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Abstract

For the safe passage of ships it is critical to avoid weather and ocean conditions that
may endanger, damage or even sink them. One serious, potential problem is that of
“rogue waves”, commonly also called “freak”, “monster” or “abnormal” waves. These
are waves whose amplitude is unusually large for a given sea state. In this report we
consider several possible mechanisms for the formation of rogue waves, and provide
some references that consider the issue in more detail. We also revisit an analysis
of nonlinear wave interactions that may explain the formation of these waves in the
absence of other factors such as currents or variable bottom topography.

Figure 1: The Great Wave off Kanagawa, H. O. Havemeyer Collection, Bequest of Mrs.
H. O. Havemeyer, 1929
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Figure 2: Photograph of what is believed to be a rogue wave. It is difficult to get a scale
on the size of this wave.

1 Introduction

For the safe passage of ships it is critical to avoid weather and ocean conditions that may
endanger, damage or even sink them. One serious, potential problem is that of “rogue
waves”, commonly also called “freak”, “monster” or “abnormal” waves. These are waves
whose amplitude is unusually large for a given sea state. A very well known historical
depiction of such a wave is given in Figure 1, a woodblock print published in the early
1800s by Katsushika Hokusai. McAllister et. al. [5] have produced a wave in a wave-tank
that looks very much like this print. One of the few photographs of such a phenomena in
the ocean is shown in Figure 2, although it is difficult to get perspective in this photograph
to see the physical size of this wave. Descriptions of these waves have a long history in
sea folklore, but at times there has been considerable scepticism about their existence.

Reports suggest that these waves appear and disappear suddenly and unexpectedly.
Trying to identify situations where they might occur would be very helpful in the planning
of shipping routes. The Study Group was asked to explore mechanisms that might create
rogue waves and to consider if some general rules could be found that might explain where
and when they might occur.

There is a vast literature on mathematical modelling approaches to wave behaviour
relevant to the sea, and a more authoritative review is given by Dysthe et al. [4]. There is
a considerable subset of this literature that is focussed on different aspects of rogue wave
behaviour and this report presents some of those ideas and some analysis of particular
aspects. We note that there are other physical situations where rogue waves can apparently
occur including optical fibres, the atmosphere and plasmas, but we do not consider these
further.
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There is no precise definition of a rogue wave but a common rule is that such a wave
is larger than the general surrounding wave field. A slightly more formal definition is that
a rogue wave has

ηc
H1/3

> 1.2 or
H

H1/3
> 2 (1)

where the particular wave has a crest height ηc and a wave height H, and H1/3 is the
significant wave height; the mean wave height (trough to crest) of the highest third of the
waves, see [1]. Example wave records can be found in Dysthe et. al. [4].

1.1 Possible causes of rogue waves

The literature and discussion in the study group identified a number of physical mecha-
nisms that might cause such waves. These are;

• Weather conditions

Various weather conditions and sea states, particularly very high seas, seem to be
correlated with rogue wave observations from ships, but this may simply be that
the waves are already large and so larger waves are ones that cause damage while
a rogue wave in smaller seas may not be noticed. Rogue waves may be created due
to relatively isolated phenomena that move to induce a large local wave. Examples
could be moving low pressure systems, hurricanes, cyclones or tornadoes.

• Wave-current and current-current interactions

When wind acts against a current the waves that are produced can be much larger
than when no current is present. It would be interesting to consider the effect of
currents especially in situations where the current changes direction when it meets
another current. Whether such situations might produce rogue waves is not clear.

• Topography

The bottom topography of the ocean, such as at the edge of the continental shelf, can
sometimes create a focussing or amplification of waves. For example the converging
Bristol Channel amplifies the bore in the Severn River, while the topography near
the coast of Portugal leads to monster waves used by surfers. In these two cases
the waves are shallow-water waves and only become large when they travel in the
direction of decreasing depth. It is believed that rogue waves can occur in very deep
water so the waves would need to travel large distances if this were the mechanism. If
this were a mechanism, these waves would tend to occur often in the same locations.

• Wave-wave interactions

Much of the modelling to predict rogue waves considers long waves. Such waves
are, to lowest order, simple linear waves. One approach is to note that a number
of different wave trains, perhaps travelling in different directions, may simply add
together to create a large isolated wave. Such waves would exist for extremely short
times and would require all of the factors to align at just the right moment. It
would seem unlikely that this is the mechanism. A second possibility, that has
received enormous theoretical interest, is that over long times a very small nonlinear
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interaction between the waves may allow some waves to grow at the expense of others.
These nonlinear phenomena can create solitons which are isolated in space and have
large amplitude. Such behaviour has been exploited in, for example, optical devices.
It is not obvious if such behaviour would give a single sea wave since it predicts a
packet of many waves interacting and hence might be observed as a group of large
waves rather than a single, isolated wave.

