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Abstract: Understanding the operation of filters used to remove particulates from fluids is important1

in many practical industries. Typically the particles are larger than the pores in the filter so a cake2

layer of particles forms on the particles on the filter surface. Here we extend existing models for filter3

blocking to account for deformation of the filter material and the cake layer due to the applied pressure4

that drives the fluid. These deformations change the permeability of the filter and the cake and hence5

the flow. We develop a new theory of compressible-cake filtration based on a simple poroelastic model6

in which we assume that the permeability depends linearly on local deformation. This assumption7

allows us to derive an explicit filtration law. The model predicts the possible shutdown of the filter8

when the imposed pressure difference is sufficiently large to reduce the permeability at some point9

to zero. The theory is applied to industrially relevant operating conditions, namely constant flux,10

maximising flux and constant pressure drop. Under these conditions, further analytical results are11

obtained, which yield predictions for optimal filter design with respect to given properties of the12

filter materials and the particles.13

14
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1. Introduction16

Membranes are an ideal choice for filtering of fluids because they can create highly selective17

barriers that can retain particles due to various processes such as size-exclusion (straining),18

electro-chemical and other effects [1]. As a result, membrane filtration has become the method of choice19

in various applications for separations, not only due to its economic advantage over other separation20

techniques due to lower energy costs, but also because it is better suited to preserve the quality of21

the product in the food and beverage industry than other purification processes [2]. Applications in22

industry range from small-scale (protein filtration, virus removal) to large-scale (wastewater treatment)23

processes. Classical modes of operation include dead-end and cross-flow filtration, depending on24

whether the filter membrane surface is, respectively, either perpendicular or parallel to the flow25

direction [3].26

There are two main different ways in which the particles in the fluid can be retained by the27

membrane. In the first, which is characterised by the particles being small compared to the membrane28
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pores, retention occurs inside the membrane, while in the second, which is characterised by the29

particles being bigger than the membrane pores, retention occurs by particles forming an additional30

layer on top of the membrane, usually referred to as a cake. In this work, we will refer to the whole31

device comprising a filter (the membrane) and a cake as a filtercake. Modelling of cake formation32

during both dead-end and cross-flow filtration has been studied extensively in the literature (see, for33

example, King & Please [4] and Sanaei et al. [5]).34

Early core work on the build-up of a cake at a membrane surface comprised studies in35

compressional rheology. In the pioneering paper by Buscall & White [6] , the authors developed36

a theory of sedimentation in the form of a two-phase model, which forms the basis of many subsequent37

modelling efforts. A notable feature of this paper that permeates subsequent work is the concept of a38

yield stress of the cake, which is estimated using experimental data. The resulting model comprises39

a one-dimensional nonlinear diffusion equation for the volume fraction with a moving boundary40

denoting the free surface of the cake. The diffusion coefficient depends on both the permeability of41

the cake and the yield stress. In Landman et al. (1995) [7], the authors showed how the framework42

developed by Buscall & White [6] can be reconciled with simpler rheological relationships in the43

context of pressure filtration. In particular, the authors show how the growth of the cake layer can be44

predicted for a given applied pressure difference.45

Applications of the compressional rheology theory to particular filtration processes are studied46

further in Landman et al. (1997) [8], with the objective of using optimal control to maximise the47

processing rate. In this case they reduce the nonlinear diffusion equation derived in Buscall & White [6]48

to a linearised version to facilitate a more tractable analysis. Similarly, Kapur et al. [9] consider a49

simplified version of the model of Buscall & White [6] to speed up computation.50

Dewatering is an important application in which cake build-up is a key feature. In this process,51

water is removed from solid material or soil with the target product being the solid material. Stickland52

et al. (2016) [10] study the dewatering process using the ideas of compressional rheology in a case53

where speed is the primary objective in forming the cake layer. Stickland et al. (2018) [11] also show54

how compressional rheology models may be used to describe the specific case of wastewater treatment.55

Hewitt et al. [12] show how the use of a compressive yield stress is a crucial component in accurately56

capturing the dewatering process. They validate their theory using experiments and demonstrate how57

the product that is being filtered plays a key role in the behaviour, finding that their model does not fit58

the behaviour for the filtration of cellulose. Finally, Eaves et al. [13] study the dewatering process for59

paper and slurries. Again the key concept here is the modelling of water flow through a deforming60

consolidating material, however the main novelty in this paper is the more complicated physical61

configuration of the filtration process that is considered.62

Vacuum filtration is another industrial process in which the build-up of cake is an important63

characteristic. A notable differentiating feature of this process to those aforementioned is that64

desaturation effects must be taken into account to model the air–liquid capillary imbibition (see65

for example Stickland et al. (2010) [14]).66

While there is an extensive body of literature that focuses on the accurate modelling of the67

formation and growth of a cake layer on a membrane, there has been much less work done to examine68

how mechanical deformation of both the cake and the underlying filter material, and the interplay69

between the two, might affect the behaviour of the entire system, and it is this question that forms the70

focus of this study.71

We consider an elastic-response model to describe both the membrane and cake behaviour,72

which will allow for both a suitable characterisation of the membrane dynamics while enabling a direct73
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comparison between the behaviour of the two materials. When a fluid flows through a porous medium,74

it exerts forces on the porous matrix, inducing deformations. These deformations in turn affect the75

local permeability of the material, which then influences the fluid flow. This coupling between the76

fluid flow and porous medium deformation is often modelled using poroelasticity theory, developed77

in the first half of the 20th century by Terzaghi and Biot [15,16] and since then applied in a plethora of78

industrial as well as biological applications [17–22].79

To our knowledge, the first attempt to explicitly model the effects of elastic deformation on the80

local permeability of the porous medium was presented in Parker et al. [18]. Authors extended a81

one-dimensional steady-state poroelastic model – comprising Darcy’s law for fluid flow, the Navier82

equation (equipped with a pressure gradient term arising from Terzaghi’s principle) for deformation83

and a conservation equation for fluid – by assuming a variety of constitutive assumptions relating84

local strain and permeability. In Köry et al. [23], the analytic solution under the linear constitutive85

assumption from Parker et al. [18] was used to obtain explicit conditions for porous medium shutdown86

(deformation leading to locally zero permeability, which allows no flow through the medium). The87

analysis was then extended to the case of non-uniform rest-state permeability, i.e., permeability in the88

absence of any flow, with a special emphasis on applications to filtration processes.89

Other models introduce more realistic descriptions of flow-deformation coupling either via90

power-law constitutive assumptions or using explicitly multi-phase frameworks (see Lee & Wang [24]),91

but these are both less intuitive and less amenable to analytical progress, and become computationally92

challenging as the number of model parameters increases. A more complicated model consisting of a93

poroelastic model (with a more advanced relationship between the local permeability and deformation)94

and a fouling model (modelling the effects of caking and intra-membrane clogging separately) has95

recently been employed to explain the observed pressure time signatures in direct-flow filtration under96

constant flux [25].97

In this work, we extend the simple poroelastic framework from Köry et al. [23] to model cake98

filtration in a dead-end filter. The key objective of this work is to understand how deformations in99

both the filter and the cake interact with one another and affect the behaviour of the overall filtration100

process. We continue to assume the elastic response is instantaneous on the time scale of filtration,101

however the problem is time dependent due to the cake formation which takes the form of a moving102

boundary problem. In Section 2, we formulate the model for a compressible filtercake including the103

boundary and interface conditions. We choose to model the system using a linearised theory in order104

to elucidate the concept of the interplay between the compression of the cake and the underlying105

membrane; the modelling ideas we lay out here readily generalise to more complex nonlinear theories.106

