics will be covered: review of matrix algebra for multivariate statistics, multivariate regression, Hotelling's T₂, multivariate analysis of variance, profile analysis, repeated measures analysis of variance, discriminant analysis, finite mixture modeling, biplots, distance metrics and general measures of similarity, advanced clustering methods, confirmatory factor analysis and structural equation modeling.

Course Code: STAT4118A**Course Description: Advanced Probability Theory IV****NQF Credits: 12****NQF Level: 8**

This course provides an overview of measure theoretic probability theory as follows: First, the concept of probability as measure and random variables is introduced, after which integration is reviewed and expectation defined. Second, norms on the spaces of functions are defined, and various inequalities involving norms will be proved. Third, the completeness of L_p will be proved, and the concept of orthogonal projection outlined. Fourth, various modes of convergence in L_1 will be reviewed and compared. Fifth, Gaussian random variables will be defined and various properties established. Sixth, sums of independent random variables will be considered and laws of large numbers proved. Seventh, conditional expectation will be defined and properties studied. Eighth, martingales will be defined and particular results established.

Course Code: STAT4119A**Course Description: Advanced Statistical Elements of Machine Learning IV****NQF Credits: 12****NQF Level: 8**

This course covers the more advanced statistical fundamentals of machine learning as frameworks for prediction and estimation as an extension of the introduction that is given in the third year course in Statistical elements of machine learning III. Topics covered include advanced supervised and unsupervised learning methods; evaluating learning techniques, bias/variance trade off, regularisation; generalisation; performance measures; empirical risk minimisation; modern classification; regression; clustering analysis, dimensionality reduction; advanced neural networks; deep learning; Bayesian machine learning; nearest neighbour methods; tree based methods and ensemble methods. The course includes both statistical theory and practical application of statistical learning covered with computer-based lab assignments._

Course Code: STAT4120A

Course Description: Bayesian Methods IV

NQF Credits: 12

NQF Level: 8

This course covers various Bayesian modelling and computation techniques. The course comprises the following sections. First, a brief introduction/revision of the basics of Bayesian inference. Second, Bayesian methods applied to graphical models and how to perform inference on such models, as well as an overview of the concept of belief propagation. Third, a review of Bayesian methods applied to hierarchical models. Fourth, the application of Monte Carlo methods to various statistical techniques. Fifth, the fundamentals of and all necessary prerequisites for Markov chain Monte Carlo (MCMC). Sixth, an overview of selected MCMC algorithms. Seventh, the Expectation-Maximisation algorithm, and various examples of its use.

Course Code: STAT4121A

Course Description: Biostatistics IV

NQF Credits: 12

NQF Level: 8

This course covers the following; Types of clinical trials and their designs, ethical considerations and sample size determination. Types of bioassays, dose-response relationships, quantitative and quantal responses, Feiler's theorem for fiducial limit estimation, probit and logit models for quantal assays, estimation of effective dose levels from tolerance distributions and calibration curves. Advanced survival models including net survival analysis and cure, dynamic transition modelling. Statistical Genetics: Introduction to genetics; gene mapping, sequence data, population genetics and coalescent theory, phylogeny reconstruction, pedigree analysis, familial aggregation, segregation and linkage and association. Role of genetic factors in human diseases and analysis of complex and quantitative traits.

Course Code: STAT4122A

Course Description: Advanced Time Series IV

NQF Credits: 12

NQF Level: 8

This course deals with advanced time series models, beyond the traditional Box-Jenkins methodology. Topics covered include long memory, multivariate time series and non-stationary and/or non-linear time series models. For the first part the theory of long range dependence is introduced and applied. For the second part the theory required for the analysis of multivariate time series is developed and applied. Finally, non-stationary and/or non-linear time series models will be studied. Non-linear models to be studied including the Product Autoregressive model, the Fractional Autoregressive model, Markov Switching models, Time-varying coefficient models and Smooth Transition Autoregressive models..