This is not an exhaustive list but gives many of the factors that might be considered.
For each of them it would appear that examining a model of the behaviour might allow
predictions to be made of the probability of a rogue wave event.

In this report we will concentrate on the modelling that has been done on the phe-
nomena of long-time nonlinear wave-wave interactions where the waves are travelling in a
single direction. Our motivation is to see if there are particular physical properties of the
wave trains that control the possible creation of larger waves with a soliton-type structure.

1.2 Where have rogue waves been reported?

The group thought there may be a clue to the mechanisms behind rogue waves from their
reported locations. For example, do they occur in strong currents or near the continen-
tal shelf more often than elsewhere? Initially these waves were reported by sailors who
survived disasters and wrote that their ships had been hit by phenomenally large waves,
“walls of water”, that came from nowhere and destroyed their ship. Because such waves
were very rare events and, one suspects, most sailors who observed them perished in the
subsequent disaster, these were treated as folklore by most people. Not until 1995, when
the Draupner oil platform in the North Sea with sensors collecting data about waves was
hit by a 29m wave, was such a wave observed in sufficient detail for the phenomena to be
treated seriously and efforts made to understand their source. Since that time research
to observe rogue waves has increased and both satellite images and sensors on large ships
have allowed more detailed measurement of how many waves occur.

In Figure 3 the red pins denote the approximate positions of all the rogue waves
observed around the world (see [6]). A more detailed map is given in Dysthe et. al. [4].
We can see in more detail these positions by looking just in the North Atlantic (see Figure
4 which shows the positions of reported rogue waves [6] and the size of the ocean currents
[7]) and we note that those observations off the coast of North America may be associated
with the Gulf Stream current that travels north. We also note that many rogue waves are
seen off the western coast of Britain, but there is not a large current there. In Figure 5 the
reported rogue wave positions and the ocean currents are shown for the south west of the
Indian Ocean. The red pin marked “13” indicates where a total of 13 rogue waves have
been observed while the red pin marked “12” indicates the position of 12 rogue waves.
Note that in this figure there appears to be some relation between the number of rogue
waves and the strong coastal currents.

These data from a long period of time give some idea of where rogue waves occur.
However, great care is needed in interpreting this because much of it was collected when
the chances of surviving a rogue wave were very small and the data is probably vastly
skewed to record rogue waves in only a small sub region of the globe because observations
are almost entirely dominated by data in shipping routes. Given the picture emerging
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Figure 3: Approximate location of recorded rogue waves around the World (see [6]).

Figure 4: Locations of rogue wave sightings, [6] and a heat map of the ocean currents in
the same region ([7]). Note that some reports simply say “North Atlantic” and these are
indicated by a red pin in the centre of the Atlantic.

Figure 5: Position of rogue wave observations [6] and a vector field of the ocean currents
in the South Western Indian Ocean ([7]). Red pins 13 and 12 each indicate many rogue
wave observations.

from this diagram, there is no clear pattern to the location of these waves and so although
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this provides an interesting picture of the distribution of waves, it does not help in finding
the cause or causes.

2 Modelling

We now consider mathematical modelling approaches that have been taken to explain
the behaviour of a train of waves all travelling in the same direction and how very small
nonlinear interactions might make a group of waves either grow in size, travel at a constant
size or decay away. There are two main models that have been derived to explain such
behaviour and these are:

• the nonlinear Schrödinger equation (NLSE)

• the Dysthe Equation (a Modified Schrödinger equation (MNLSE))

Let us consider how the NSLE arises and an analysis that may tell us whether nonlinear
wave interactions might lead to a rogue wave.

2.1 The equations for waves in deep water

We start by considering waves on an infinitely deep sea (with z being the vertical coordi-
nate upwards) where the fluid motion is described by the irrotational flow of an inviscid,
incompressible fluid with the wave surface given by z = η(x, y, t) and conditions on the
surface given by a kinematic condition (fluid particles on the surface remain on the sur-
face) and a Bernoulli condition (the pressure of the air above the waves is uniform and
constant). In that case, we can define a velocity potential φ(x, y, z, t) such that the velocity
v = ∇φ. The model is therefore

∇2φ = 0, −∞ < z < η(x, t),−∞ < x <∞, t > 0 (2)

subject to the dynamic condition that the pressure on the water surface must be atmo-
spheric, i.e.

