INTRODUCTION

For the cricket pace bowler to bowl an accurate delivery as fast as possible to the opposing batsman, an injury-free status is crucial. Although bowling-related kinematic studies have focused on the association between spinal and knee kinematics, and lower back injury these studies have not investigated injuries sustained in the lower quarter as a whole – lower back injuries in combination with comorbid lower limb injury.\(^1\) Due to the kinetic chain connecting all segments of the lower limb to the spine,\(^2\) low back dysfunction appears to be associated with lower limb injury.\(^1\) Since lower quarter injuries are common in pace bowlers,\(^3\) the investigation of all lower quarter injuries may provide useful insights. The comparison of kinematics at the start and at the end of the season and between injured and non-injured players, may give valuable information on the relationship between injury and spinal/knee kinematics during the bowling action.

AIM

The aim of this study is to compare pre-season and post-season spinal and knee kinematics as well as to compare spinal and knee kinematics between injured and non-injured bowlers.

METHODS

31 injury-free, premier league (amateur) cricket pace bowlers over the age of 18 years were invited to participate in this study. Five high-speed digital cameras (PixeLINK®) recording at 85 Hz, captured a standardised marker set.\(^4\) This was done using the delivery stride. All the kinematic analysis was done using Matlab \(^7\) (Mathworks, Natick).

Kinematic analysis in two predefined delivery positions:

- Front foot placement
- Ball release

An injury was defined as a "musculoskeletal condition that resulted in loss of at least one day of sporting activity or that occurred during a sporting activity that required medical attention and which forced the bowler to quit the activity."\(^5\) All bowlers were injury free at the start of the season.

ACKNOWLEDGEMENTS

I would like to acknowledge:
- The Carnegie Foundation, the National Research Foundation and the South African Society of Physiotherapy for funding.
- The pace bowlers who participated in this study for their time and enthusiasm.

REFERENCES


CONCLUSIONS

Differences found between injured and non-injured groups can be explained by three theories. Firstly, the fear-avoidance model states that an individual’s fear of movement may lead to avoidance of movements or positions that typically increase pain.\(^4\) Secondly, the pain-adaptation model suggests that pain afferent activity decreases activity in a muscle that is responsible for moving a joint into a pain-provoking position and increases the activity of the muscle antagonists, which leads to a decrease in velocity and limits excursions, and protection against pain.\(^2\) Furthermore, flexion and extension adaptation strategies of the trunk changed the shear forces on the knee.\(^5\) The association between kinematics and lower quarter injuries may reflect an attempt to increase ball release speeds. Low back and knee kinematics, as found in the power phase of the pace bowling action, is associated and may predict lower quarter injuries in cricket pace bowlers.