Problem statement	Blossom model	Bee behaviour 000000	Change in flowering dates	Conclusions o

Bees and blossoms

A. J. Hutchinson, J. M. Fitchett, E. E. Nyoni, S. Mhlanga, F. Silwimba, W. Zvarevashe, R. Gusinow, A.Y. Mukhtar, M. Nsuami

January 17, 2020

ヘロト 人間 とくほとくほとう

1/28

Problem statement	Blossom model	Bee behaviour	Change in flowering dates	Conclusions
000	00000000	000000		o
Outline				

- 1 Problem statement
- 2 Blossom model
- 3 Bee behaviour
- 4 Change in flowering dates
- 5 Conclusions

Problem statement	Blossom model	Bee behaviour	Change in flowering dates	Conclusions
●○○	00000000	000000		0
Problem sta	tement			

The goal is to:

- Study the effect of the mismatch in phenology between bees and blossoms.
- Understand the differing factors that drive rates of advance in blossoms and bee phenology, and develop models to quantify these and make predictions.
- Detect changes in bee population due to phenological mismatch.
- Develop a suitable model that applies to the Southern hemisphere.
- To counteract any negative impact on bee populations by implementing appropriate adaptation strategies when the mismatch date and location have been identified.

Problem statement	Blossom model	Bee behaviour	Change in flowering dates	Conclusions
00●	00000000	000000		0
Objectives				

• A model for blossoms is developed.

- * The blossom model is unaffected by bee behaviour. This assumption may break down over longer times.
- * Flowers cannot align their behaviour with the bees.
- A model describing bee population and blossom interaction is designed.
 - * Bees require blossoms to replenish their food supply.
 - * Bees have more freedom to align with blossom behaviour, but are stimulated by factors such as temperature as well.
- We use phenology data to implement a machine learning algorithm to predict the future rates of blossoming and bee arrivals.

Problem statement	Blossom model •0000000	Bee behaviour 000000	Change in flowering dates	Conclusions 0
Blossom mo	odel			

Ignoring biology, consider the following model for blossoms:

• For $0 \le t \le \tau_b + \tau$,

$$\frac{dP}{dt} = \alpha_1 P\left(1 - \frac{P}{P_{\text{max}}}\right), \qquad P(0) = 1.$$
(1)

• For $\tau_b + \tau \leq t$,

$$\frac{dP}{dt} = -\alpha_2 P,\tag{2}$$

where τ_b is the day at which the first blossom is seen and τ is the number of days in which flowers are in blossom.

Problem statement	Blossom model 0000000	Bee behaviour 000000	Change in flowering dates	Conclusions 0
Parameter	values			

To find α_1 , consider,

$$P(\tau_b) = 0.99P_{\max},\tag{3}$$

which gives

$$\alpha_1 = \frac{1}{\tau_b} \ln \left[100 \left(P_{\max} - 1 \right) \right].$$
(4)

For α_2 , let

$$P(\tau_d) = 0.1 P_{\text{max}},$$
 (5)

$$\alpha_2 = \frac{1}{\tau_d} \ln 10.$$
 (6)

where τ_d is the day when we expect that only 10% of the maximum blossoming population to remain. From Babojelić et al. 2014

- First flowering to peak flowering = 2 days.
- Full flowering period = 10 days.
- Full flowering to greatly diminished flowering = 1 day.

000		000000	00000000	o
D1 1	1 •			

Blossom behaviour

Average number of blossoms on a Granny Smith apple tree (Palmer-Jones and Clinch 1967):

- 2200-7650
- 46 bees per 30 000 flowers

Defining dimensionless variables, $\overline{P} = P/P_{max}$, $\overline{t} = \alpha_1 t$, and omitting bars we obtain

• For
$$0 \le t \le \tau \alpha_1 + \tau_b \alpha_1$$
,
 $\frac{dP}{dt} = P(1-P), \qquad P(0) = \frac{1}{P_{max}}.$
(7)

• For $\tau_b \alpha_1 + \tau \alpha_1 \leq t$,

$$\frac{dP}{dt} = -\frac{\alpha_2}{\alpha_1}P, = -\alpha P.$$
(8)

Problem statement	Blossom model 00000000	Bee behaviour 000000	Change in flowering dates	Conclusions o
Blossom b	ehaviour			

The solutions are

• For
$$0 \le t \le \tau_b \alpha_1 + \tau \alpha_1$$
,

$$P(t) = \frac{\exp(t)}{P_{max} - 1 + \exp(t)}.$$
(9)

• For
$$\tau_b \alpha_1 + \tau \alpha_1 \le t$$
,
 $P(t) = \exp(-\alpha t).$ (10)

◆□>

9 / 28

Problem statement	Blossom model 0000●000	Bee behaviour 000000	Change in flowering dates	Conclusions o
Blossom b	ehaviour			

シへで 10/28

Э

▲ロト ▲圖 と ▲ 国 と ▲ 国 と

Problem statement	Blossom model 00000●00	Bee behaviour 000000	Change in flowering dates	Conclusions o
Blossom b	ehaviour			

- Plant flowering/blossom is determinate, and the growth stops when they reach physiological maturity.
- Determinate growth has three phases:
 - acceleration phase.
 - saturation phase (for ripening)
 - 📵 decay phase.
- Growth rate has to be zero at the end point. This terminate growth pattern can be modeled by the beta distribution function (a family of asymmetrical uni-modal curves).

0000 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1 •	000000	0000000	
Blossom h	ohaviour			

• The beta function for growth rate is given as

$$\frac{dw}{dt} = c_m \left(\frac{t_e - t}{t_e - t_m}\right) \left(\frac{t}{t_m}\right)^{\frac{t_m}{t_e - t_m}},\tag{11}$$

where

- *c*_m is the maximum growth rate.
- *t_e* is the end of growth.

