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Types of oceanic waves

Tsunamis - generated by earthquakes

Surface-gravity waves - Wind-generated

Rogue waves - ?

3 / 43



Rogue waves

Rogue waves - also known as “freak”, “monster” or “abnormal”

waves - are waves whose amplitude is unusually large for a given

sea state.

Unexpected and known to appear and disappear suddenly.

Also occur in optical fibers, atmospheres and plasmas.
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Size Comparison

Figure: The size comparison between a large rogue wave, a seven storey building, a

giraffe and an average human being.
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The Draupner wave, New Year’s Day 1995. Using a laser, the

Draupner oil platform in the North Sea measured a wave with

height of 25.6m

In February 2000, an oceanographic research vessel recorded a

wave of height 29m in Scotland

3-4 large oil tankers are badly damaged yearly when traveling the

Agulhas current off the coast of South Africa.
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Causes of rogue waves

Wave-wave interaction

Wave-current interaction

Spatial focusing

Focusing due to nonlinearity
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Recap - Linear Causing Mechanisms

Geometrical or Spatial Focusing

Wave-Current Interaction

Focusing due to Dispersion
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Solution

Ψ=−Hg

2σ

cosh(k(h+z))

cosh(kh)
sin(kx−σt)

η= H

2
cos(kx−σt) at z = 0

σ2gk tanh(kh)
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Characteristics

Gaussian bell shaped

Higher amplitude than normal

Travels long distances without breaking

Breaks inside ocean
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Solitary Waves

Solitary Waves are solutions to these equations, occurring when

there is a balance of the dispersive and nonlinear effects.

We are dealing with the Nonlinear Shrödinger Equation, which is

considered a Non Linear Evolution Equation.
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Korteweg-de Vries (KdV) equation

Consider the Korteweg-de Vries (KdV) equation,

∂u

∂t
+ ∂3u

∂x3
+6u

∂u

∂x
= 0, (1)

where
∂3u

∂x3
is the dispersive term, which causes the wave to "spread

out", whilst the nonlinear term, 6u∂u
∂x effectively causes the wave to

resist this effect. This balance creates a solitary wave.
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What is a Soliton?

A soliton is a solitary wave which maintains its shape when it moves at

a constant speed and conserves amplitude, shape, and velocity after a

collision with another soliton.

Solitons differ from breathers, which are waves that oscillate in time

(breathe). Kinks represent waves with a steep inclination. All these are

also solutions to nonlinear wave equations.
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Soliton Types

In deep water conditions there are three accepted solutions to the

Nonlinear Schrödinger Equation in the form of solitons. Solitons

are the accepted rogue wave models.

The deep water condition for a rogue wave is that kh > 1.36 where

k is the wavenumber and h is the water depth.
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Assumptions and Approximations

Constant density ρ - fair assumption

Wavelength λ > amplitude A - fair until the wave is rogue

Negligible viscosity - fair for ocean water

Irrotational flow - perhaps an approximation

Only body force is gravity - fair

The water is deep and the bed flat -fair

17 / 43



Homogenous Nonlinear Schrödinger Equation

i

2

∂ψ

∂t
+ 1

2

∂2ψ

∂ξ2
+k

∣∣ψ∣∣2
ψ= 0

t : Time

ξ : Distance
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Coupled System - Manakov System

i
∂ψ

∂τ
+ ∂2ψ

∂x2
+2k(|ψ|2 +|φ|2)ψ= 0

i
∂φ

∂τ
+ ∂2φ

∂x2
+2k(|ψ|2 +|φ|2)φ= 0
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Coupled non-linear Shrödinger equation

Figure: Collision of two waves at angel θ
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Coupled non-linear Shrödinger equation

∂A

∂t
=−Cx

∂A

∂x
−Cy

∂A

∂y
+ i

(
α
∂2A

∂x2
+β∂

2A

∂y2
+γ ∂A

∂x∂y

)
− i

(
ζ|A|2A+2ζ|B|2A

)

∂B

∂t
=−Cx

∂B

∂x
−Cy

∂B

∂y
+ i

(
α
∂2B

∂x2
+β∂

2B

∂y2
+γ ∂B

∂x∂y

)
− i

(
ζ|B|2B+2ζ|A|2B

)
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Collision of Waves

The angular frequency,

ω=
√

gk ,

and the magnitude of the wave vector,

κ=
√

k2
x +k2

y .

where,

kx = κcos(θ) ,

22 / 43



Collision of Waves

and,

ky = κsin(θ) .