We nondimensionalise the system and then find the conditions required to both ensure the validity107

of small-deformations assumptions and avoid filter shutdown. We then derive the resulting caking108

filtration law (equation (30)). The caking law depends on the time-dependent pressure drop across109

the filtercake and two dimensionless material parameters, reflecting the behaviour of the two porous110

media (the filter and the cake; c.f. Köry et al. [23]).111

In Section 3, we study the implications of the theory to three industrially relevant operating112

conditions, namely constant flux, maximising flux, and constant pressure-drop filtration, placing an113

emphasis on optimal filter design in each case. We conclude in Section 4 by summarising the most114

important outcomes of our analysis and identifying areas in which the proposed theoretical framework115

could be improved and extended.116



Version December 21, 2020 submitted to Modelling 4

2. Poroelastic model of cake formation117

We shall assume that both the cake and filter are compressible and propose a model for a118

one-dimensional dead-end filtration device where the increase of resistance of a filter is due to both119

the build-up of a cake and the compression of both the filter and the cake.120

2.1. Governing equations121

We denote the thickness of the cake in the undeformed configuration in the absence of fluid flow122

by L̃c and that of the filter in the undeformed configuration by L̃ f . We will use the assumption of small123

deformations throughout this work (namely that the applied pressure difference on the system leads124

to deformations that are small compared to the sizes of the two porous media), and so, for example,125

we may impose the problem on a region whose boundaries do not depend on the deformations.126

2.1.1. Flow and cake build-up127

Employing the framework from Köry et al. [23], we introduce a spatial variable x̃, impose an128

input pressure p̃in at x̃ = L̃ f + L̃c and impose an output pressure p̃out at x̃ = 0 such that p̃in > p̃out129

(see Figure 1). This results in a one-dimensional flow oriented in the negative x̃ direction. We denote130

q̃(t̃) to be the (positive) fluid flux through the filtercake and allow p̃in to vary with time but hold p̃out131

constant. We assume that all the particles are bigger than the pores in the filter.132

Consider the feed solution (the mixture of fluid and particles) with a solid volume fraction φ

assumed to be uniform in space and independent of time approaching the moving cake front at
constant speed ṽ. During (an infinitesimal) time δt̃, the particles travel a distance ṽδt̃ and will cause
a growth in the cake size δL̃c. Since the particles move in the direction opposite to the cake growth,
in this time interval a mass of volume φÃ(δL̃c + ṽδt̃) has arrived at the cake from the feed where Ã
denotes the cross-sectional area of the cake. Taking into account particle packing in the cake with φc

denoting the solid volume fraction in the cake in its strain-free state, this mass is transformed into a
cake size increase of φc ÃδL̃c. Equating these two quantities, dividing by δt̃Ã and taking the limit as
δt̃→ 0 gives

φ

(
dL̃c

dt̃
+ ṽ
)
= φc

dL̃c

dt̃
, (1)

which may be rearranged to give
dL̃c

dt̃
=

φ

φc − φ
ṽ. (2)

Finally, conservation of the fluid across the moving front requires that ṽ = q̃/(1− φ) which upon
substitution into (2) yields

dL̃c

dt̃
=

φ

(1− φ)(φc − φ)
q̃(t̃). (3)

Note that it is natural to assume that φ < φc, as the particle packing in the feed fluid should always be
less than that in the (strain-free) cake. We assume that once the particles arrive at the cake surface they
become bound to the cake and cannot detach and re-enter the feed stream. Thus we do not consider
the effects of concentration polarisation here. Because we assume that initially the system is clean so
there is no cake we have L̃c(0) = 0 as an initial condition. We are often interested in the throughput,
T̃ , which is defined as the total volume of fluid processed per unit area of membrane at a given time, t̃,

T̃ (t̃) =
∫ t̃

0
q̃(t̂)dt̂. (4)
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Figure 1. Schematic set-up of the model for compressible filtercake.

Following Parker et al. [18] and Köry et al. [23], the permeabilities of the filter k̃ f and of the cake
k̃c are assumed to depend linearly on the strain ∂ũ(x̃, t̃)/∂x̃ , with ũ(x̃, t̃) denoting the displacement
field of the material from its undeformed state, and will vary spatially as well as in time here, due to
cake build-up. Thus we propose

k̃i

(
∂ũi
∂x̃

)
= k̃1,i + k̃2,i

∂ũi
∂x̃

, (5)

where we have introduced a subscript i, which here and henceforth can attain two values, f133

or c, corresponding respectively to the filter domain, x̃ ∈
(

0, L̃ f

)
, and the cake domain, x̃ ∈134 (

L̃ f , L̃ f + L̃c(t̃)
)

. Note that we assume that ∂ũi/∂x̃ is a good approximation to the strain and this135

is because we are assuming deformations are small. We note further that, while in reality the136

permeability may possess a more complex relationship with the deformation, equation (5) is an137

appropriate approximation in the small-deformation regime we are considering.138

With this notation Darcy’s law, for slow viscous flow of a fluid through a porous material, is

q̃i =
k̃i
η̃

∂ p̃i
∂x̃

, (6)

where p̃(x̃, t̃) is the fluid pressure and η̃ the fluid viscosity. We assume the fluid to be incompressible,139

which implies that the flux q̃i is uniform in space (independent of x̃) for both the cake and the filter,140

and the continuity of flux at the filter–cake interface implies that q̃ f (x̃, t̃) = q̃c(x̃, t̃) = q̃(t̃).141

2.1.2. Deformation142

We assume small one-dimensional deformations and that the timescale of poroelastic response is
much smaller than that of caking (similar to Herterich et al. [25]). Linear poroelasticity theory [26] then
informs us that the displacement of the filter and cake ũi(x̃, t̃) can be modelled using a steady-state
Navier equation extended by the Terzaghi term

∂ p̃i
∂x̃

=
(
λ̃i + 2µ̃i

) ∂2ũi
∂x̃2 , (7)

where λ̃i and µ̃i denote the effective elastic constants of the filter and the cake (see Köry et al. [23] for143

details).144
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2.1.3. Boundary and interfacial conditions145

We fix the end of the filter at x̃ = 0 using a porous grid that offers no resistance to the fluid flow
and assume that the open end of the cake at x̃ = L̃ f + L̃c(t̃) is free. Then, the boundary conditions read

p̃ f (0, t̃) = p̃out, p̃c

(
L̃ f + L̃c(t̃), t̃

)
= p̃in(t̃), ũ f (0, t̃) = 0,

∂ũc

(
L̃ f + L̃c(t̃), t̃

)
∂x̃

= 0. (8)

The equations governing p̃ and ũ, Darcy’s law (6) and the Navier equation (7), are, respectively,
first- and second-order in space. Thus, to close the problem we impose continuity of fluid pressure,
displacement and stress:

p̃ f (L̃ f , t̃) = p̃c(L̃ f , t̃), ũ f (L̃ f , t̃) = ũc(L̃ f , t̃), (λ̃ f + 2µ̃ f )
∂ũ f

∂x̃
(L̃ f , t̃) = (λ̃c + 2µ̃c)

∂ũc

∂x̃
(L̃ f , t̃).

(9)
Altogether, this forms a moving-boundary problem, with the moving boundary located at L̃ f + L̃c(t),146

with three unknown functions p̃(x̃, t̃), ũ(x̃, t̃) and L̃c(t). This dimensional model depends on 13147

parameters namely; L̃ f , p̃out, φ, φc, k̃1,c, k̃2,c, k̃1, f , k̃2, f , η̃, λ̃ f , µ̃ f , λ̃c, µ̃c, and one input function, p̃in(t̃).148

Note that there usually exists a one-to-one correspondence between the permeability and the solid149

volume fraction of a (strain-free) porous medium. This means that φc in our approach is not an150

independent parameter and, if needed, could be expressed as function of k̃1,c.151

2.2. Nondimensionalisation152

Denoting ∆i p := ( p̃in(0)− p̃out)/(λ̃i + 2µ̃i), we nondimensionalise as

x̃ =
(

L̃ f

)
x, ũi =

(
L̃ f ∆c p

)
ui, L̃c(t̃) =

(
L̃ f

k̃1,c

k̃1, f

)
Lc(t), p̃i = ( p̃in(0)− p̃out)pi + p̃out,

(10)

q̃ =

(
k̃1, f

η̃ L̃ f
( p̃in(0)− p̃out)