Course Code: STAT4123A

Course Description: Modern Non-Parametric Methods IV

NQF Credits: 12

NQF Level: 8

This course teaches modern, computationally based methods for exploring and drawing inferences from data by giving the theoretical and practical (applications) of non-parametric methods. In particular the following will be discussed; statistical functionals such as CDF estimation, resampling methods such as bootstrapping, jackknifing and cross-validation, smoothing methods, non-parametric regression, density estimation (kernel, loess, spline, etc), minimax theory (a set of techniques for finding the minimum, worst case behaviour of a procedure), orthogonal function methods and adaptive methods.

Course Code: STAT4124A**Course Description: Statistical Information Theory and Coding IV****NQF Credits: 12****NQF Level: 8**

This course deals with quantifying the information contained in data (messages) to be transmitted and in encoding data. Both aspects are the subject of information theory. In the present connected world with huge amounts of digital information to be transmitted all the time and in all directions, encoding has to be done as efficiently as possible with regard to reducing transmission time and storage space. Information theory is a key tool in achieving this goal. The course highlights the fundamental role of the statistical concept of entropy in information theory and presents some of the most efficient coding schemes. Since channels for transmission of information are usually subject to noise, errors may occur. Hence, reliable transmission requires encoding schemes which allow for error detection and error correction. This is the core subject of coding theory. Another reason for encoding is secrecy (But this is the subject of cryptology and is not considered in this course). The mathematical statistics basis of this course is probability theory, discrete random variables, homogeneous Markov chains, and matrix calculus.

Course Code: STAT4125A**Course Description: Statistical Methods for Reliability Analysis IV****NQF Credits: 12****NQF Level: 8**

This course introduces candidates to the basic concepts of reliability models, statistical inference for various probability models and methods used in life testing and reliability assessment. The mutual relationship between reliability criteria of a system and reliability criteria of its subsystems within the framework of binary monotone systems forms the first part of the course. The second part of the course introduces parametric classes of lifetime distributions, including their extension to specialised models, namely competing risks and models with covariates. Nonparametric classes of probability distributions are also introduced and their relationship to modelling the wear and tear of technical systems. The adequacy of the fitted models will also be assessed.

Course Code: STAT4126A**Course Description: Statistical Simulations IV****NQF Credits: 12****NQF Level: 8**

This course includes: Optimisation techniques; data visualisation; (pseudo)-random number and variable generation and generators; simulation of data, discrete events and other processes, based on underlying probability distributions and model assumptions; resampling methods (bootstrapping, the statistical jackknife and cross-validation), importance sampling and accept-reject methods; sequential Monte Carlo; Markov Chain Monte Carlo (MCMC) simulations; the Metropolis-Hastings algorithm, Gibbs sampling and simulated annealing; use of simulation software, best practice for statistical algorithms; algorithmic complexity and the Landau-Bachmann notation in the context of statistical computing; numerical algorithms and numerical methods.

Course Code: STAT4127A**Course Description: Actuarial Practice in Banking IV****NQF Credits: 24****NQF Level: 8**

This course covers the theory of the key principles and regulations of banking, banking risks and the application of actuarial techniques to the quantification of the main risks in banking, namely: capital risk, liquidity risk, credit risk, market risk and operational risk.

Course Code: STAT4128A**Course Description: Actuarial Practice in Health, Social and Employee Benefits IV****NQF Credits: 24****NQF Level: 8**

The course covers the principles of benefit provision, the frameworks for analysing benefit systems as well as the context in which health, social and employee benefits are provided. The course also identifies various risks and problems arising in the provision of health, social and employee benefits, as well as strategies for managing these risks and monitoring the performance of benefit plans and schemes.

Course Code: STAT5004A

Course Description: Extreme Value Theory

NQF Credits: 20

NQF Level: 8

This course provides successful candidates with an understanding of the modelling and analysis of extreme values and the ability to apply this theory to the analysis of extreme value data. It covers the Generalised Extreme Value distribution for modelling extremes of independent series and the Generalised Pareto distribution for threshold excesses of such series, as well as their extension to stationary and non – stationary series. Furthermore candidates cover, by self – study, two advanced aspects of extreme value theory, namely the Point Processes, Characterisation of extremes, which provides a unifying theoretical framework for modelling extreme values, and the analysis of Multivariate Extreme value data. Candidates also have to complete a major project in which they either research some advanced aspect or perform an extensive analysis of an extreme value dataset.

