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Abstract

Hazards are posed by the levels of pollutants in the surface layers
of Lake Kivu caused primarily by activities around the lake. Some of
these activities have their source in the water itself, include munici-
pal sewage and wastewater treatment plants, toxic runoff from farms
and factories either near the lake or upstream. Other sources are at-
mospheric and include gas vented into the atmosphere during harvest
time and smokestacks from factories near the lake. The released gases
and particles eventually end up in the lake either directly or after rain
and can effect the health of inhabitants, animals and water life. The
project’s aim was to model surface water pollution in the lake.
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1 introduction

Lake Kivu, on the border of Rwanda and the Democratic Republic of Congo,
is known as a killer lake primarily because of the vast quantities of carbon
dioxide and methane dissolved in the deep waters of the lake which, if spon-
taneously released, could cause massive damage and loss of life, see the 2018
MISG report[1]. However there are other hazards posed by the levels of pol-
lutants in the surface layers of the lake caused primarily by activities around
the lake. Some, having their source in the water itself, include municipal
sewage and other effluent entering the lake, wastewater treatment plants,
and toxic runoff from farms and factories either near the lake or upstream.
Other sources of pollution are atmospheric and include gas vented into the
atmosphere during harvest time and smokestacks from factories near the lake.
Of particular concern is a cement factory near the shore. The released gases
and particles may eventually end up in the lake either directly or after rain
and can effect the health of inhabitants, animals and water life. The project’s
aim was to model surface water pollution in the lake.

The group felt no direct progress could be made on this very worthy prob-
lem without specifics. We would need to know what pollutant was of concern
together with its possible source, and also data and information concerning
the primary factors affecting its dispersal (winds, topography, climate,...).
With the above in mind the (small) group decided to set up a generic model
that may be used to describe the atmospheric dispersal from a factory chim-
ney. The simple models developed here would then need to be be combined
with absorption and dispersal models to determine concentration levels at
significant locations in and around the lake. Such models can provide crude
estimates for the effect of a known source of pollutant on the environment
and are an appropriate start for more substantial investigations. If estimates
obtained using such models suggest there is a major concern then more de-
tailed monitoring/computational models would need to be developed. Such
models are expensive to develop and maintain, mainly because the data input
needed is expensive to collect, and require major and continuous computa-
tional monitoring and processing. Such assessments are often required by
regulation.

In Section 2 we present well known classical fundamental solution ideas
in a chimney release context and then we go on to show how useful solutions
can be developed using these ideas. We also indicate the limitations of such
an approach. The conclusions are summarised in Section 3.
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2 The Fundamental Solution Approach

Depending on specific concerns different approaches and associated models
should be set up. The release of pollutant could be a one off event, contin-
uous, intermittent or periodic. The concern could be with pollutant levels
soon after release in the immediate neighbourhood of the chimney, or with
the long term effects of pollutant release on the environment in the general
area. There may be a steady wind, but variability would normally be a fea-
ture. The atmosphere in the area may be stable or unstable, with or without
an inversion layer at a prescribed height, and all this is likely to change with
season. The released gases could either rise and be carried out of the the zone
of interest or sink to ground level quickly depending on the temperature and
height of release, atmospheric conditions, local geography, time of year.

Also depending on circumstances different fundamental solutions are ap-
propriate. A 1D model would be appropriate for describing the pollutant
spread close to the source. A 3D source solution would be appropriate if the
region of interest is large compared with the source size (likely) but small
compared with the ‘atmospheric depth’. A 2D cylindrical source solution
would be appropriate if the region of interest is large compared with the
effective depth of the atmosphere. Such fundamental solutions may be used
to generate the solution for pollutant concentration levels due to quite gen-
eral source distributions under a range of boundary conditions, and in the
presence of wind. The usefulness of the results will depend on the correct
choice of model and the detail required. Here we will use a cylindrical mod-
el and illustrate how this solution may be used to generate solutions for a
broad range of circumstances. We will also indicate the limitations of the
procedure.