)
q, t̃ =

(
(1− φ)(φc − φ)η̃k̃1,c L̃2

f

φk̃2
1, f ( p̃in(0)− p̃out)

)
t, T̃ =

(
(1− φ)(φc − φ)k̃1,c L̃ f

k̃1, f φ

)
T ,

(11)
for i = f , c. These scalings are chosen to be natural to the model so that the resulting governing
equation for the evolution of the cake thickness possesses the fewest number of parameters, as we
shall observe subsequently (see equation (30)). We introduce the following dimensionless quantities

νi =
λ̃i + 2µ̃i

λ̃c + 2µ̃c
, ωi =

k̃1,i

k̃1, f
, Γi = ∆c p

k̃2,i

k̃1, f
, P(t) = p̃in(t̃)− p̃out

p̃in(0)− p̃out
. (12)

We note that νc = ω f = 1, and so, for convenience, we introduce ν f = ν and ωc = ω and use this from153

hereon whenever there is no ambiguity.154

Using these scalings and notation the dimensionless filter and the cake regions are represented by
x ∈ (0, 1) and x ∈ (1, 1 + ωcLc). The dimensionless cake-evolution equation is

dLc(t)
dt

= q, (13)

Darcy’s law is

q = ki
∂pi
∂x

, (14)
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where
ki = ωi + Γi

∂ui
∂x

, (15)

and the deformation of the two porous media is governed by the Navier equation

∂pi
∂x

= νi
∂2ui
∂x2 . (16)

The boundary conditions (8) become

p f (0, t) = 0, pc(1 + ωLc(t), t) = P(t), u f (0, t) = 0,
∂uc(1 + ωLc(t), t)

∂x
= 0. (17)

Continuity of fluid pressure and displacement at x = 1 become the same conditions for the
dimensionless variables, while the dimensionless form of the third interfacial condition from (9)
is

ν
∂u f

∂x
(1, t) =

∂uc

∂x
(1, t). (18)

For this choice of nondimensionalisation, the definition of throughput (4) indicates that T = Lc and so155

the dimensionless throughput and the cake thickness are interchangeable. The dimensionless model156

depends only on four model parameters, namely, ν, ω, Γ f and Γc, and one input function P .157

2.3. Model restrictions158

Using the same methodology as in Köry et al. [23], before solving the problem, we discuss the159

restrictions on model parameters required so that the small-deformations assumption is valid and so160

that shutdown is avoided. It can be shown (see Appendix A) that provided ∆c p � 1, ∆ f p � 1 and161

P = O(1) the small-deformations assumption holds in the filtercake for all times.162

The filtercake will shut down if the permeability reaches zero at any point in the depth and this163

may occur in the filter or in the cake. We now explore the conditions on the dimensionless parameters164

and the pressure-drop evolution that allow us to avoid this shutdown behaviour.165

2.3.1. Avoiding filter shutdown166

We expect the maximum strain in the filter to occur at the porous grid (x = 0). From (A2) and
the form of the permeability function (15) this permeability will remain positive provided the applied
transmembrane pressure

P(t) < ν

Γ f
. (19)

We note that P(0) = 1 and so we require
Γ f < ν (20)

to avoid initial filter shutdown before any cake has deposited.167

2.3.2. Avoiding cake shutdown168

To avoid shutdown in the cake, the permeability from (15) needs to be positive everywhere in the
cake, which is equivalent to

− ∂uc

∂x
(x, t) <

ω

Γc
. (21)
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Integrating the Navier equation (16) within the cake and using the boundary conditions (17b,d), we
conclude for x ∈ (1, 1 + ωLc)

P(t)− pc(x, t) = −∂uc

∂x
(x, t), (22)

which in combination with (21) yields

P(t) < pc(x, t) +
ω

Γc
(23)

and this gives us a restriction to avoid shutdown in the cake. Note that the pressure distribution within169

the cake is not known a priori and must be determined as part of the solution.170

2.4. Solution171

We now analyse the dimensionless problem (13)–(18) to determine the solution. Substituting172

the expression for the pressure-gradient term from the Navier equation (16) into Darcy’s law (14),173

integrating with respect to x and using the boundary condition (17d), we conclude174

νΓ f

2

(
∂u f

∂x

)2

+ ν
∂u f

∂x
− q(t)(x− f1(t)) = 0 for x ∈ (0, 1),

Γc

2

(
∂uc

∂x

)2
+ ω

∂uc

∂x
− q(t) {x− [1 + ωLc(t)]} = 0 for x ∈ (1, 1 + ωLc(t)),

(24)

where f1(t) is an integration constant. This constant can be determined using the continuity of stress
at the filter–cake interface (18) (details of the calculations used throughout this section are presented in
Appendix B) and we arrive at

f1(t) = 1 +
ν

2Γ f q(t)

1−
[

1−
Γ f ω

Γcν

(
1−

√
1− 2Γcq(t)

ω
Lc(t)

)]2
 . (25)

Equation (24) is subsequently solved to give

∂u f

∂x
=− 1

Γ f

1−

√√√√[1−
Γ f ω

Γcν

(
1−

√
1− 2Γcq(t)

ω
Lc(t)

)]2

+
2Γ f q(t)

ν

[
x− 1

] for x ∈ (0, 1),

∂uc

∂x
=− ω

Γc

{
1−

√
1 +

2Γcq(t)
ω2

[
x− (1 + ωLc(t))

]}
for x ∈ (1, 1 + ωLc(t)).

(26)
Substituting the strain field from (26) into Darcy’s law (14), integrating and using the continuity of
pressure across the filter–cake interface as well as appropriate boundary conditions, we arrive at an
equation relating q(t), Lc(t) and P(t):

P =
ν

Γ f

1−

√√√√[1−
ωΓ f

νΓc

(
1−

√
1− 2ΓcqLc

ω

)]2

−
2Γ f q

ν

 . (27)

We further define

γ f =
Γ f

ν
=

p̃in(0)− p̃out

λ̃ f + 2µ̃ f

k̃2, f

k̃1, f
, γc =

Γc

ω
=

p̃in(0)− p̃out

λ̃c + 2µ̃c

k̃2,c

k̃1,c
, (28)
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and note that these dimensionless parameters are natural extensions for the two porous media (filter
and cake) of the dimensionless sensitivity parameter γ from Köry et al. [23]. These parameters
characterise the sensitivity of the permeability of each porous medium to its deformation. While the
precise values of γ will depend on the particular filter material and the contaminants that are being
filtered, we may make some general observations on the values that may be taken. First, we note that
both γ f and γc must be positive. Second, we require γ f < 1 in order that the filter does not shutdown
before any cake has been deposited (see equation (20)). Third, we would usually expect the cake to
be more deformable than the filter material. This means that we would expect the effective elastic
constants, λ̃ and µ̃, to be smaller for the cake than the filter, and so we would expect that γc > γ f .
Recalling that, at t = 0, we have Lc = 0 and P = 1, (27) provides an expression for the flux at t = 0
given by

q(0) =
2− Γ f /ν

2
=

2− γ f

2
, (29)

which is consistent with Equation (22) from Köry et al. [23]. Upon solving (27) for q, we substitute back175

into the cake-evolution equation (13) to obtain176

dLc(t)
dt

=
−
{

1/γc(1− γ f /γc)2Lc(t) + [1 + γ f /γcLc(t)]× [γ fP2(t)/2−P(t)− γ f /γ2
c + 1/γc]

}[
1 + γ f /γcLc(t)

]2
+

(
1− γ f /γc

)
/γ

1
2
c

√
(γ fP2(t)− 2P(t))Lc(t) + 1/γc

(
(1− γ fP(t))2L2

c (t) + 2Lc(t) + 1
)

[
1 + γ f /γcLc(t)

]2 . (30)

