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Abstract

Rogue Waves are large waves that appear “out of nowhere” in the open ocean and
in near-shore waters. The Mathematics in Industry Study Group considered these
waves due to their frequency at locations off the South African coast. The group
took multiple approaches to consider this problem. There are a number of quite
sophisticated models of these waves, but in this work we try to reproduce something
like a rogue wave with a very simple free surface model. The results indicate that
such a model can produce something that approaches the form of a rogue wave. In
addition, data in regions off the South African coast were considered with a view
to determining under what conditions such waves are most prevalent, and a simple
model of current interactions around the South African coast was proposed. A
review of literature identified a very important paper providing analyses of data for
a large collection of real data.

Tools: Partial Differential Equations, Perturbation techniques, Fourier Series

Keywords: Water Waves, wave heights, ocean currents, ocean bottom topography, wave
data

∗School of Mathematics and Statistics, Murdoch University, Perth, Western Australia, Australia.
email: g.hocking@ murdoch.edu.au
†South African Weather Service, Centurion, Pretoria. email: Morwakoma.Matabane@weathersa.co.za

38



GC Hocking 39

1 Introduction

A high frequency of rogue or freak waves have recently been measured around the South
African coast, especially in the Agulhas region (off the south-east coast of South Africa).
Some have resulted in loss of life or livelihood, flooding, and damage to infrastructure.
The group was asked to look at the generation and cause of rogue waves in particular
related to this region. Rogue waves have a formal definition of having a peak height of
double the significant wave height, defined as the average height of the highest one third
of waves over the relevant period. The main danger is that they seem to appear with no
warning, “out of nowhere”.

There are a large number of papers speculating on the nature and propagation of
rogue waves, but most do not examine the origins of such waves. A paper of particular
importance to this problem is that of Christou and Ewans [1], who examined existing data
from a number of locations around the world. These data were taken from oil platforms
and other ocean-based situations. The result was a comprehensive analysis of 122 million
waves collected from reliable and verifiable sources. They found around 3649 rogue waves,
and these were analysed together with regular ocean waves. Thus they found that only
one in every 30,000 waves might be a rogue wave. While this sounds like a very small
number, it must be remembered that ocean waves have a period of only several seconds,
so at any given location there might be approximately one such wave every two or three
days on average. They drew the following conclusions from their detailed analyses;

• A rogue wave is generally steeper than normal waves but not all steep waves are
“rogue”,

• The average rogue wave shape had higher crests and deeper troughs than the highest
1% of normal waves,

• Rogue waves were slightly more narrow-banded than the highest 1% of normal
waves,

• The rogue wave samples exhibit dispersive focusing, resulting in the majority of
frequency components coming into phase with each other at the time of the rogue
wave events,

• The study presented evidence to suggest that rogue waves are extraordinary and
rare occurrences, but still a part of the normal population, and that they are caused
by dispersive focusing.

There is a large amount of literature that discusses the possibility that rogue waves are
examples of solitons or solitary waves. Solitons are known to propagate long distances with
minimal attenuation, and it is this property that makes them dangerous. The equations
involved are the Korteweg-de Vries [4, 6] equation and the nonlinear Schrödinger equation
[3]. These equations assume waves have a long wavelength compared to the depth of the
water. An earlier report at the South African Study Group [5] considered these models in
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more detail and presented simulations of the generation of solitons as the ocean current
flowed over a step in the ocean floor, and so we do not repeat that work here.

This modelling using equations derived from fluid dynamics to consider the gener-
ation of such waves specific to local conditions is one approach. An alternative is to
determine the likelihood of rogue waves in a particular location using data analysis, tak-
ing into account weather, sea state and bottom topography. The group used both of these
approaches and their outcomes are described in what follows.

One part of the group set out to create a simple model of the currents around the
southern part of South Africa, including the gulf stream, the Agulhas current and the
main Southern Ocean easterly current. This model currently includes no topography but
it is hoped that future work might incorporate it so that a simplified wave-height model
might be developed. This is discussed in section 3. Another part of the group adopted
a data-analytic approach and focused on the available meteorological, wave and ocean
surface data for the region. However, in the time available the acquisition of data proved
very difficult and so this component is limited to a suggested procedure. This work is
presented in section 4.