2.1 The Cylindrical Source Solution

A pollutant is released from a source at time t = 0. We will assume the
pollutant ‘quickly fills’ the atmosphere up to an inversion layer of height
H and then spreads out cylindrically. In this context the cylindrical source
solution is appropriate.

If M is the total mass (kgs) released into the region from a location
x = y = z = 0 ‘instantaneously’ (at t = 0 ) then the concentration c(r, t)
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Figure 1: The fundamental cylindrical source solution: Pollutant is released
at r = 0, 0 < z < H at t = 0 and then spreads out radially. The pollutant
concentration is assumed to be uniform in depth through the atmosphere.

(kg/m3) may be described by the diffusion equation

∂c

∂t
= κ

(
∂2c

∂r2
+

1

r

∂c

∂r

)
, with r2 = x2 + y2, (2.1)

where κ models the turbulent diffusivity of the atmosphere and would need
to be determined using experimental data. The total mass, M , is released at
t = 0, and it is assumed there is no removal which requires

H

∫ ∞
0

c(r, t)(2πrdr) = M . (2.2)

This statement of physics can be varified mathematically from the diffusion
equation (2.1) and boundary conditions, see Appendix A. No pollutant is
initially present in the atmosphere, there is no source at infinity, and the
solution is finite at r = 0 for t > 0, so that

c(r, ) = 0 , 0 < r ≤ ∞ , (2.3)

2πr
∂c

∂r
(r, t)

∣∣∣
r=0

= 0 , 2πr
∂c

∂r
(r, t)

∣∣∣
r=∞

= 0 , t > 0 . (2.4)
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Dimensionality arguments then lead to the similarity solution [2]

c(r, t) =
M

4πκHt
e−r

2/(4κt), t > 0. (2.5)

It is useful to scale the results using:

r = r0r
′, t = t0t

′, where t0 = r20/(4κ), (2.6)

and

c = c0c
′(r′, t′), with c0 =

M

4πκHt0
≡ M

πr20H
; (2.7)

r0 is the typical distance of interest in context (perhaps 1 km); t0 then gives
the time scale required for pollutant to spread out to this distance from the
source with concentration levels of the order of c0 expected. With this scaling
the concentration solution takes the ‘universal form’

c′(r′, t′) =
e−r

′2/t′

t′
, (2.8)
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Figure 2: Fundamental source solution: Left: Scaled concentration levels
as a function of (scaled) distance from the source at scaled times t′ = 0.1
(top curve) and t′ = 0.5, 1 (lower curves). Right: Concentration levels as a
function of time at various distances from the source r′ = 0.2 (top curve),
r′ = 0.5 and r′ = 1.

plotted as a function of (scaled) distance r′ for various (scaled) times, see
Figure 2 Left; evidently pollution concentration levels reach a significant
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level at r0 after a time scale of order t0 as suggested earlier. Also plotted
(Figure 2) are concentration levels at fixed locations r′ as a function of time
t′. Note that concentration level at a specific location r′ = r′0 remain ‘at
zero2’ until the pollutant reaches that location and then increases, reaching
a maximum value of c′max = e−1/r′2 after time t′ = r′2 from release.

2.2 Wind effects

x

y
WIND

Figure 3: The effect of a steady wind along the x’ axis. The pollutant spreads
out in a wedge shaped region.

The above result can now be used to generate solutions of more practical
interest. In most circumstance there will be winds blowing and this will
dramatically effect the dispersal. If there is a steady speed wind blowing
with scaled speed u along the x axis, see Figure 3, the (scaled) concentration
profile again due to an instantaneous is given by

c′(x′, y′, t′) =
e−[(x′−ut′)2+y′2]

t′
, (2.9)

where the scales (r0, t0) are chosen as in (2.6). This result is plotted in
Figures 4, Left and Right. The pollutant spreads out in a wedge shaped
region centered on the initial source location and spreading out in the wind
direction;