We have thus arrived at a first-order autonomous ordinary differential equation for the cake size177

with explicit dependencies on the model parameters. In summary the cake evolution depends on the178

input function P , defined in (12), and two groupings of dimensionless parameters, γ f and γc, defined179

in (28). Even though it is not straightforward to see the impact of individual parameters on cake size180

evolution, equation (30) will be our starting point throughout Section 3 where we discuss industrial181

applications of our modelling framework. Furthermore, given arbitrary γ f , γc and pressure evolution182

P(t), one can obtain Lc(t) by numerically solving (30) (equipped with Lc(0) = 0). The cake-evolution183

equation (13) then gives q(t). The strain field may be inferred from (26), which can subsequently be184

integrated to give the displacement field using the boundary condition (17c).185

Note that in terms of the new dimensionless parameters from (28), the condition for avoiding
filter shutdown (19) can be reformulated as

P(t) < 1
γ f

(31)

and the condition for avoiding cake shutdown (23) as

P(t) < pc(x, t) +
1
γc

, (32)

which needs to hold everywhere inside the cake. As the cake-evolution equation (30) cannot be
explicitly solved for arbitrary pressure drop evolution P(t), we do not have an explicit formula for the
pressure distribution in the cake. To obtain a simple cake-shutdown condition in terms of variables that
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we keep track of (as opposed to the pressure pc), we infer from the form of the permeability function
(15), the strain field (26) and the definitions of the dimensionless parameters (28) that

kc(1, t) = ω
√

1− 2γcq(t)Lc(t), (33)

and it follows that the cake shutdown is reached whenever

q(t) =
1

2γcLc(t)
. (34)

This condition will help us avoid cake shutdown on a case-by-case basis in Section 3, where we will186

use this theory to answer industrially motivated questions.187

3. Industrial applications188

We now apply the theoretical framework that we have developed so far to industrially relevant189

problems. Specifically, we study three commonly employed filtration regimes – constant flux, greedy190

(where one wishes to achieve maximum total amount of fluid processed, or throughput, at any given191

time) and constant pressure drop. In each case, we aim to find the material properties of the filter192

(represented by the dimensionless parameter γ f ) that optimise a given industrial goal for given193

material properties of the contaminant to be filtered (represented by the dimensionless parameter γc).194

3.1. Adaptive pressure drop to obtain constant flux195

A common operating regime in industry is to filter fluids at a constant flux. Enforcing a constant
flux q(t) = q0, we find, using (29), that

q0 =
2− γ f

2
. (35)

The solution to the cake-evolution equation (30) that satisfies the initial condition Lc(0) = 0 is then

Lc(t) = q0t. (36)

It can then be shown (see Appendix C) that the time evolution of the transmembrane pressure difference
across the entire filtercake is given by

P =

γc −

√√√√2γ2
c + γ f

(
2γ2

c (γ f − 2) + 4γ f − γc

(
γ f (γ f − 2)2t + 4

)
+ 2(γc − γ f )

√
4− 2γc(γ f − 2)2t

)
2

γ f γc
.

(37)
We note that in the limit of an incompressible filter, γ f = 0, which gives q0 = 1 in (35), while (37)
reduces to

P = 1 + 1/γc −
√

1/γ2
c − 2t/γc. (38)

We see that the transmembrane pressure difference rises with time, to maintain the constant flux as196

a result of the increased resistance offered by the build-up of the cake. Eventually the pressure will197

become sufficiently large such that, at a point in either the filter or the cake, the permeability will reach198

zero and the filter will shut down, with the pressure when this occurs given by P = 1/γ f as seen in199

(31). Beyond this point, no further fluid may be processed while maintaining constant flux. In practice,200

filtration is conducted only until some threshold pressure (< 1/γ f ) is reached.201
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3.1.1. Observations202

We now consider the behaviour of the system when it is operated in a constant flux regime using203

the model we have developed.204

For weakly compressible cakes (γc = 0.01, Figure 2a) the higher the value of γ f the sooner the205

shutdown occurs. The shutdown is first reached within the filter for any value of γ f here. For a206

moderately compressible cake (γc = 1, Figure 2b), while shutdown is reached in the filter for higher207

values of γ f , we now find that shutdown occurs in the cake if γ f is sufficiently low (γ f = 0.2).208

When the cake is very compressible (γc = 100, Figure 2c) the shutdown always occurs in the cake.209

Furthermore, in this case, while the behaviour for different values of γ f is similar at early time, at some210

point the pressure difference for the lowest value of γ f (0.2, black) overtakes that of the higher values211

of γ f (0.4 and 0.6, blue and green curves respectively). This reflects the fact that the cake resistance is212

becoming the limiting factor (Figure 2c).213

Note that while in the case of incompressible filtercake, one needs to linearly increase pressure214

drop with time to maintain constant flux (cf. bottom-left subfigure of Figure 3 in Ripperger et al. [27]),215

when compression effects are taken into account, a superlinear growth of pressure drop is needed.216

Inspired by these observations, we now examine whether the shutdown under constant-flux217

filtration first occurs in the cake or in the filter.218

3.1.2. Where and when does the shutdown take place?219

To determine whether the shutdown occurs in the filter or the cake, and the time tmax at which
this occurs, we must first evaluate the strain and this can be determined from the strain field (26)
using q = q0 from (35) and Lc(t) = q0t. Using the results (35) and (36) as well as the definitions of
dimensionless parameters from (28), this gives

∂u f

∂x
= − 1

Γ f
+

1
Γ f

√√√√√1− γ f /γc + γ f /γc

√
1−

(2− γ f )2

2
γct

2

+ γ f (2− γ f ) (x− 1) for x ∈ (0, 1),

∂uc

∂x
= −1/γc + 1/γc

√√√√1 +
(2− γ f )γc

ω

[
x−

(
1 +

ω(2− γ f )

2
t

)]
for x ∈

(
1, 1 +

ω(2− γ f )

2
t

)
.

(39)
Provided γ f < 1 (which is required to avoid filter shutdown at t = 0, see (20)) the maximum strain
within the filter continues to occurs at x = 0 (the porous grid) where it attains the value

∂u f

∂x
=

√[
1− γ f /γc + γ f /γc

√
1− (2−γ f )2

2 γct
]2
− γ f (2− γ f )− 1

Γ f
.

Within the cake the maximum strain occurs at x = 1 where the value
(√

1− (2− γ f )2γct/2− 1
)

/γc

is attained. It is easy to see that both the maximum compression within the filter and that within the
cake increase with time. We conclude that the shutdown might either occur in the filter at time tmax

f
satisfying 1− γ f /γc + γ f /γc

√
1−

(2− γ f )2

2
γctmax

f

2

= γ f (2− γ f ) (40)
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(d) What will shut down first?

Figure 2. Temporal evolution of the transmembrane pressure difference P to maintain a constant flux
for varying values of γ f = 0.2 (black), 0.4 (blue), 0.6 (green) and 0.8 (red), and for (a) γc = 0.01 (b) 1
and (c) 100. The horizontal dashed lines show the critical pressure at which the filter would shut down,
equation (31). The vertical dashed lines show the critical time at which the cake would shut down,
equation (41). We plot the pressure–time curve until one of these lines is reached. If the horizontal
bound is reached first then the filter shuts down; if the vertical bound is reached first then the cake
shuts down. Figure (d) shows whether the shutdown occurs in the filter or in the cake depending on
γ f and γc. Note that γc varies over a much larger range than γ f to capture the appropriate parameter
space within which the transition occurs, which also reflects the fact that we expect the cake to be more
compressible than the filter material in practice.
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(provided we have not yet reached shutdown in the cake) or in the cake at time tmax
c satisfying

tmax
c (γ f , γc) =

2
γc(2− γ f )2 , (41)

provided we have not yet reached shutdown in the filter. After some algebraic manipulations of (40)
and (41) (see Appendix D) we conclude that the boundary separating shutdown in the cake and in the
filter can be expressed as a critical value for the cake properties, γcrit

c for given filter properties given by

γcrit
c (γ f ) :=

γ f

1−
√

γ f (2− γ f )
. (42)

We conclude that if γc > γcrit
c , shutdown occurs in the cake, while if γc ≤ γcrit

c , shutdown occurs in the
filter (see Figure 2d). Inverting (42) provides the critical filter properties that separate cake or filter
shutdown for a given cake properties given by

γcrit
f :=

γc
(
1 + γc −

√
2γc
)

(1 + γ2
c )

. (43)

Finally the analysis in Appendix D gives that the maximum operating time is given by

tmax(γ f , γc) =



2
{

γc(γ f − 1)2 + 2(γ f − γc)
[
1−

√
γ f (2− γ f )

]}
γ2

f (2− γ f )2
, if 0 ≤ γc ≤

γ f

1−
√

γ f (2− γ f )
,

2
γc(2− γ f )2 , if γc >

γ f

1−
√

γ f (2− γ f )
.