Course Code: STAT5032A

Course Description: Copulas & Dependence

NQF Credits: 20

NQF Level: 8

This course provides successful candidates with an understanding of correlations and dependence, which are some of the key assumptions made in understanding a portfolio of risks. Basic correlation structures are illustrated and their pitfalls discussed. Various methods of introducing dependence between risks are investigated, with the ultimate goal being the combining marginal distributions through the use of a copula. Different types of copula are studied, and they are fitted to data.

Course Code: STAT5033A

Course Description: Multivariate Models and Financial Time Series

NQF Credits: 20

NQF Level: 8

This course provides an introduction to the class of multivariate models and financial time series. Multivariate models are used widely in the financial sector in order to describe the co – movement across a number of random variables. Risk measures used to quantify the level of risk at certain percentiles depend heavily on the assumed elliptical nature of the underlying distributions, which are also examined. Financial time series are examined in order to enable advanced analysis of market variables, which are crucial in understanding volatility. These are extended to multivariate cases.

Course Code: STAT5034A

Course Description: Risk Measurement, Assessment and Application of Enterprise Risk Management (ERM)

NQF Credits: 20

NQF Level: 8

This course explores risk measurement and assessment, the key quantitative components of a risk management process. These components are a critical feature of a functional ERM implementation, which are tested using applied methods. Risk measures and the meaning of capital requirements are examined. Stress and scenario tests have a role to play alongside stochastic methods, and their use are analysed. Risk types and their meanings are explored, as the allocation of enterprise – wide capital for performance measurement.

Course Code: STAT5035A

Course Description: King IV Corporate Governance in South Africa and ERM Case Studies

NQF Credits: 20

NQF Level: 8

This course explores the King IV code of corporate governance. The code is 'best practice' and provides for certain structures which are intended to improve the functioning of a company, and which would serve to reduce the risk that operations break down. The risk management function has to report to the Board and its sub – committees, in order to ensure the correct identification and processing of risks in the organisation.

The audit and compliance functions are also required (indeed, by regulation as well) to participate in the identification and mitigation of risks. Cases of insolvency such as Equitable Life and Fedsure Life are examined in order to identify the operational failures which could have been avoided through the effective use of ERM.

Course Code: STAT5036A

Course Description: Enterprise Risk Management (ERM) Concept and Framework

NQF Credits: 20

NQF Level: 8

The aim of the Enterprise Risk Management (ERM) course is to instil in candidates the key principles underlying the implementation and application of ERM within an organisation, whether life assurance companies, general insurance companies, mutuals, retirement funds, or other corporate entities, including governance and process as well as quantitative methods of risk management and modelling. The candidate should gain the ability to apply the knowledge and understanding of ERM practices to any type of organization.

Course Code: STAT7000A

Course Description: Dynamic Programming

NQF Credits: 15

NQF Level: 9

This theoretical short course with practical overtones covers the following topics with particular emphasis on stochastic application to: dynamic programming (DP) solutions to path problems, including those with stochastic elements, feedback control and adaptive control (learning); solving standard problems by DP including: equipment replacement with stochastic costs; Bayesian approach to quality control; simple resource allocation; theory and solution of problems with linear dynamics and quadratic criteria including stochastic errors; different approaches to inventory models; Markov decision processes; sensitivity analysis to DP solutions.

Course Code: STAT7003A

Course Description: Non – Parametric Methods

NQF Credits: 15

NQF Level: 9

This course covers various themes under the following three headings: nonparametric tests of hypotheses; nonparametric model building; nonparametric estimation.

Course Code: STAT7004A

Course Description: Reliability and Maintenance Theory

NQF Credits: 15

NQF Level: 9

This course comprises the following:

Parametric and nonparametric classes of life – and repair – time distributions, binary and multivalued coherent systems, reliability analysis of stochastic networks, in particular of communication networks; Software reliability.

Renewal and regenerative stochastic processes, cumulative stochastic processes, Poisson processes; age dependent maintenance policies, repair limit maintenance policies.

Course Code: STAT7006A

Course Description: Spatial Statistics

NQF Credits: 15

NQF Level: 9

This course comprises the following: Geostatistical methods (spatial correlation, variogram estimation, spatial prediction and kriging). Spatial image analysis (remotely sensed data, contextual classification). Special topics for spatial data.