The above result assumes a steady and non fluctuating breeze not varying
with height above the Earth; boundary layer effects are ignored. Relatively

2Technically speaking the concentration level is non-zero for all t > 0, r > 0, however
the level is negligibly small for t′ < εr′ (with ε small); explicitly c′ = O(e−1/ε) for t′ < εr′.
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Figure 4: Wind effects: Left: Scaled concentration levels c′(x′, y′, t′) along
the x′ axis in the presence of a (scaled) wind speed u = 1 along the x′ axis at
times t′ = 1 (left curve), and t′ = 2, 3. Right: Concentration levels c′(x′, y′, t′)
at time t′ = 1.

small scale fluctuations or changes over a long time may be taken into account
by suitably modelling the diffusivity but larger scale variations would require
a detailed computational/statistical model.

The above result also assumes there is no deposition of pollutant into the
ground/water or loss into the upper atmosphere. Such losses may be mod-
elled; a deposition rate proportional to the local concentration level is often
assumed. Such a model results in an integral equation for c′, which needs
to be solved numerically, a relatively simple matter. The resulting model
would however need significant tuning to account for near Earth changes in
concentration levels.

2.3 Other modifications

If the release rate from the chimney is q(t) kgs/sec then superposition gives
the (scaled) result

c′(r, t) =

∫ t

0

q(t′)e−r
2/(t−t′)/(t− t′)dt′, where r2 = (x′ − ut′)2 + y′2. (2.10)

Of particular interest are situations in which there is a release of pollu-
tant over a prescribed time interval or a periodic release over a day (say).
Superposition can also be used to account for the release from distributed
sources in space and time.
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It is usually the case that there are length scales of different order in-
volved with pollutant dispersal. For example the geographical length scales
are usually much larger than the length scales associated with ‘diffusion’. Un-
der such circumstances asymptotic techniques may be used to ‘separate out’,
and thus account for, different features of the problem. Typically this will
result in multi-scale approximations involving fundamental solutions. Vari-
ous time scales also arise. For example the pollution diffusive time scale will
normally be much shorter than the pollution release time scale or the time
scales associated with flow field. Again asymptotic procedures may be use-
ful. The use of such procedures is ‘opportunistic’ and strongly dependent on
the specific circumstances. The advantage of semi-analytic results obtained
using such procedures is that they lead to a much better understanding of
the effect of various actions on the outcome. For example the maximum
pollution concentration levels reached at various locations will normally be
greatly effected by the timing the release. A periodic release may give more
time for the pollutant to disperse, or separate out, and this may allow for
safer release. Of course the release of pollution during the evenings is often
used to reduce human exposure.

2.4 Numerical modelling

All such analytic procedures are of limited use, and tuned computational
and/or statistical models are the usual next stage. The underlying physics of
dispersal is complicated, with the flow field and dispersal processes linked and
not well understood (particle movement, buoyancy effects, flow instabilities,
statistical fluctuations). A ‘complete’ Navier-Stokes model might seem to be
the way to go but no such complete theory exists and the approximations
that are used rely on good judgement. Also such models are computationally
intense and numerical error accumulation means that the believable compu-
tational time scale is often short compared with the time scale of practical
interest. This means that such models are normally just used to examine
local features of the dispersal process, for example the flow near the source.
More usefully the dimensionless groups associated with the circumstance of
interest are identified and experimental/empirical models are used to de-
scribe the solution behaviour locally, and then global numerical modals are
used to stitch it all together. Of course such models require supporting data
and in any case there is no deterministic solution so some sort of statistical
modelling is needed.
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3 Conclusions

As indicated this very worthy problem requires more specific information to
be adequately addressed, and what has been done here just illustrates an
approach that may be used to obtain crude estimates for the severity of the
pollution problem. More sophisticated computational and statistical models
with extensive data input would be required to obtain the results normally
needed if pollutant levels are a significant concern.
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Appendix A