(44)
The total throughput, T , is obtained by multiplying this quantity by the flux, given by (35), so that

T =
(2− γ f )tmax

2
. (45)

3.1.3. Optimisation220

We now use the expressions (35), (44) and (45) to determine optimal values for γc and γ f for the221

system operating at constant flux. We start by allowing the system to run until it shuts down and222

consider how the throughput might be maximised.223

Figure 3a shows that, for a given contaminant, characterised by γc, for small γ f we can increase224

the time before shutdown by increasing γ f . At the same time the flux decreases as γ f increases.225

However this penalty does not outweigh the advantages gained by the increased operating time, and226

so the total throughput, given by (45) also increases with increasing γ f (Figure 3a).227

This increase in throughput is due to the more compressible filter acting as a ‘mattress’, taking228

up some of the pressure drop and compression that would otherwise be carried by the cake and229

preventing the cake from shutting down. However, if we increase γ f too far then the filter becomes too230

compressible and shuts down before the cake, leading to a reduction in total processing time. Figure 3a231

indicates that for γc = 1, both the total throughput and the maximum operating time are maximised at232

γ f ≈ 0.30.233
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Figure 3. (a) Flux, q0, given by (35) (green); maximum operating time, tmax, given by (44) (blue); and
the maximum throughput, T given by (45) (blue). Here, γc = 1. (b) The value of γc that: maximises
the operating time, γmax

c , given by (46) (blue); maximises the throughput, γmax,T
c , given by (47) (black);

and the critical value that separates cake or filter shutdown, γcrit
c , given by (42) (red).

We can further determine explicit expressions for the filter properties that lead to the
corresponding maximisations. First, the value of γ f that maximises the operating time can be obtained
by differentiation of (44), equating the resulting expression to zero and solving for γc. This gives

γmax
c =

γ f

(
γ f

(
γ f

(
2
√
(2− γ f )γ f + 3

)
− 3
√
(2− γ f )γ f − 4

)
+ 4
√
(2− γ f )γ f + 4

)
(1− γ f )2((γ f − 2)γ f + 4)

. (46)

Second, the value of γ f that maximises the total throughput can similarly be shown to satisfy

γmax,T
c =

2(1− γ f )γ f

(
(γ f − 2)γ f + 2

√
(2− γ f )γ f

)
γ f

(
γ f

(
γ f

(√
(2− γ f )γ f − 4

)
− 4
√
(2− γ f )γ f + 14

)
+
√
(2− γ f )γ f − 12

)
+ 4
√
(2− γ f )γ f

.

(47)

In Figure 3b it can be seen that, for a given γc, both the time-maximising and the234

throughput-maximising values of γ f are in the filter-shutdown region and very close to the critical235

value at which the filter and cake shut down simultaneously. These observations suggest that choosing236

a filter compressibility that is close to that for which we would observe simultaneous filter and cake237

shutdown would lead to maximum throughput before shutdown.238

From these relationships we confirm that, for given cake properties (characterised through γc) a239

filter with properties (characterised by γ f ) that correspond to the threshold between cake and filter240

shutdown leads to a system that is very close to that which maximises both the operating time and241

the total throughput (Figure 3b). This does indeed confirm that, given a particular material to filter,242

choosing the filter properties such that both the cake and filter shut down at the same time (given by243

(43)), will lead to a system that is close to maximising the total operating time and final throughput.244

This offers a simple way of identifying an optimal filter selection.245
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Figure 4. The energy expended to achieve a given final throughput. We notice that the graph is
multivalued in some places, indicating that the same final throughput may be achieved by using less
energy. Here, γc = 0.5 (blue), 1 (red) and 2 (green) and the curves are generated by varying γ f . The
turning points of these curves correspond to the values of γ f that maximise the throughput.

3.1.4. Minimising power expenditure246

Previously we discussed maximising throughput but another desirable industrial outcome is to
minimise the total energy used per unit area of membrane required to generate a given flux. The total
power per unit membrane cross-sectional area expended on the filtration is the product of the flux q
(here q0) and the pressure difference P(γ f , γc, t). The total energy, E , used at time t is the time integral
of this:

E(γ f , γc) = q0(γ f )

tmax(γ f ,γc)∫
0

P(γ f , γc, t)dt. (48)

This may be evaluated using (44), (35) and (37), but while the result is analytic, it is cumbersome so we247

do not write it here.248

Setting γ f = 1 yields filter shutdown at t = 0, resulting in E = 0, which trivially minimises249

the power expenditure. Therefore, we cannot minimise the expended power while maximising the250

throughput, and we thus consider trade-offs similar to those described in Köry et al. [23]. However,251

for a given γc, we find that varying γ f leads to a multi-valued energy E when plotted versus the252

throughput T (see Figure 4). This indicates that, in some cases, the same final throughput can be253

achieved for less energy by choosing a more rigid filter, i.e., one with a lower value of γ f .254

3.2. Adjusting the pressure drop to achieve maximum throughput at all times255

Let us now consider the operational regime where we want to filter a given amount of fluid as256

quickly as possible and we can vary the flux by changing the applied pressure. At any given instant in257

time, the transmembrane pressure must be below a critical value to avoid shutdown of the system.258

Here, we will derive an expression for the transmembrane pressure difference P that maximises the259

flux at any time, noting that avoiding shutdown of the system requires us to be below the pressure260

that causes shut down of both the filter and the cake. We expect that maximising the flux at each time261
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will maximise the throughput. We will assume that we are constrained initially to avoid shutdown in262

the filter and then check if and when shutdown in the cake becomes the limiting constraint.263

To begin with, when the cake thickness is small, we will always be limited by the critical pressure264

that induces filter shutdown. This is given by P = 1/γ f from (31). Note from (12) that P(0) = 1, which265

means that P = 1/γ f here needs to be understood as an instantaneous switch of the dimensionless266

pressure drop from 1 to 1/γ f at t = 0. Substituting this into the cake-evolution equation (30) and267

simplifying the resulting expression, the cake evolution equation takes the form268

dLc(t)
dt

= q =
(γc − 2γ f )

2

2γ f

(
γ2

c + 2γ2
f (1 + Lc)− γcγ f (2 + Lc) + 2γ1/2

f (γ f − γc)
√

γ f + Lc(2γ f − γc)
) .(49)

Upon rewriting and integrating, we obtain an implicit relation for the cake thickness at a given time t,

t =
8γ2

f (γ f − γc) + 6(γc − 2γ f )(γ
2
c − 2γ f γc + 2γ2

f )Lc − 3(γc − 2γ f )
2γ f L2

c

3(γc − 2γ f )3/γ f
+

8(γc − γ f )γ
1/2
f

(
γ f + Lc(2γ f − γc)

)3/2

3(γc − 2γ f )3/γ f
,

(50)

where we have applied Lc(0) = 0. We continue operating with P = 1/γ f unless we reach shutdown
in the cake. Substituting the right-hand side from the cake-evolution equation (30) for q into the
cake-shutdown condition (34), we find that there are no positive solutions for Lc when γc ≤ γ f and
one positive solution,