To consider the effectiveness of a simple model, the group decided to attempt to
simulate the large model study done at the University of Edinburgh [7], in which a circular
wave tank, twenty five metres in diameter, was used to generate a wave with the same
properties as a rogue wave. This was motivated in part by the conclusions of Christou
and Ewans [1], who found that the waves consisted of waves combined by dispersive
forcing. A linearised model of the free surface hydrodynamic equations was solved in polar
coordinates and a spike in the center of the basin suggested that it would be possible to
generate such a wave by the focusing of incoming waves. This model was then extended
to include nonlinear effects. These results indicate that a focusing or convergence of the
waves is a possible generating mechanism for rogue waves. This model is described in
section 2.

2 A model of the wave tank experiment

The question of how difficult it might be to generate a wave with rogue wave like properties
was considered by McAllister et. al. [7] who used a large circular basin with the facility
to generate waves from all sides to recreate the famous Draupner rogue wave [2] that was
recorded in the North Sea in 1995.

Here we consider a model that assumes an axisymmetric free surface flow generated in
a circular basin to see if we can approximate their solution. The axisymmetric, unsteady,
irrotational flow of an inviscid, incompressible, fluid of finite depth in a circular tank
beneath a free surface is considered when a wave is transmitted inwards. The assumption
of radial symmetry means the problem can be reduced to finding the free surface profile
as a function of radial distance from the origin.

Consider a fluid beneath a free surface with initial depth H in a circular domain of
radius R̂. The bottom of the tank is at ẑ = 0. We can define a velocity potential Φ(r̂, ẑ, τ)
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such that v̂ = ∇Φ is the velocity vector for the flow in axisymmetric polar coordinates,
and satisfies

∇2Φ = Φr̂r̂ +
1

r̂
Φr̂ + Φẑẑ = 0, 0 < ẑ < N(r̂, τ), 0 < r̂ < R̂, τ > 0

throughout the fluid domain where ẑ = N(r̂, τ) is the equation of the free surface. A
solid, horizontal boundary at depth ẑ = 0 requires that Φz(r̂, 0, τ) = 0 on ẑ = 0 and the
vertical boundary at r̂ = R̂ requires that Φr(r̂, ẑ, τ) = 0.

The conditions on the free surface are the dynamic condition of atmospheric pressure
on the free surface, which comes from the Bernoulli equation

Φτ +
1

2
(û2 + v̂2) + gN = 0 on ẑ = N(r̂, τ) (1)

and the kinematic condition,

Nτ + Φr̂Nr̂ − Φẑ = 0 on ẑ = N(r̂, τ). (2)

Scaling depth with H and velocity with some quantity U = H/T for a typical time T , we
find the dimensionless equations are then

∇2φ = φrr +
1

r
φr + φzz = 0, 0 < z < η(r, t), 0 < r < R, t > 0 (3)

where v = ∇φ subject to

φt +
1

2
(u2 + v2) + η = 0 on z = η(r, t), (4)

and
ηt + φrηr − φz = 0 on z = η(r, t), (5)

while on the base it is required that

φz(r, 0, t) = 0 on z = 0, (6)

Here R is the dimensionless radius of the tank and z = η(r, t) is the elevation of the free
surface and the nondimensional depth is one unit. There is also a condition of no flow
through the boundary of the tank at r = R, and this can be written as

φr(R, z, t) = 0, on r = R. (7)

The initial conditions are that the flow is initiated from a quiescent situation and that
the location of the free surface is known at t = 0 so that

φ(r, z, 0) = 0 on z = η(r, 0) and η(r, 0) = f(r). (8)

where f(r) is the initial elevation of the surface. We will pile up fluid near the outer
boundary and then allow it to flow inwards.
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2.1 The linear problem

The linearized problem is obtained by assuming that v and η are small quantities, so
that product terms can be neglected. The surface equations are then evaluated on z = 1
(rather than z = η(r, t), which would make the problem nonlinear).

Therefore, we seek a solution to Laplace’s equation (3) with the linearized conditions
on the free surface, which are

ηt = φz and φt = −η on z = 1

⇒ φtt + φz = 0 on z = 1, (9)

while on the bottom,
φz(r, 0, t) = 0 on z = 0. (10)

and on the outer boundary
φr(R, z, t) = 0 on r = R. (11)

We choose a form that satisfies the equation (3) and the boundary conditions (10) and
(11), that is,

φ(r, z, t) =
∞∑
k=0

ak(t) cosh(λkz)J0(λkr) (12)

where J0 is the first-kind Bessel function of order 0, and λk, k = 0, 1, 2, . . . are the
eigenvalues of J1, the first-kind Bessel function of order 1, since J ′

0(λkr) = −λkJ1(λkr), k =
0, 1, 2, . . . .

This choice (12) satisfies Laplace’s equation 3 in polar coordinates, and the choice of
λk satisfies equation (11), while the coshλkz term has the property that condition (10) is
satisfied. Thus it remains to satisfy (9).