Course Code: STAT7030A

Course Description: Advanced Sampling

NQF Credits: 15

NQF Level: 9

This course provides the theoretical background of and investigates issues in the application of: Calibration weighting methods, and the comparison to standard methods of cell and rim weighting; Methods of estimation: design – based, model – based and model – assisted.

Data fusion: methods of combining data sets, ranging from multiple imputation, to single fusion, to customised fusion; comparison of the methods as to advantages and disadvantages; comparison of these types of fusions, and of assessing the quality of the fusion.

Candidates are required to apply one of more of their classes of techniques to data sets, and to provide a seminar and project report on their analyses, including additional literature studied.

Course Code: STAT7031A

Course Description: Advanced Selected Topic in Mathematical Statistics

NQF Credits: 15

NQF Level: 9

This course provides an understanding of a selected field of current statistical research.

Course Code: STAT7032A

Course Description: Biostatistics

NQF Credits: 15

NQF Level: 9

This course introduces candidates to the field of biostatistics. It covers the following topics: Definition of a population and community. Rates and proportions: numerators and denominators. Estimation of totals vs proportions. Prevalence versus incidence. Cohorts vs parallel groups vs longitudinal studies. Experimental design: review of 1, 2 and multi factor analyses, analysis of covariance, randomised blocks, BIBD, crossover and other designs. Linear mixed models. Repeated measures analysis including AUC. Odds ratios, relative risk, sensitivity, specificity, PPV, NPV. ROC curves. Survival analysis including left, right and interval censored models. Mantel Haentzel and other tests. Introduction to epidemiology.

Inter – rater comparison including intra class correlation analysis and kappa coefficients. Sample size calculations. Applications of logistic regression. Growth curves. Meta analysis. A project must be completed encompassing an in – depth study of the theoretical aspects, and the application of the methodology to one of: linear mixed models, analysis of repeated measures, epidemiology, growth curves, meta analysis.

Course Code: STAT7033A

Course Description: Extreme Value Theory

NQF Credits: 15

NQF Level: 9

This course provides successful candidates with an understanding of the modelling and analysis of extreme values and the ability to apply this theory to the analysis of extreme value data. It covers the Generalised Extreme Value distribution for modelling extremes of independent series and the Generalised Pareto distribution for threshold excesses of such series, as well as their extension to stationary and non – stationary series. Furthermore candidates cover, by self – study, two advanced aspects of extreme value theory, namely the Point Processes, Characterisation of extremes, which provides a unifying theoretical framework for modelling extreme values, and the analysis of Multivariate Extreme value data. Candidates also have to complete a major project in which they either research some advanced aspect or perform an extensive analysis of an extreme value dataset.

Course Code: STAT7035A**Course Description: Operations Research****NQF Credits: 15****NQF Level: 9**

This course provides an introduction to the algorithms and techniques behind supply chain optimisation. This includes the mathematical background as well the practical application of these techniques. Topics covered include Forecasting, Transportation systems, Transportation models and algorithms; Genetic algorithms and simulated annealing, Inventory management systems and algorithms, Continuous and discrete point location algorithms, Supply chain models, Neural networks for the optimisation of supply chains; Manufacturing systems, Manufacturing scheduling models, Material handling models and algorithms, Warehousing systems. An in-depth study of the theoretical grounding of methods involved in, and application of, one of the following topics: transportation systems/models, inventory management systems, supply chain models, manufacturing systems, warehousing systems.

Course Code: STAT7036A**Course Description: Point Processes****NQF Credits: 15****NQF Level: 9**

This course deals with those point processes that have proved to be most adequate for modelling queueing theory, claim number processes, the number of randomly occurring events such as births, natural disasters, cosmic particles and other phenomena. It covers homogeneous and non-homogeneous Poisson processes, mixed Poisson processes, renewal processes, and Pólya–Lundberg processes and the corresponding compound (aggregate, cumulative) processes are discussed as well. As a special application, exact and approximative formulas for the actuarial risk are given. A project must be completed in one of the following fields: Generalised Poisson processes, marked point processes, cumulative processes, level crossing of cumulative processes, Lundberg–approximations, stochastic order, applications in operations research and actuarial risk analysis. This requires theoretical work (study of research publications, monographs and textbooks), and solution of numerical problems to illustrate the theory.