Mathematical background

(i) Conserved quantity

Multiply by r the difusion equation

∂c

∂t
=
κ

r

∂

∂r

(
r
∂c

∂r

)
(A.1)

and then integrate it with respect to r from r = 0 to r =∞. This gives

d

dt

∫ ∞
0

r c(r, t) dr = κ

[
r
∂c

∂r

]∞
0

. (A.2)

Impose the boundary conditions

r
∂c

∂r
(r, t)

∣∣∣
r=0

= 0, r
∂c

∂r
(r, t)

∣∣∣
r=∞

= 0 . (A.3)

Then
d

dt

∫ ∞
0

r c(r, t) dt = 0 (A.4)

and therefore∫ ∞
0

r c(r, t) dr = constant independent of t. (A.5)

In the manuscript the constant is specified and (A.5) is written as

2πH

∫ ∞
0

r c(r, t) dr = M . (A.6)

(ii) Similarity solution of the diffusion equation

The diffusion equation (A.1) is invariant under the scaling transforma-
tion

r̄ = λa r , t̄ = λb t , c̄ = λn c , (A.7)

provided b = 2a. Suppose that c = f(r, t) is a solution of (A.1). Then
c̄ = f(r̄, t̄) is a solution of

∂c̄

∂r̄
=
κ

r̄

(
r̄
∂c̄

∂r̄

)
. (A.8)
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Thus
λn f(r, t) = f

(
λar, λ2at

)
(A.9)

and differentiating (A.9) by λ and setting λ = 1 we obtain

a r
∂f

∂r
+ 2a t

∂f

∂t
= nf . (A.10)

The differential equations of characteristic curves are

dr

ar
=

dt

2at
=

df

nf
. (A.11)

Two independent solutions are

r

t1/2
= k1 ,

f

tn∗
= k2 , (A.12)

where n∗ = n/a and k1 and k2 are constants. The general solution of
(A.10) is k2 = F (k1) where F is an arbitrary function. Since c = f(r, t)
it follows that

c(r, t) = tn
∗
F (ξ) , ξ =

r

t1/2
. (A.13)

Substituting (A.13) into (A.1) reduces the diffusion equation to the
ordinary differential equation

κ

ξ

d

dξ

(
ξ

dF

dξ

)
+

1

2
ξ

dF

dξ
− n∗F = 0 . (A.14)

In order to obtain n∗ we substitute (A.13) into the conserved quantity
(A.6) which becomes

2πH tn
∗+1

∫ ∞
0

ξ
dF

dξ
dξ = M . (A.15)

Since H and M are constants it follows that n∗ = −1 and

c(r, t) =
1

t
F (ξ) , ξ =

r

t1/2
. (A.16)

The differential equation (A.14) becomes

2κ
d

dξ

(
ξ

dF

dξ

)
+

d

dξ
(ξ2F ) = 0 . (A.17)
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This illustrates the double reduction theorem that if a partial differen-
tial equation is reduced to an ordinary differential equation by a scaling
transformation associated with a conserved quantity then the ordinary
differential equation can be integrated at least once. Integrating (A.17)
gives

2κ ξ
dF

dξ
+ ξ2 F = A , (A.18)

where A is a constant. But from the first boundary condition in (A.3),

ξ
dF

dξ

∣∣∣
ξ=0

= 0 (A.19)

and therefore A = 0. Thus

2κ ξ
dF

dξ
+ ξ2 F = 0 (A.20)

which is a variables separable first order differential equation with so-
lution

F (ξ) = B exp

(
− ξ

2

4κ

)
. (A.21)

The constant B is obtained from the conserved quantity. By substitut-
ing (A.21) into (A.15) with n∗ = −1 we obtain

2πHB

∫ ∞
0

ξ exp

(
− ξ

2

4κ

)
dξ = M (A.22)

and integrating gives

B =
M

4πκH
. (A.23)

Hence

c(r, t) =
M

4π κH

1

t
exp

(
− r2

4κt

)
, (A.24)

in agreement with (2.1) in the manuscript.