Substituting (12) into (9), after some work we find that on z = 1,

∞∑
k=0

(a′′k(t) coshλk + a(k, t)λk sinhλk) J0(λkr) = 0 (13)

where dashes refer to differentiation with respect to time. Thence the general problem
for ak(t), k = 0, 1, 2, . . . is

a′′k(t) coshλk + akλk sinhλk = 0 (14)

to which the general solution is (noting that the derivatives are with respect to t only),

ak(t) = Dk sinωkt+ Ck cosωkt (15)

where
ωk =

√
λk tanhλk (16)

and Ck and Dk are constants to be determined. The value of ωk, k = 0, 1, 2, . . . provides
a kind of dispersion relation for the waves of different wavenumber.
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Thus the general solution for φ is

φ(r, z, t) =
∞∑
k=0

(Dk sinωkt+ Ck cosωkt) cosh(λkz)J0(λkr) (17)

In order to determine the form of Dk and Ck we must employ the initial conditions.
From equations (9), we note that

φt(r, 1, 0) = −η(r, 0), (18)

evaluated on z = 1, and so if η(r, 0) = f(r), we find at t = 0

φt(r, 1, 0) =
∞∑
k=0

DkωkJ0(λkr) = −f(r). (19)

Another condition is required to find Ck and we choose φ(r, 1, 0) = 0 for simplicity, which
gives Ck = 0, k = 0, 1, 2, . . . . Now we have a solution for any initial condition. Once Dk

is determined via the orthogonality of eigenfunctions, equation (9) provides that η = −φt
for all time, so

η(r, t) = −φt(r, 1, t) = −
∞∑
k=0

Dkωk cos(ωkt) cosh(λk)J0(λkr) (20)

where Dk is

Dk =

∫ R
0
f(r)J0(λk)rdr∫ R
0
J2
0 (λkr)rdr

, k = 0, 1, 2, . . .

=

∫ R
0
f(r)J0(λkr)rdr
R2

2
J2
0 (λkR)

, k = 0, 1, 2, . . .

2.2 The full nonlinear problem

The linearised equations are only valid for small values of disturbance and velocities, and
so to consider the full problem we need to solve the nonlinear version of the equations
(3-8).

Again, we choose a form for φ(x, z, t) that satisfies the field equation (3) and the
boundary conditions at r = R and z = 0, i.e.

φ(r, z, t) = a0(t) +
∞∑
k=1

ak(t) cosh(λkz)J0(λkr), (21)

and for η(r, t) we choose the compatible form (see 21) to be

η(r, t) = b0(t) +
∞∑
k=1

bk(t)J0(λkr) (22)
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where the coefficients ak(t) and bk(t), k = 0, 1, 2, . . . are to be determined.

Whereas in the linear case, all quantities were calculated on the line z = 1, we must
now do the computations on z = η(r, t), partially invalidating orthogonality as a tool.
Therefore we must solve the problem numerically, and the manner of that solution is to
derive a set of first order differential equations for the ak(t) and bk(t), k = 0, 1, 2, . . . . For
example, knowing that our choice for φ satisfies all boundary conditions we only need
apply it on the free surface. Substituting (21) into (4) and (5) and then multiplying all
by rJ0(λjr) and integrating from 0 to R, we obtain

b′0(t) =
2

R2

∫ R

0

[φz(r, η, t)− φr(r, η, t)ηr] rdr, (23)

b′k(t) =
2
∫ R
0

[φz(r, η, t)− φr(r, η, t)ηr] J0(λkr)rdr
R2J2

0 (λkR)
, k = 1, 2, 3, . . . (24)

a′0(t)
R2

2
+

∞∑
k=1

∫ R

0

a′k(t) cosh(λkη)J0(λkr)rdr

= −
∫ R

0

ηrdr −
∫ R

0

[
1

2
(φ2

r + φ2
z)

]
rdr

= −b0(t)
R2

2
−
∫ R

0

[
1

2
(φ2

r + φ2
z)

]
rdr (25)

[Akja
′
k(t)] = −

∫ R

0

[
1

2
(φ2

r + φ2
z) + η

]
J0(λkr)rdr,

= −bk(t)
R2

2
J2
0 (λkR)−

∫ R

0

[
1

2
(φ2

r + φ2
z)

]
J0(λkr)rdr, k = 1, 2, 3, . . . (26)

where Akj =
∫ R
0

cosh(λkη)J0(λkr)J0(λjr)rdr and (26) is therefore a matrix equation. The
integrals can all be computed to high accuracy using Gaussian quadrature. The series’
are truncated to N terms, and this provides 2N first-order differential equations for the
coefficients ak(t), bk(t), k = 0, 1, 2, . . . , N − 1 and we can step forward in time using any
DE solver (e.g. ode45 in Matlab or lsode in Octave).