φt = −1

2

(
φ2x + φ2y + φ2z

)
− gη on z = η(x, y, t) (3)

where g is the gravity constant, and the kinematic condition given by

ηt = ηxφx + ηyφy − φz on z = η(x, y, t) (4)

and finally a condition that there is no disturbance deep beneath the ocean, so that

φ→ 0 as z → −∞. (5)

This general wave problem is too difficult to completely solve analytically because it
is highly nonlinear due to the quadratic terms in the dynamic (Bernoulli) condition and
the fact the the surface z = η(x, y, t) is apriori unknown. Therefore, we consider the long
wavelength limit where the height of the waves is small compared to the length.

In what follows, we are essentially repeating the analysis of Dysthe [3] in deriving
a nonlinear Schrödinger equation for deep water waves. We will not provide the full
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derivation, but give enough detail to provide an understanding of how the equations arise
and more importantly what scaling has been used.

We will assume the waves to be two-dimensional and hence will ignore the lateral y-
direction in our work so that we seek the behaviour of the potential function, φ(x, z, t)
and surface elevation η(x, t). Note that Dysthe included the full 3 dimensional equations.

In the case of long waves we consider k as the wavenumber of the waves and a as the
amplitude where we will analyse in the case where the parameter ε = ka is small. We
introduce scales

x =
1

k
x̂, z =

1

k
ẑ, t =

1√
gk
t̂, φ = a

√
g

k
φ̂, and η = aη̂.

Putting these into the model, and dropping the hat notation for simplicity, we find that
the non-dimensional potential still satisfies

∇2φ = 0, −∞ < z < εη(x, t),−∞ < x <∞, t > 0 (6)

and the non-dimensional surface conditions are

φt + η +
ε

2

(
φ2x + φ2z

)
= 0, on z = εη(x, t) (7)

ηt + εφxζx − φz = 0, on z = εη(x, t) (8)

Progress can now be made by assuming the dependent variable can be expanded in
the usual way and be written in the usual expanded forms

φ = φ0 + εφ1 + ε2φ2 + . . .

η = η0 + εη1 + ε2η2 + . . . . (9)

If we now consider the problem at each order of ε get the following problems: at order
O(1)

∇2φ0 = 0, (10)

with φ0t + η0 = 0, on z = 0. (11)

and η0t − φ0z = 0 on z = 0. (12)

at order O(ε)

∇2φ1 = 0, (13)

with φ1t + (φ0zη0)t + η1 +
1

2

(
φ20x + φ20z

)
= 0, (14)

and η1t + φ0xη0x − φ1z − (φ1zη0)z = 0. (15)

Note in deriving these we have had to take care when evaluating the boundary conditions
on z = εη, so that we have expanded to find that

∂φ(x, z, t)

∂t
=
∂

∂t

(
φ(x, 0, t) + εη(x, t)

∂φ

∂z
(x, 0, t) +

ε2η(x, t)2

2

∂2φ

∂t2
(x, 0, z) + . . .

)
and then inserted (9) to then equate powers of ε.
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These calculations can be continued with the model to higher orders, but we will not
proceed further. The important fact is that we have correctly identified the required
scalings and leading order equations.

The resulting equation becomes;

2i

(
∂u0
∂t̄

+
1

2

∂u0
∂x̄

)
− ∂2u0
∂t̄2

= 4u0 |u0|2 + {higher order terms} (16)

This can be seen in the work of Dysthe [3], where the dimensional form of the equation
is given as, using their notation,

2iω

(
∂A

∂t
+ vg

∂A

∂x

)
− ∂2A

∂t2
= A

(
4k4 |A|2 + {higher order terms}

)
(17)

where we have neglected y derivatives (since we are assuming two-dimensional waves) and
A is the dimensional complex potential varying slowly with time scale εt and length scale
εx. The quantity ω =

√
kg, and vg =

√
g/k/2 is the group velocity.

