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What is a rogue wave?

I Rogue waves - also known as “freak”, “monster” or
“abnormal” waves - are waves whose amplitude is unusually
large for a given sea state.

I Unexpected and known to appear and disappear suddenly.

I Also occur in optical fibers, atmospheres and plasmas.

ηc
Hs

> 1.2 (1)

H

Hs
> 2 (2)

where ηc is the crest height, H is the wave height and Hs is the
significant wave height as described in Bitner-Gregersen et al.
(2014)
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Why do we care?

Rogue waves are extremely destructive. The following are examples
of rogue waves that left a wake of destruction.

I The Draupner wave, New Year’s Day 1995. Using a laser, the
Draupner oil platform in the North Sea measured a wave with
height of 25.6m

I In February 2000, an oceanographic research vessel recorded a
wave of height 29m in Scotland

I 3-4 large oil tankers are badly damaged yearly when traveling
the Agulhas current off the coast of South Africa.

These rogue waves threaten the lives of people aboard these ships,
and a warning is needed.
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What possibly causes a rogue wave?

I Various weather conditions and sea states, such as low
pressures, hurricanes, cyclones.

I Linear and non-linear wave-wave interactions can influence the
amplitude.

I Wave-current interactions, if waves and currents align.

I Topography of the sea bed.

I Wind, current and wave interactions.
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Where have rogue waves been reported?
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In the North Atlantic

8/25



In the North Atlantic
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In the Indian Ocean
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In the Indian Ocean
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Assumptions

I Irrotationality ∇2φ = 0

I Waves propagate in the x direction, uniform in the y direction.

I Bottom of the ocean is a impermeable.

I Incompressible fluid ρ =constant

I Inviscid fluid ν = 0

I No slip boundary condition

I Vertical velocity at the bottom of the ocean is zero.
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Modelling of oceanic rogue waves

Each model has a different level of approximation, which accounts
for different interactions over longer timeframes. These are the
long wave approximations of slow modulations.

I Non-linear Schrödinger equations
Assumes steepness, k0A << 1 (k0 is the initial wavelength), a
narrow bandwidth ∆k/k (∆k is the modulation wavenumber)
and is achieved by applying a Taylor series expansion to the
dispersion relation for deep water waves.

I Dysthe Equations (Modified non-linear Schrödinger equations)
Achieved by expanding the velocity potential φ and the
surface displacement h.

I Korteweg–de Vries equations A similar derivation, but in
shallow water and wont be considered.
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The model used

The model considered was developed by Cousins and Sapsis (2015)

I The free surface elevation, η is defined as follows,

η = Re{u(x , t)e i(kx−ωt)} (3)

ω is frequency, x , t are space and time respectively.

I The NLSE that describes the envelope of a slowly modulated
carrier wave on the surface of deep water
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|u|2u = 0 (4)

Where, u is the wave envelope.
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The model used

I The wave envelope is described by,

u(x , t) = A(t) sech

(
x − ct

L(t)

)
(5)

where c = 1
2 is the group velocity

I When A0 = 1/(
√

2L0), the soliton wave group shape is
constant in time. This is a special case.

I at t = 0,

u(x , 0) ≈ A(0) sech

(
x

L0

)
(6)
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The model used
Differentiating the NLSE, substituting, and integrating leaves the
equation for amplitude, A(t), the initial amplitude A0 and the
initial length, L0,

d2|A|2

d2t
=

K

|A|2

(
d |A|2

dt

)2

+
3|A|2(2|A|2L2 − 1)

64L2
(7)

where K = (3π2 − 16)/8
The length is described,

L(t) = L0

∣∣∣∣ A0

A(t)

∣∣∣∣2 (8)

Equations (8) and (7) are solved, subject to initial conditions

|A(0)|2 = A2
0 (9)

L(0) = L0 (10)

d |A|2

dt

∣∣∣∣
t=0

= 0 (11)
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The model used

Which results in

d2|A|2

dt2
=
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4
0

(12)

17/25



Phaseplane analysis

Reduced to a one dimensional ODE. Let X = |A|2,

d2X

dt2
=

K

X

(
dX

dt

)2

+
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4
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4
0

(13)

Rescaling,

X = L20A
2
0x (14)

t = T τ T 2 = (L20A
4
0)−1 (15)

⇒ d2x

dt2
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K
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+
3

64
x2(2− x) (16)
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Phaseplane analysis

Let,

dx

dt
= z (17)

dz

dt
=

Kz2

x
+

3

64
x2(2− x) (18)

to obtain the ODE

dz
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=
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x
+

3
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z
(19)

With initial conditions,

x(0) =
1

L20A
2
0

(20)

ẋ(0) = z(0) = 0 (21)
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Phaseplane analysis

Figure 1: Phase plot of dz
dx
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Phaseplane analysis

Figure 2: Phase plot of dz
dx
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Phaseplane analysis

If the initial conditions fall within these ranges,

if x(0) < 2,

1

L20A
2
0

< 2 ⇒ A0 >
1√
2L0

The amplitude grows

if x(0) > 2,

1

L20A
2
0

> 2 ⇒ A0 <
1√
2L0

The amplitude stays the same
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Phaseplane

I At values of x(0) = 1
A2
0L

2
0

close to 0, the timescale is long and

waves grow large very slowly.

I At values of x(0) = 1
A2
0L

2
0

close to 2, the timescale is very

small, but the amplitude does not get as large.

I A range between 0 and 2 could potentially be found such that
large amplitudes are within a reasonable timeframe.
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Future work

I Looking at modified NLSE, the Dysthe equations, it is expect
that the Dysthe will have similar solutions to the NLSE, with
possibly more stationary points.

I Looking at a larger time scale could give more insight into the
problem.

I Determining the internal mechanisms of these waves.

I Determining whether these models can predict the breaking
points of these waves.

I Compute the corresponding dimensional values for the
quantities to estimate real sea states.

I Taking the same approach, other models could also be
analysed in this way.
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