L∗c =
γcγ f

(γc − γ f )2 , (51)

for γc > γ f . Substituting (51) into (50) provides the transition time before which the system is on the269

brink of shutdown in the filter and after which the cake deformation limits the pressure drop. We270

conclude that, if γ f ≥ γc, continuing indefinitely with a transmembrane pressure of P = 1/γ f will271

provide the maximum flux. In this case, it follows from (50) that the cake size will increase unboundedly.272

This is because we have P ≤ 1/γc here, and the condition for avoiding cake shutdown (32) is thus273

always satisfied. If γc > γ f , however, the constant transmembrane pressure P = 1/γ f > 1/γc would274

cause the cake to grow, the filter–cake interface pressure to decrease, and eventually the cake to shut275

down (i.e., condition (32) would cease to be true in finite time). In such a case, we maximise the flux at276

any given time by applying a transmembrane pressure P = 1/γ f until the cake size reaches the value277

given by (51), following which we enter a second phase where we decrease the pressure drop P in278

such a way that the flux is given by (34) to ensure that the cake does not shut down.279

Using the cake-evolution equation (13) and substituting for q from (34), we conclude that the cake
evolution equation during this second phase reads

dLc

dt
= q =

1
2γcLc

. (52)

Solving this subject to the condition Lc(t∗) = L∗c gives

Lc(t) =

√
L∗2c −

t∗

γc
+

t
γc

. (53)
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Figure 5. (a) The maximum flux, q, that can be achieved without the system shutting down, versus cake
thickness, Lc, for γc = 2 and γ f = 0.2 (blue), 0.4 (red), 0.6 (black) and 0.8 (green). The black dotted line
represents the incompressible-filter limit (γ f = 0) and the arrow indicates the direction of increasing
γ f . These curves are generated using equations (49) and (52). (b) The evolution of transmembrane
pressure with cake size that achieves the maximum flux at any time without system shutdown, with
γc = 1/2.

In order to determine how one should vary P to achieve the maximum flux at any time for
γc > γ f after the critical value of Lc from (51), we equate the right-hand side of the cake-evolution
equation (30) and that of (52) and solve for P to get

P(Lc; γ f , γc) =
1

γ f

1−

√(
1−

γ f

γc

)2
−

γ f

γcLc

 (54)

where we chose the appropriate solution of the quadratic for which P ≤ 1/γ f so that we do not280

have shutdown in the filter. Substituting (53) into (54) gives the maximum pressure that we can apply281

without the system shutting down for times t > t∗ when the cake (rather than the filter) deformation282

begins to constrain the pressure drop. Substituting (53) into (52) gives the corresponding flux q.283

As a special case, note that for an incompressible filter (γ f = 0), we find that, for all t >284

0, P(Lc; 0, γc) = (1 + 2Lc)/(2γcLc) and Lc(t) =
√

t/γc. An incompressible filter maximises the285

throughput that can be achieved by any filter up to any positive time. Finally, note that whenever286

γc ≥ γ f , as Lc → ∞ (i.e., t → ∞), we get P → 1/γc. This is consistent with equation (32)), which287

ensures we do not reach shutdown in the cake, because pc(x, t) must be non-negative. Note further288

that as t→ ∞ under the throughput-maximising strategy, the cake size increases without bounds so289

the resistance of the filter becomes negligible compared to that of the cake, which (provided P = O(1)290

for all times) results in pc(x = 1, t)→ 0. This explains why P(t) must converge to 1/γc as t→ ∞.291

In Figures 5a and 5b we show the evolution of P and q as functions of cake size Lc, which acts as a292

proxy for time, for different values of γ f and γc. We find that, for any γc, one reaches any given value293

of Lc (and thus filters any given amount of fluid) in the shortest time by choosing an incompressible294

filter, γ f = 0.295
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3.3. Behaviour for fixed pressure drop296

Finally, we study the operational regime where a constant pressure drop P ≡ 1 is applied across297

the filtercake and the flux therefore changes. We have already shown that for γc ≤ γ f the threshold298

pressure drop P = 1/γ f can be maintained for all positive times t, so it follows that any constant299

pressure drop below this value (including P = 1) can also be maintained indefinitely. Thus, we300

solely concentrate on the case where γc > γ f , for which the threshold pressure drop would result in301

finite-time cake shutdown.302

In a similar manner to the previous section, we can find an implicit relationship for the dependence
of cake size Lc on time t. The expression is, however, rather cumbersome, and so instead we focus on
the cake shutdown. Substituting P(t) ≡ 1 into the right-hand side of the cake-evolution equation (30),
equating this expression with the cake shutdown condition for the flux (34) and solving for Lc, we get
(assuming γc > γ f ) no finite positive solutions Lc for γc ≤ 1 and one positive solution

L∗c (γ f , γc) = T =
γc

(γc − 1)
(

γc(2− γ f )− γ f

) (55)

for γc > 1. This implies that for γc ≤ 1 one can maintain such pressure drop indefinitely, while for
γc > 1, the filtration under constant pressure drop ends in finite time. It follows from (55) that, for any
chosen γc > 1, one achieves maximal throughput by designing a filter with the largest possible γ f so
that filter shutdown is avoided, i.e., γ f = 1. With such γ f , the throughput from (55) becomes

L∗c (1, γc) = T =
γc

(γc − 1)2 . (56)

This observation is confirmed in Figure 6, where we find that, if one wishes to maximise the total303

throughput T before shutdown for arbitrary γc > 1, then it is best to choose a filter with γ f = 1, and304

the result (56) provides an upper bound on the expected throughput.305

Finally, note that while the throughput at any time is given by Lc(t; γ f , γc) (provided we avoid
shutdown), the power expended on such filtration process up to time t is given by

E(t; γ f , γc) = P0Lc(t, γ f , γc) = Lc(t, γ f , γc). (57)

This explicitly states the trade-off between the minimisation of power expenditure and the306

maximisation of throughput.307

4. Discussion308

In this paper we considered fouling of filters due to cake formation during dead-end filtration. We309

focused on the particular idea that both the cake and the underlying membrane may deform elastically310

during a filtration process and thus the interplay between the two may play an important role during311

filtration processes. We applied a poroelastic model introduced in Parker et al. [18] and further studied312

in Köry et al. [23] to the caking process. Both the filter and the cake were considered to be compressible313

porous media, where their permeabilities were assumed to vary linearly with the local strain, and the314

flow and deformations were taken to be one dimensional.315

Using analytical methods, we determined the condition for filter shutdown (31) and derived an316

equation for the growth of the cake that depended on only the pressure drop and two dimensionless317

parameters that measured the mechanical sensitivities of the cake and filter. This provides a novel318

cake-filtration law as the flux q(t) through the filtercake is given explicitly as a function of the pressure319
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Figure 6. (a) Total throughput as a function of γ f and γc. (b) Total throughput as a function of γ f for
γc = 2 (blue), 3 (red) and 4 (green). For all values of γc, maximum throughput is achieved by choosing
a filter with γ f = 1.
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drop P . Even though the equation for the growth of the cake layer cannot be solved for a general320

pressure drop, we made considerable analytical progress by considering three industrially relevant321

operating regimes of constant flux, maximising flux, and constant pressure-drop filtration.322

To maintain a constant flux through the filtercake it is necessary to increase the applied pressure323

drop gradually. At some point the pressure drop will be such that either the filter or the cake will324

shut down. We found the required evolution of the pressure drop to maintain a constant flux and325

subsequently identified the parameter dependence that leads to either filter or cake shutdown. We326

proceeded to study the maximum operating time and throughput achievable and showed that, for327

given cake properties, the largest throughput is achieved with a slightly compressible filter, which328

acts as a mattress, taking some of the pressure drop and compression away from the cake. The329