In order to proceed, we can now obtain the leading order solution. By inspection (or
using separation of variables, or Fourier transforms) one can identify solutions of the form

φ0(x, z, t) =
−iu0
κ

exp(zκ) exp
(
i(xκ− t

√
κ)
)
, (18)

and for the surface shape, it follows that

η(x, t) = u0 exp
(
i(xκ− t

√
κ)
)
. (19)

for any constant κ, where u0 may be complex, and we take linear sums of these waves
and the real part of the resulting expression. For the problems of interest we consider
the case where the nondimensional wavenumber κ is near unity. In this case this solution
represents waves moving to the right with speed close to unity with amplitude nearly u0.
For κ = 1 we have

φ(x, z, t) = −iu0 exp(z) exp
(
i(x− t)

)
, (20)

and
η(x, t) = u0 exp

(
i(x− t)

)
. (21)

At first-order then, we can see that (dropping the ¯ for convenience)

∂u0
∂t

= −1

2

∂u0
∂x

, (22)

and substituting this into the time derivative term leads to ∂2u0
∂t2
≈ 1

4
∂2u0
∂x2

so that eventually
we obtain the nonlinear Schrödinger equation

∂u

∂t
+

1

2

∂u

∂x
+
i

8

∂2u

∂x2
+
i

2
|u|2u = 0 (23)

This equation is known to have a very special type of solution, namely a soliton, of the
form

u(x, t) =
eit/2√

2
sech

(
x− 1

2
t

)
. (24)
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The exponential term in (24) represents an oscillation on this slow time scale, so that the
soliton moves up and down as it progresses. The absolute value of this term is

|u(x, t)| = 1√
2

∣∣∣∣sech

(
x− 1

2
t

)∣∣∣∣ , (25)

and it is the behaviour of this quantity that we will analyse.
Firstly, notice that u(x, t) may be complex, so taking u∗ as the complex conjugate, we

can write the conjugate equation as

∂u∗

∂t
+

1

2

∂u∗

∂x
− i

8

∂2u∗

∂x2
− i

2
|u|2u∗ = 0. (26)

Multiplying (23) by u∗ and (26) by u, adding and then integrating from −∞ to ∞ gives∫ ∞
−∞

∂(uu∗)

∂t
+

1

2

∂(uu∗)

∂x
+ i

i

8

(
u∗
∂2u

∂x2
− u∂

2u∗

∂x2

)
dx = 0 (27)

If we now note that u and ux both approach zero as x → ±∞, and that the second
derivative terms can be integrated to (u∗ux − uu∗x)x this equation simplifies to show

∂

∂t

(∫ ∞
−∞
|u|2dx

)
= 0. (28)

This is essentially an energy argument that says that the energy contained in the wave
packet must remain constant.

We now consider allowing the form of u to vary slowly by assuming the form

|u(x, t)| = A(t)sech

(
x− ct
L(t)

)
(29)

where A(0) = A0 and L(0) = L0 are the initial amplitude and wavelength respectively.
If we take the special case A0 = 1/

√
2, L0 = 1 we have the soliton. Using the energy

argument we note that in general, if (29) were a solution, then for the energy to remain
constant we require

L(t) = L0

∣∣∣∣ A0

A(t)

∣∣∣∣2 . (30)

2.2 Nonlinear long-wave behaviour

Considerable analysis exists for the NLSE including many numerical methods. Here,
however, we pursue the route taken by Cousins et al. [2], who sought an approximate
solution to the NLSE with the aim of gaining insight into the general behaviour of the
problem without extensive computations being necessary. The idea is to assume that the
envelope of the wave will remain close in shape to a soliton but that its height and length
may change. The procedure is to parametrise the solution, such as in (29), and then take
integrals in x of the resulting NLSE to generate approximate ordinary differential equations
for these parameters. These ODEs may then be studied to determine if the amplitude of
the resulting wave packet might grow to become sufficiently large to constitute something
like a rogue wave.
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We use the parameterisation (29) with the length of the wave L(t) and the amplitude,
A(t), related by the energy condition (30), and the initial amplitude A0 and the initial
length, L0.

Following the ideas of Cousins [2] we can multiply (26) through by a weight function
(they use a sech function) and integrate the resulting equation

∫∞
−∞ (..) sechx dx, and

hence obtain the amplitude equation to determine the growth of a wave as

d2|A|2

dt2
=

K

|A|2

(
d|A|2

dt

)2

+
3|A|2(2|A|2L2 − 1)

64L2
(31)

where K = (3π2 − 16)/8. Equation (31) along with the constraint (30) could be solved
numerically (say), subject to initial conditions. We know that

|A(0)|2 = A2
0 at t = 0, (32)

but (31) requires a second condition so we might adopt

d|A|
dt

= 0 at t = 0. (33)

2.3 Phase-plane analysis of NLSE

The problem defined by (31) and (30) can be reduced to a 2nd-order ODE by letting
Y = |A|2, so that

d2Y

dt2
=
K

Y

(
dY

dt

)2

+
3Y 2A2

0(2L
2
0A

2
0 − Y )

64L2
0A

4
0

. (34)