ζ=
ω(k5

x −k3
xk2

y −3kxk4
y −2k4

xκ+2k2
xk2

yκ+2k4
yκ)

2κ2(kx −2κ)
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Collision of Waves

Once the waves collide, the angular frequency becomes,

Ω=±
√
τK 2

[
(ξ

(
A2

0 +B2
0

)+τK 2)±
√
ξ2

(
A2

0 +B2
0

)2 +16ζ2A2
0B2

0

]
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Solution To Nonlinear Schrödinger Equation

ψ(ξ, t) =
[

1+ 2(1−2a)cosh(bξ)+ ibsinh(bξ)p
2a cos(wt)−cosh(bξ)

]
eiξ,

where

b =
√

8a(1−2a) w = 2
p

1−2a
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Waves Types by Varying a

0 < a < 0.5−Akhmediev Breather

a → 0.5−Peregrine Soliton

0.5 < a <∞−Kuznetsov-Ma Soliton
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An Upgrade: The Dysthe Model

Still assumes negligible viscosity and incompressibility, solutions

are still solitons and breathers that go to plane waves at ±∞
∂φ1

∂t
+ 1

2

∂φ1

∂x
+ i

8

∂2φ1

∂x2
− i

4

∂2φ1

∂y2
− 1

16

∂3φ1

∂x3
+ 3

8

∂3φ1

∂x∂y2
− 5i

128

∂4φ1

∂x4

−15i

32

∂4φ1

∂x2∂y2
− 3i

32

∂4φ1

∂y4
+ i

2
|φ1|2φ1 + 7

256

∂5φ1

∂x5
− 35

64

∂5φ1

∂x3∂y2
+ 21

64

∂5φ1

∂x∂y4

+3

2
|φ1|2∂φ1

∂x
− 1

4
φ2

1

∂φ∗
1

∂x
+ iφ1

∂φ0

∂x
= 0
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One dimensional, nonlinear, Korteweg-de Vries

The KdV equation for a soliton in shallow water in one dimension,

∂v

∂t
− 3

2

√
g

h
v
∂v

∂x
− h2

6

√
gh

∂3v

∂x3
= 0 (2)

Using the following relations to remove the dimensions,

u = v

h
t → 1

6

√
g

h
t x → x

h
− t
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One dimensional, nonlinear, Korteweg-de Vries

After making the variables dimensionless, the standard form of the KdV

is,
∂u

∂t
+6u

∂u

∂t
+ ∂3u

∂x3
= 0. (3)

The solution for a soliton is,

u(x, t) =−c

2
sech2

[p
c

2
(x− ct −x0)

]
(4)
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Figure: The plot of the solution to the one dimensional KdV equation
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Two dimensional, nonlinear, Korteweg-de Vries

∂

∂x1

(
∂u

∂t
+h

∂3u

∂x3
1

+ ∂F(u)

∂x1

)
= f

∂2u

∂x2
2

(5)

Where the stream function is represented by,

F(u) = au+ b

2
u2 − 1

3
du3 (6)
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Two dimensional, nonlinear, Korteweg-de Vries

The solution is then

u(t,x1,x2) = b

2d
± k1

p
6hp
d

tanh

(
t(−4adk2

1 −b2k2
1 +4dfk2

2 +8dhk4
1)

4dk1
+k1x1 +k2x2 +k3

)
(7)
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Two dimensional, nonlinear, Korteweg-de Vries

The following boundary conditions are imposed on equation 7

u0,0,0 = 0,
∂3u

∂x2
2

|(0,0,0) = 0,
∂3u

∂x2
2

|(0,0,0) = 0

t > 0 L1 > 0 L2 > 0

x1 ∈ (0,L1) x2 ∈ (0,L2)

where u has the parameters u(t,x1,x2).
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Two dimensional, nonlinear, Korteweg-de Vries

This allows us to obtain 3 equations to solve for k1, k2, k3

b+2
p

6dh k1 tanh(k3) = 0

4k3
1 tanh2(k3)sech2(k3)−2k3

1sech4(k3) = 0

4k3
2 tanh2(k3)sech2(k3)−2k3

2sech4(k3) = 0
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The 2D, nonlinear KdV equation

Figure: The plot of the solution to the two dimensional KdV equation
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The 2D, nonlinear Kadomtsev-Petviashvili equation

Particular case of the KdV equation, with a term γ which is dependent

on the dispersion medium

∂

∂x1

(
∂u

∂t
+ ∂3u

∂x3
1

−6u
∂u

∂x1

)
= 3γ2∂

2u

∂x2
2

(8)

The solution is a hyperbolic function,

u(t,x1,x2) =α+β tanh2(k1x1 +k2x2 +k0 + tω) (9)
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The 2D, nonlinear Kadomtsev-Petviashvili equation

Where,

α=−(3γ2k2
2 −k1ω−8k4

1)/6k2
1, β=−2k2

1 (10)

The k constants can then be determined as above, with the boundary

conditions

40 / 43



The 2D, nonlinear Kadomtsev-Petviashvili equation

Figure: The plot of the solution to the two dimensional KP equation
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