Course Code: STAT7037A**Course Description: Stochastic Processes with Applications in Finance****NQF Credits: 15****NQF Level: 9**

This course deals with basic definitions and concepts of stochastic processes; stochastic models for claim arrival and claim number processes in risk theory; the ruin problem; Martingales and Wiener processes as stochastic models for share prices, rendits etc.; examples of optimum option pricing. In addition candidates have to do a project in one of the following fields (based on measure theory): 1) martingales, filtration, application of the stopping theorem to determine ruin probabilities. 2) Wiener processes (based on measure theory): level crossing problems, transforms of Wiener processes and their role in finance, critical evaluation of these transforms, discussion of option pricing models, generalisations of the Black–Scholes–Merton–formula, substitutes for the Wiener process in finance applications. This requires theoretical work (study of research publications, monographs and textbooks) and the solution of numerical problems to illustrate the theory.

Course Code: STAT7038A**Course Description: Data Mining Theory & Application****NQF Credits: 30****NQF Level: 9**

This course introduces candidates to the statistical aspects of data mining. Data mining refers to a family of techniques used to detect interesting relationships/knowledge in data in the form of pattern recognition, statistical and machine learning (supervised and unsupervised), data science and data analysis/analytics. The main topics covered include Data pre-processing, Resampling methods (k-fold, CV, LOOCV, Bootstrap, etc.), Classification and Prediction (Regression, Bayes, LDA, QDA, etc.), Clustering (K-nearest neighbours, K-means, PAM, Hierarchical, etc.), Associations and Rule Generation (Basket analysis, etc.).

Model Evaluation, Support Vector Machines, Artificial Neural Networks and Tree-Based Methods as well as tree induction and rule learning. More recent developments, including Ensemble Methods or Committee Machines (Bagging, Boosting, etc.) and Big Data, are introduced. The course also provides the practical background required to apply these techniques to practical problems using training and validation data subsets, to evaluate the models using R/other software, and to interpret and present the results. The course also covers issues around the convergence of algorithms and their implementation and application as well as model checking, evaluation and comparisons. Candidates are required to apply these techniques in an in-depth study of a modelling technique or techniques to a substantial set of data, and provide a literature review of these techniques.

Course Code: STAT7063A (STAT7065A PT)

Course Description: Statistical Research Design and Analysis

NQF Credits: 18

NQF Level: 9

The aim of this course is to introduce participants to the statistical way of thinking, and to provide sufficient background to statistical terminology and procedures that many research projects may be tackled without recourse to expert statisticians. On completion of the course, participants should be able to: understand the theory behind the statistical techniques and the relevant assumptions. Perform basic calculations and utilising the most appropriate statistical technique.

Course Code: STAT7064A

Course Description: Statistical Research Design and Analysis Project

NQF Credits: 12

NQF Level: 9

This project requires participants to be able to: phrase the aims of a study in such a way that one can collect data and analyse it in order to fulfil those aims; identify what issues are important in designing a study; design a study; identify the most appropriate statistical methods to apply to the data to answer the questions posed, and to check the relevant assumptions of those methods; consolidate the results obtained from different statistical analyses in terms of the aims of the study, and to identify any problems with the study; recognise situations beyond their expertise, for which expert help is necessary; and identify and understand in broad terms the important statistical issues and problems addressed in the literature of their research area.

Graduate School of Business Administration (Faculty of Commerce, Law and Management)

Course Code: BUSA5299A

Course Description: Venture Creation for Innovators

NQF Credits: 10

NQF Level: 8

This course explores the relationship between scientific research and technological innovation, and the creation of entrepreneurial ventures that emerge from these. Candidates are exposed to topics which include: Social capital, human capital and technical capital in the creation of new ventures; academic entrepreneurship and new venture creation; innovation systems in Africa and enabling conditions for venture creation; Innovation-driven venture creation for social purposes; new venture creation based on emerging technologies; new venture creation in the Digital Age; the dynamics of venture creation in the Global North and South; and the creation of entrepreneurial and intrapreneurial science and technology-based ventures.

UNIVERSITY OF THE
WITWATERSRAND,
JOHANNESBURG