Lamé coefficients of the optimal filter must be chosen slightly below the coefficients that cause330

the filter and the cake to shut down simultaneously. We concluded the constant-flux analysis by331

considering a minimisation of the power costs. Here, we noticed that, even though we can obtain332

higher throughput by allowing the filter to be compressible, it comes at the cost of significantly333

increased power expenditure, so tradeoffs between throughput and power consumption, similar to334

those studied in Köry et al. [23], should be taken into account.335

We then analysed the operational regime were we maximise the flux (and thus throughput) at336

every time during the filtration process, regardless of power expenditure. We derived an implicit337

relationship for the cake size as a function of filtration time. We found that, if the compressibility of the338

filter was at least as large as that of the cake, a constant pressure drop (just below that which causes339

filter shutdown) could be maintained indefinitely without reaching shutdown in the cake. If the filter340

is more rigid than the cake, however, the maximum pressure that can be applied without the filtercake341

shutting down falls with time and we found an explicit expression for this dependence. For any cake342

properties, choosing an incompressible filter was shown to maximise throughput at all times.343

Finally, we studied the operational regime of a constant applied pressure drop. We found that,344

for given material properties there exists a critical pressure below which we can operate a system345

indefinitely without the filtercake shutting down. If we wish to maximise throughput for given cake346

properties at a pressure drop above this critical value, it is optimal to choose a filter that is highly347

compressible so that it is able to take some of the pressure drop and compression from the cake.348

The work in this paper demonstrates how the resistance and deformation of both the cake and349

the underlying filter medium can play an important role when thinking about optimising the process350

of dead-end filtration with cake build-up. The main objective of this work was to present a simple351

model that was able to demonstrate the type of behaviour that can be exhibited in a system comprising352

a membrane and cake that both deform elastically. A key next step in this work would be to generalise353

the ideas to account more accurately for the filtration of specific materials. Specifically, this would354

involve using nonlinear compressional rheology modelling. In doing so, the system may be described355

by an elastic membrane with a plastically deforming cake. It would also be interesting to account356

for particle trapping in the interior of the filter medium. In addition it would be of interest to study357

the case where the particles that build up to form the cake remain free so that if the flow is switched358

off the cake can deplete. In this scenario, one would also need to model the effects of concentration359

polarisation. Finally, experiments need to be conducted to validate or disprove the implications of this360

theory.361



Version December 21, 2020 submitted to Modelling 21

Acknowledgements362

JK is grateful to the Royal Society for financial support. AUK was funded by EPSRC. IMG gratefully363

acknowledges support from the Royal Society through a University Research Fellowship.364

Appendices365

Appendix A Sufficient conditions ensuring small deformations366

To ensure small deformations in the filter we note that, due to the boundary condition (17c), it is
sufficient to show that

∆c p
∣∣∣u f (x = 1, t)

∣∣∣� 1. (A1)

Integrating the Navier equation (16) and using the continuity of stress (18), we obtain∣∣∣∣∂u f

∂x
(x = 0, t)

∣∣∣∣ = Pν (A2)

and this value represents the largest compression within the filter. Using the boundary condition (17c)
we then get ∣∣∣u f (x = 1, t)

∣∣∣ =
∣∣∣∣∣∣

1∫
0

∂u f (x, t)
∂x

dx

∣∣∣∣∣∣ ≤ Pν (A3)

and (A1) is thus satisfied provided

∆c p
P
ν

= P∆ f p� 1. (A4)

Small deformations in the filter can then be enforced provided ∆ f p� 1 and P = O(1) for all times t.367

To ensure small deformations in the cake, we need to make sure that

∆c p |uc(x = 1 + ωLc, t)− uc(x = 1, t)|
ωLc(t)

� 1. (A5)

Integrating the Navier equation (16) across the cake and using the boundary condition (17d), we get∣∣∣∣∂uc(x = 1, t)
∂x

∣∣∣∣ = P − pc(x = 1, t) < P (A6)

and using this as an upper bound for compression within the cake, we conclude

|uc(x = 1 + ωLc(t), t)− uc(x = 1, t)| =

∣∣∣∣∣∣∣
1+ωLc(t)∫

1

∂uc

∂x
dx

∣∣∣∣∣∣∣ < PωLc(t). (A7)

Therefore, the condition (A5) is satisfied, if we have

P∆c p� 1. (A8)

We conclude that the assumption ∆c p� 1 (with P = O(1)) ensures small deformations in the cake for368

all times.369
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Appendix B Details of the solution process370

The solution of (24) reads371

∂u f

∂x
= − 1

Γ f

1−

√
1 +

2Γ f q(t)
ν

[x− f1(t)]

 , for x ∈ (0, 1) (A9)

∂uc

∂x
= − ω

Γc

{
1−

√
1 +

2Γcq(t)
ω2 [x− (1 + ωLc(t))]

}
, for x ∈ (1, 1 + ωLc(t)), (A10)

where the sign in (A10) has been chosen to satisfy the boundary condition (17d), and the sign (A9)
has been chosen so that we restrict our attention to the (physically relevant) region ∂u f /∂x ≥ −1/Γ f

in x ∈ (0, 1), which follows from requiring that the filter permeability is non-negative everywhere
(otherwise we have shutdown and our model is no longer valid). Applying the continuity of stress at
x = 1 (18), we conclude (25) must hold and this then yields the strain field (26). Substituting (26) back
into Darcy’s law (14) yields

∂p f

∂x
=

q√√√√[1−
Γ f ω

Γcν

(
1−

√
1− 2Γcq(t)

ω
Lc(t)

)]2

+
2Γ f q

ν

[
x− 1

] , for x ∈ (0, 1)

∂pc

∂x
=

q

ω

√
1 +

2Γcq(t)
ω2

[
x− (1 + ωLc(t))

] , for x ∈ (1, 1 + ωLc(t)).

Integrating the pressure over the two respective regions, using its continuity across x = 1 as
well as boundary conditions (17a,b), we find (27) is valid. It then follows (using the dimensionless
parameters from (28)) that√[

1− γ f /γc + γ f /γc
√

1− 2γcqLc

]2

− 2γ f q = 1−Pγ f . (A11)

Squaring both sides of (A11), denoting G(t) = 1−Pγ f , and manipulating gives

[
2γ f + 2γ2

f /γcLc

]
q +

[
G2 −

(
γ f /γc

)2
− (1− γ f /γc)

2
]
= 2γ f /γc(1− γ f /γc)

√
1− 2γcqLc. (A12)

Once again, we square both sides of (A12) and using elementary algebra, we conclude372

0 =
{[

2γ f + 2γ2
f /γcLc

]2}
q2 +

{
8γ2

f /γc(1− γ f /γc)2Lc + 2[2γ f + 2γ2
f /γcLc]×

[G2 −
(

γ f /γc

)2
− (1− γ f /γc)2]

}
q +

{
[G2 −

(
γ f /γc

)2
− (1− γ f /γc)2]2 − 4

(
γ f /γc

)2
(1− γ f /γc)2

}
,

which is quadratic in q. Upon algebraic simplification of the discriminant, the solutions read373

q =
−
{

4γ2
f /γc(1− γ f /γc)2Lc + [2γ f + 2γ2

f /γcLc]× [G2 −
(

γ f /γc

)2
− (1− γ f /γc)2]

}
±[

2γ f + 2γ2
f /γcLc

]2 (A13)

4γ
3
2
f /γ

1
2
c

∣∣∣1− γ f /γc

∣∣∣√(G2 − 1)Lc + γ f /γc (G2L2
c + 2Lc + 1)[

2γ f + 2γ2
f /γcLc

]2 .



Version December 21, 2020 submitted to Modelling 23

To determine which sign gives the relevant solution, we evaluate q at t = 0 (where Lc = 0 and P = 1)374

to get375

q(0) =
−2γ f

(
−2γ f + γ2

f − 2
(

γ f /γc

)2
+ 2γ f /γc

)
± 4γ2

f /γc

∣∣∣1− γ f /γc

∣∣∣
4γ2

f
=

2− γ f

2
+ 1/γc

(
γ f /γc − 1±

∣∣∣1− γ f /γc

∣∣∣) .