Rescaling with the expressions,

Y = (L2
0A

2
0)y =

y

4A2
0

and t = (L0A
2
0)
−1τ = 2τ (35)

reduces equation (34) to

d2y

dτ2
=
K

y

(
dy

dτ

)2

+
3

64
y2(2− y) (36)

Finally, letting

dy

dτ
= z (37)

dz

dτ
=
Kz2

y
+

3

64
y2(2− y) (38)

and dividing (38) by (37) provides the ODE

dz

dy
=
Kz

y
+

3

64

y2(2− y)

z
(39)

Using initial conditions and putting everything in terms of A0,

y(0) =
1

L2
0A

2
0

= 4A2
0 (40)

ẏ(0) = z(0) = 0 (41)
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we can draw trajectories in the (y, z) phase-plane for different cases. The fixed point
location y = 2, z = 0 corresponds to A0 = 1/

√
2, the value for the original, exact soliton

solution.

The phase-plane portraits are shown in Figure 6, which shows a close-up of the region
about y = 2 and Figure 7, which pans out to show what happens for larger values of z.
It seems that all trajectories return to z = 0 eventually at y > 2, which corresponds to
larger values of A.

Amplitude squared (y)

dy
dτ

0

1

2

3

0 1 2 3 4

Figure 6: Phase plot of z = dy
dτ vs. y showing 0 < dy

dτ < 4.25. Trajectories that start with
y < 2 but close to y ∼ 2 appear to return to z = 0 relatively quickly.

The initial conditions and behaviours fall within the ranges;

if y(0) < 2, ⇒ A0 <
1√
2

then the amplitude grows, while

if y(0) > 2, ⇒ A0 >
1√
2

then the amplitude stays the same.

For example, the case in which y(0) ≈ 1.34 (A0 ≈ 0.58) travels toward y → 3 (A→ 0.87),
while that which starts at y(0) ≈ 0.5 (A0 ≈ 0.35) approaches y → 14 (A → 1.87). Recall
that

√
2 ≈ 0.7071 and so this is around 2.5 times the amplitude of the original soliton.

In other words, if the starting condition is such that A0 > 1/
√

2, then the wave is
at the end of its trajectory and so will remain there, i.e. nothing will happen and the
soliton will propagate with constant amplitude in a kind of steady solution. If the starting
condition is such that A0 < 1/

√
2, then the value of z, i.e. dy

dτ will increase so that either
the amplitude increases and the wavelength decreases until as τ →∞ the wave becomes a
steady, steeper soliton propagating forward. Recall that in dimensional terms, |A|2 scales
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Amplitude squared (y)

dy
dτ

0

10

20

30

0 5 10 15 20 25

Figure 7: Phase plot of z = dy
dτ vs. y over a large region of phase space. This view shows

that the trajectories all eventually return to z = dy
dτ = 0, which would correspond to a

relatively small wave.

with k4a2, where k is our original wavenumber and a is our original amplitude, with the
expectation that 1/k >> a. The timescale in the phase portrait in dimensional terms
is (k3/2ag1/2)−1, which is very long. It does appear that small solitons could potentially
grow to large waves given sufficient time. However, we must remember that this analysis
is based on assuming that this wave packet has small variations from the soliton solution
and so for the largest waves to occur this variation would need to be quite significant.

3 Comments

There is a vast literature on the possible mechanisms for the generation of rogue waves.
The NLSE and its variants is but one of a number of equations that might be used
to develop a model. A study of these papers would provide a greater insight into how
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appropriate they are to this particular problem. It seems that there is some potential for
these equations to generate such waves, but it is not clear from these models how they
could be used to predict when and where they might form. The work of Dysthe et. al.
[4] gives a more comprehensive discussion of rogue wave formation and we recommend
the reader to this review. Their considerations include not only the mechanisms discussed
herein, but also refractive focussing due to topographical effects in the presence of strong
currents.

We mapped the location of rogue waves picked up in recent years to see if there was any
indicator of a cause, but without success, there being no apparent correlation between the
locations and sea conditions that might indicate a consistent cause via the sea currents,
wind behaviour or bottom topography. No doubt a more detailed analysis of the location
at which such waves have been recorded would assist in deciding whether some other
factors were required to generate the waves, or whether it is a nonlinear interaction as
proposed in the analysis given above.

In this workshop, it was not possible to examine all of the existing work on this subject,
and so we considered in some detail the derivation of one possible mechanism using the
NLSE equation. This analysis did raise the possibility of nonlinear interactions being the
cause of the waves, but if that is the case then mapping sea conditions in order to predict
the formation would be extremely difficult as they form over a very long time scale.
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