2.3 Results of simulations

A simulation with an initial distortion of the surface with height d = 0.1 near the outer
edge of the tank and height zero at r = 0 was performed. The radius was set to be
R = 12.5 to match the basin in the wave tank experiment [7]. This distortion propagated
inward until it reached the centre, where a central wave of height approximately 50%
higher than the original was generated. Figure 1 shows a surface plot of the high peak
generated in the middle, at r = 0, due to the converging wave and it is noticeable that the
surrounding waves are significantly smaller. This is already indicative that the focusing
could create a wave of greater height than the surrounds.
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Figure 1: Surface plot of the peak wave generated by the linear solution. The central
“spike” is the result of convergence of the incoming radial wave.

0 2 4 6 8 10 12
0.9

0.95

1

1.05

1.1

1.15

Radius

S
ur

fa
ce

 e
le

va
tio

n

t=4
t=8

t=12

Figure 2: Comparison of linear solution (solid line) with nonlinear solution (dashed line)
for the radial surface elevation at t = 4, 8, 12. The linear solution peaks at a slighly higher
value at r = 0, but the agreement is good for most of the time. The nonlinear solution
has slightly more wave activity.
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A comparison of the linear and nonlinear solutions is shown in Figure 2 at times
t = 4, t = 8 and t = 12. The comparison is quite good for the case of 50 coefficients
in the series, with the vertical displacement of the nonlinear simulation being slightly
smaller and the wave speed also being marginally smaller. These differences are consistent
with the approximations inherent in the linear solution. This comparison vindicates the
numerical method for the nonlinear equations. However, it is clear from the linear solution
alone that a distortion of the free surface at the edge of the “tank” can lead to a higher
peak in the centre of the basin. Even with a single distortion a wave 50% higher was
generated. However, it is to be expected that if several waves were generated with the
correct frequency then a much larger central “spike” could be generated. It is clear that
a higher wave can be generated if the bottom topography can lead to the generation of
incoming, circular waves to a particular location. This work verifies the possibility that
the focusing of converging waves can lead to the generation of an abnormally high wave as
suggested by McAllister et al [7], and suggests the possibility that a bottom topography
that leads to such focusing might be the cause of some of these waves.

3 Ocean current interactions

One of the possible mechanisms for rogue waves is the interaction and subsequent asso-
ciated turbulence of currents from different directions, such as the multiple currents that
meet at the bottom of the African continent. While it is not possible to simulate com-
pletely the bottom topography of the region and the merging of currents, it is possible to
derive some idea of the flow by considering a simplified geometry.

Assuming an ideal fluid model we considered the flow due to the three major currents
in the region; the southern ocean flow from the west that diverts up to become the gulf
stream, the general southern ocean circulation current and the Algulhas current that
comes down the east coast of Africa. This final current comes down and around to the
west before turning back to join the southern ocean current. This is an area that is very
turbulent and a likely source of high wave activity. Assuming an ideal fluid, then

∇2Φ = 0,

and assuming no flow through the boundaries, in this case the coast of South Africa,
we can estimate the location of the transitions from one current to another, where one
might expect heightened wave activity. To avoid attempting to simulate the whole ocean
circulation, we place a sink on the west coast at B to represent the gulf stream and a
source at D on the east coast to represent the Agulhas current. In this very simple model
we can derive the streamlines from complex variable theory. These provide an idea of the
interactions between the coast and the flows.

Using complex variables it is possible to map the lower half w-plane to the lower half
z-plane with a semi-circle cut out. This cut-out can represent South Africa (see Figure 3).
In the w-plane the solution for the flow in complex variables is

f(w) = Uw +
mB

2π
ln(w − wB)− mD

2π
ln(w − wB)
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Conformal mapping for current flows
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Figure 3: Mappings used in derivation of the flow currents.

which in the z = x+ iy physical plane is

f(z) = φ+ iψ = U(z + 1/z)− mB

2π
(ln(z + 1/z − wB) +

mD

2π
(log(z + 1/z − wD) (27)

where U is the speed of the southern ocean current and mB and mD represent the sink and
source strengths to simulate the gulf stream and Agulhas currents respectively. Varying
these can simulate differing current strengths, as seen in Figure 4, which shows an example
where the Agulhas current pushes further around so that the dividing line is on the west
coast (top panel), while the second case (bottom panel) shows the symmetric case where
the attachment to the coast is at the southern-most tip of the cape. These represent
seasonal variations and knowing the locations of interaction is important in identifying
potential locations of higher turbulence and waves.