Recalling the initial flux value from (29) as well as the definition of γ f from (28), we conclude that if376

γ f /γc < 1, we have to choose the positive sign, and if γ f /γc ≥ 1, we have to choose the negative sign377

in (A13). The time evolution of the (undeformed) cake size is then determined by substituting back378

into the cake-evolution equation (13) and we get379

dLc(t)
dt

=
−
{

4γ2
f /γc(1− γ f /γc)2Lc + [2γ f + 2γ2

f /γcLc]× [G2 −
(

γ f /γc

)2
− (1− γ f /γc)2]

}
+[

2γ f + 2γ2
f /γcLc

]2
4γ

3
2
f /γ

1
2
c

(
1− γ f /γc

)√
(G2 − 1)Lc + γ f /γc (G2L2

c + 2Lc + 1)[
2γ f + 2γ2

f /γcLc
]2 .

Dividing both numerator and denominator by 4γ2
f and recalling the definition of G, we conclude (30)380

is valid.381

Appendix C Pressure drop needed to maintain constant flux382

We start by noting that the right-hand side of the cake-evolution equation (30) equals the flux q
(which we assume to be independent of time here), then we denote

H =
P
(

γ fP − 2
)

2
(A14)

and multiplying by the denominator, we get383

q0(1 + γ f /γcq0t)2 = −1/γc(1− γ f /γc)2q0t− (1 + γ f /γcq0t)(H − γ f /γ2
c + 1/γc) +

1/γ
1
2
c (1− γ f /γc)

√
2Hq0t + 1/γc((1 + 2γ f H)(q0)2t2 + 2q0t + 1), (A15)

which gives384

q0(1 + γ f /γcq0t)2 + 1/γc(1− γ f /γc)2q0t + (1 + γ f /γcq0t)(1/γc − γ f /γ2
c ) + (A16)

(1 + γ f /γcq0t)H = 1/γ
1
2
c (1− γ f /γc)

√
2Hq0t + 1/γc((1 + 2γ f H)(q0)2t2 + 2q0t + 1).

Squaring (A16), and introducing the notation385

F1(γ f , γc, t) = q0(1 + γ f /γcq0t)2 + 1/γc(1− γ f /γc)2q0t + (1 + γ f /γcq0t)(1/γc − γ f /γ2
c )

F2(γ f , γc, t) = 1 + γ f /γcq0t

F3(γ f , γc, t) = 1/γc(1− γ f /γc)2
(

2q0t + 2γ f /γc(q0)
2t2
)

F4(γ f , γc, t) = 1/γ2
c (1− γ f /γc)2 (q0t + 1)2 ,
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and get
F2

2 H2 + (2F1F2 − F3)H + (F2
1 − F4) = 0,

which is a quadratic equation in H. The solution to this equation reads

H =
F3 − 2F1F2 + sign(1− γ f /γc)

√
(2F1F2 − F3)2 + 4F2

2 (F4 − F2
1 )

2F2
2

=: F5(γ f , γc, t), (A17)

where the sign has been chosen in order to satisfy H(t = 0) = (γ f − 2)/2 = −q0. Rewriting H from
(A14) as

H =
1

2γ f

{(
Pγ f − 1

)2
− 1
}

, (A18)

we then get
2γ f F5(γ f , γc, t) + 1 = (Pγ f − 1)2, (A19)

which in turn yields

P =
1

γ f

(
1−

√
1 + 2γ f F5(γ f , γc, t)

)
, (A20)

and simplifying this we arrive at (37).386

Appendix D Constant-flux filtration: comparing the times of cake and filter shutdown387

Using algebraic manipulation, the filter-shutdown condition (40) becomes

2(1− γ f /γc)γ f /γc

√
1−

(2− γ f )2

2
γct = γ f (2− γ f )− (1− γ f /γc)

2−
(

γ f /γc

)2
+

γ2
f /γc(2− γ f )

2

2
t,

(A21)
which upon squaring and further algebra gives388

γ4
f (2− γ f )

4

4γ2
c

t2 + γ2
f /γc(2− γ f )

2(−γ2
f + 2γ f + 1− 2γ f /γc)t +

(γ f − 1)2(4γ f /γc(γ f /γc − 1) + (γ f − 1)2) = 0. (A22)

Solving this as a quadratic equation in t yields

t± =

(
γc(γ f − 1)2 + 2(γ f − γc)

)
± 2 | γc − γ f |

√
γ f (2− γ f )

γ2
f (2− γ f )2/2

, (A23)

where we still need to determine the sign because by squaring (A21), we might have obtained new389

roots. We now check whether the signs of the right- and left-hand sides of (A21) agree. Note, once the390

sign is resolved, the shutdown time is then given by the minimum of non-negative values from (A23)391

and we conclude by comparing this minimum with the cake shutdown time from (41).392

As the square root on the left-hand side of (A21) is multiplied by (1− γ f /γc), we now split the393

analysis into two cases: γ f /γc ≥ 1 and γ f /γc < 1.394
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Appendix D.1 γ f /γc ≥ 1395

Here, the RHS of (A21) needs to be non-positive at the time of filter shutdown, i.e.,

γ f (2−γ f )− (1−γ f /γc)
2−
(

γ f /γc

)2
+
(
(γ f − 1)2 + 2(γ f /γc − 1)± 2(γ f /γc − 1)

√
γ f (2− γ f )

)
≤ 0,

(A24)
which is equivalent to

− 2(1− γ f /γc)
2 ± 2(γ f /γc − 1)

√
γ f (2− γ f ) ≤ 0. (A25)

We see that t− from (A23) satisfies (A21) and is non-negative. Therefore, as t− ≤ t+, the shutdown in
filter will occur at t = t−, provided shutdown has not occurred in the cake before that, i.e. provided
tmax
c from (41) is greater than t− from (A23). One trivially has

γ f (γ f − 2) < 0 ≤ (γ f /γc − 1)2 + 2(γ f /γc − 1)
√

γ f (2− γ f ), (A26)

from which it follows that(
γ f /γc

)2
> (1− γ f )

2 + 2(γ f /γc − 1)− 2(γ f /γc − 1)
√

γ f (2− γ f ). (A27)

This implies that when γ f ≥ γc, the value of t− is always smaller than tmax
c and shutdown will happen396

in the filter at t− from (A23).397

Appendix D.2 0 < γ f /γc < 1398

For any solution of (A23) to also solve (A21), we need the RHS of (A21) to be non-negative, i.e.,

γ f (2−γ f )− (1−γ f /γc)
2−
(

γ f /γc

)2
+
(
(γ f − 1)2 + 2(γ f /γc − 1)± 2(1− γ f /γc)

√
γ f (2− γ f )

)
≥ 0,

(A28)
which is true if and only if

− 2(1− γ f /γc)
2 ± 2(1− γ f /γc)

√
γ f (2− γ f ) ≥ 0. (A29)

Thus we see that the only available solution is the one with a positive sign, and for inequality (A29) to
hold, we then need

1− γ f /γc ≤
√

γ f (2− γ f ), (A30)

which under our constraint γ f /γc < 1 leads to

(
γ f /γc

)2
− 2γ f /γc + (γ f − 1)2 ≤ 0. (A31)

Viewing this as a quadratic inequality in 1/γc we conclude that, under our constraint γ f /γc < 1, the
inequality (A29) with t+ from (A23) holds if

1−
√

2γ f − γ2
f ≤ γ f /γc. (A32)
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This implies that, for 0 < γ f /γc < 1−
√

2γ f − γ2
f , the filtration process ends with a cake shutdown at

the maximum operating time from (41). t+ from (A23) can be shown to be non-negative if and only if

γ f /γc >
1−

√
2γ f − γ2

f

2
, (A33)

from which it immediately follows that for every γ f and γc satisfying (A32), the value of t+ is indeed
non-negative. For such γ f and γc, it then remains to compare tmax

c with t+. Clearly,

(
γ f /γc +

(√
γ f (2− γ f )− 1

))2
≥ 0, (A34)

and expanding this we get

(
γ f /γc

)2
≥ (1− γ f )

2 + 2(γ f /γc − 1) + 2(1− γ f /γc)
√

γ f (2− γ f ) (A35)

and it therefore follows that t+ < tmax
c .399
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