• *t_m* is the point at which maximum growth rate is achieved. The solution to equation (10) is

$$w = w_{max} \left(1 + \frac{t_e - t}{t_e - t_m} \right) \left(\frac{t}{t_e} \right)^{\frac{t_e}{t_e - t_m}}.$$
 (12)

12 / 28

イロト イポト イヨト イヨト 二日

Problem statement	Blossom model	Bee behaviour	Change in flowering dates	Conclusions
000	0000000●	000000		0
Blossom be	haviour			

The Determinate Model

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の Q (~ 13 / 28

Problem statement	Blossom model	Bee behaviour ●00000	Change in flowering dates	Conclusions o
Beehaviour				

We now develop a compartment model to describe beehaviour.

- H(t) = hive number.
- F(t) = forager number.
- f(t) = food stored.

Problem statement	Blossom model 00000000	Bee behaviour 0●0000	Change in flowering dates	Conclusions o			
Mathematical model							

The problem is written mathematically as

$$\frac{dH}{dt} = LS - HR,\tag{13}$$

$$\frac{dF}{dt} = HR - mF,\tag{14}$$

$$\frac{df}{dt} = cFP - \gamma_A(F+H),\tag{15}$$

(16)

where the coefficient functions are given by

$$R(H, F, f) = \alpha_{\min} + \alpha_{\max} \left(\frac{b^2}{b^2 + f^2}\right) - \sigma \left(\frac{F}{F + H}\right),$$
$$S(H, f) = \frac{f^2}{f^2 + b^2} \frac{H}{H + \nu}.$$

15/28

Problem 000			Blossom model 00000000	Bee behaviour oo●ooo	Change in flowering dates	Conclusions 0
-		-	1 .			

Figure: Bee Population where Blossom Population is Constant

Problem statement	Blossom model	Bee behaviour	Change in flowering dates	Conclusions
000	0000000	000000		0
	1 m 1(

Figure: Food Count where Blossom Population is Constant

Problem statement	Blossom model	Bee behaviour	Change in flowering dates	Conclusions
000	00000000	oooo●o		0

Bee Model Results

Figure: Bee Population where Blossom Population is Changing

Problem statement	Blossom model	Bee behaviour	Change in flowering dates	Conclusions
		000000		

Bee Model Results

Figure: Food Count where Blossom Population is Changing

Problem statement	Blossom model	Bee behaviour	Change in flowering dates	Conclusions		
000	00000000	000000	●0000000	0		
Forecasting blossom dates						

The rate of change of flowering of Granny Smith and Golden Delicious Apples has already been quantified from observational data in the South Western Cape spanning 1973-2010.

- Granny Smith Apples: -0.11 d/yr
- Golden Delicious Apples: -0.18 d/yr

These provide linear models for the advance of the two species, assuming linear temperature increase. This assumption is reasonable in the short term (30 years), but not in the longer term (100 years) due to the intensification of climate change.

Problem statement	Blossom model	Bee behaviour	Change in flowering dates	Conclusions		
000	0000000	000000	0000000	0		
Forecasting blossom dates						

To model the rate of change under intensifying climate change, the rate of change per degree Celsius is more accurate. This can also be obtained from the literature

- Granny Smith Apples: -2.4d/ °C
- Golden Delicious Apples: -4.2d/ °C

The temporal mismatch is expressed as the diverging linear time-trends for the two species

Problem statement	Blossom model	Bee behaviour	Change in flowering dates	Conclusions		
000	00000000	000000		0		
Forecasting blossom dates						

The Decomposable time series model (Ensemble)

$$y(t) = g(t) + s(t) + h(t) + e(t),$$
 (17)

where

g(t) is model's trend, i.e non periodic changes, for example, growth.

s(t) is model's seasonality, presents periodic changes (i.e weekly, monthly, yearly).

h(t) ties in effects of extremes (potentially irregular schedules ≤ 1 day).

e(t) covers idiosyncratic changes not accommodated by model. by model.

000	Blossom model 00000000		000000	Change in flowering dates	o	
-	 1 1	1				

Forecasting blossom dates

Figure: Ground Truth

Problem statement	Blossom model	Bee behaviour	Change in flowering dates	Conclusions		
	00000000	000000	00000000	0		
Forecasting blossom dates						

Figure: Predicted (RMSE=0.2345)

Problem statement	Blossom model	Bee behaviour	Change in flowering dates	Conclusions
			0000000	

Forecasting blossom dates

Date	Y	Y_hat	Y_hat_lower	Y_hat_upper
2016	288	287.451195	287.159760	287.762240
2017	307	307.314683	307.015869	307.607710
2018	298	298.149336	297.850908	298.46371
2019	NaN	299.13539	298.839122	299.45106
2020	NaN	300.119740	299.821715	300.419506

Problem statement	Blossom model	Bee behaviour	Change in flowering dates	Conclusions				
000	00000000	000000	0000000●	o				
Change in bee arrival dates								

• Bee arrival date is a function of latitude and temperature.

イロト イポト イヨト イヨト 二日

27/28

- recorded in the literature, averaged for 10 species in a range of locations in North America
- past 130 years: -0.08d/yr
- since 1970: -0.18 d/yr
- (Bartomeus et al., 2011)

Problem statement	Blossom model	Bee behaviour	Change in flowering dates	Conclusions
000	00000000	000000		•
Conclusions	5			

Summarising, we have:

- The Blossom Model
- The Bee Model

• Used data to solve the problem using ML techniques In future work, we hope to refine both models and their corresponding system of ODE's and see how this solution compares to the ML results.