This is a very approximate solution and clearly is not representative of the actual flow
volumes, but a more accurate representation can be obtained by using more complicated
mappings, including the location of islands and also some depth averaging to compute the
flows. The behaviour of these currents and the flows can be modified to take into account
the ocean bottom topography, including the continental shelf and the many islands and
rocks in the region. Using these solutions, we can see a flow situation that indicates the
dividing lines shown schematically in Figure 3. In this simplified model the flows are
divided in such a way that the dividing streamlines appear to attach to the coast. The
location of these separation points will vary as the oceanic flows vary, meaning that there
will be regions where there may be some locations for which there will be rapid changes
in current environment, flow and direction. The Algulhas region has the prevailing winds
directly opposed to the current direction leading to the likelihood of steeper waves, and
there is also interaction with the continental shelf which could generate waves in certain
circumstances. More detailed data is needed to extend this model further.
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Figure 4: Examples of flow past “South Africa”. In these, U = 1, wB = −wD = 2.2, and
mB = 0.85,mD = 0.45 (top) and mB = 0.8,mD = 0.8 (bottom). In the former case the
dividing streamlines attach to the coast more to the upstream (western) side, while in the
latter case it is symmetric, and so attaches to the southern most point of land.
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4 Data analytic approach

In the absence of local detail in the model, it is reasonable to consider a range of ocean and
weather data at different coastal locations and correlate with the known occurrences of
large waves. It may be possible to obtain a time series of significant wave height for each
region and then work out likelihood of larger wave convergences. We note that if significant
wave height is 4 m, then a “rogue” would be potentially 8 m or more, but if significant
wave height is 2m, then a 4 m “rogue” is unlikely to be as serious. However we note that
rogue waves have often been described as having arisen out of calm sea conditions. Using
these data, it would be possible to work out how often the sea conditions might lead to a
rogue wave of sufficient magnitude to cause damage, or to find a correlation between sea
conditions, weather and wave occurrence, thus providing conditions under which warnings
could be made.

4.1 Some real data

Figure 5: Wave heights and windspeed at the four ports, Cape Aghulhas, Cape Point,
East London (Ngqura) and Durban over a 12 day period in January, 2024, computed from
the available data.

The group was unable to obtain full data sets for an extended period, but was able
to collect data from 4 locations over a 12 day period. Figure 5 shows data for the four
locations, of Cape Aghulhas, Cape Point, East London (Ngqura) and Durban harbours.
Wave heights and wind speed for the four ports are shown over the same period and
assessment of these factors might be used to consider the major factors such as wind
speed and direction and ocean current that may lead to the formation of rogue waves and
the times at which they occur. Using these, it was possible to estimate the significant
wave height at the four locations; Cape Agulhas (3.04), Cape Point (3.14), East London
(Ngqura) (2.31) and Durban (1.91). It is clear that higher significant wave height might
lead to more likelihood of a damaging rogue wave.
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(a)

(b)

Figure 6: Port of Agulhas wind speed and direction over the period of data (upper panel),
and some interpretation as a wind rose showing the magnitude and wind direction over
the relevant period at the Port of Agulhas in a convenient format (lower panel).
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Using this information, plots such as Figure 6 (upper panel) can be interrogated to
produce plots such as Figure 6 (lower panel) which takes the data and produces a so-
called “rose plot” of wind. The prevailing wind direction at the Port of Agulhas over this
period, and its strength, can clearly be seen. Similar plots for other factors and statistical
analyses to test for correlations between weather, sea state and topography can be used
to identify conditions under which rogue waves form and propagate.

5 Final remarks

This is a very difficult problem. Trying to predict an event that is 1 in 30,000 is fraught
with uncertainty and is almost certainly highly dependent on the initial conditions of
any model. Therefore a simulation model would not be able to predict exact times and
locations, but rather locations in which rogue waves are likely to be encountered.

We have demonstrated that we can reproduce the conditions for the formation of rogue
waves by almost reproducing the Draupner Wave Tank Experiment and, in previous work
[5], using the Korteweg deVries and Schrödinger equations to generate solitons for flow
over bottom obstructions. However, these can not resolve all of the topography of the
Southern African coast and so further work is necessary.

The group believes that a detailed analysis of sea state and weather conditions at
times when rogue waves have been reported is likely to be the most fruitful in prediction
and hence mitigating the damage from these events.
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