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Types of oceanic waves

m Tsunamis - generated by earthquakes
m Surface-gravity waves - Wind-generated

m Rogue waves - ?
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Rogue waves

m Rogue waves - also known as “freak”, “monster” or “abnormal”
waves - are waves whose amplitude is unusually large for a given

sea state.
m Unexpected and known to appear and disappear suddenly.

m Also occur in optical fibers, atmospheres and plasmas.
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Size Comparison

Seven storey building

21m Rogue wave

256 m

Giraffe
5.5m

The size comparison between a large rogue wave, a seven storey building, a

giraffe and an average human being.



m The Draupner wave, New Year’s Day 1995. Using a laser, the
Draupner oil platform in the North Sea measured a wave with

height of 25.6m

m In February 2000, an oceanographic research vessel recorded a

wave of height 29m in Scotland

m 3-4 large oil tankers are badly damaged yearly when traveling the

Agulhas current off the coast of South Africa.
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Causes of rogue waves

m Wave-wave interaction
m Wave-current interaction
m Spatial focusing

m Focusing due to nonlinearity
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Recap - Linear Causing Mechanisms

m Geometrical or Spatial Focusing
m Wave-Current Interaction

m Focusing due to Dispersion
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Characteristics

m Gaussian bell shaped
m Higher amplitude than normal
m Travels long distances without breaking

m Breaks inside ocean
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Solitary Waves

m Solitary Waves are solutions to these equations, occurring when

there is a balance of the dispersive and nonlinear effects.

m We are dealing with the Nonlinear Shréodinger Equation, which is

considered a Non Linear Evolution Equation.
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Korteweg-de Vries (KdV) equation

Consider the Korteweg-de Vries (KdV) equation,

a” ou 6ua—u—0 (1)
Tow ’

3
lt . . . . n
where S is the dispersive term, which causes the wave to "spread

out", whilst the nonlinear term, 6u _ effectively causes the wave to

resist this effect. This balance creates a solitary wave.
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What is a Soliton?

A soliton is a solitary wave which maintains its shape when it moves at

a constant speed and conserves amplitude, shape, and velocity after a

collision with another soliton.
Solitons differ from breathers, which are waves that oscillate in time

(breathe). Kinks represent waves with a steep inclination. All these are

also solutions to nonlinear wave equations.
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Soliton Types

m In deep water conditions there are three accepted solutions to the
Nonlinear Schrédinger Equation in the form of solitons. Solitons

are the accepted rogue wave models.

m The deep water condition for a rogue wave is that kh > 1.36 where

k is the wavenumber and # is the water depth.
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Assumptions and Approximations

Constant density p - fair assumption

Wavelength A > amplitude A - fair until the wave is rogue

Negligible viscosity - fair for ocean water

Irrotational flow - perhaps an approximation

Only body force is gravity - fair

m The water is deep and the bed flat -fair
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Homogenous Nonlinear Schrodinger Equation

ioy 10°y

t: Time

¢ : Distance
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Coupled System - Manakov System

oy 0>
’a_w + 0—”2’ +2k(lp)* + Py =0

0P 0°¢p
la— £ 2k(|77”| +|¢| )p=0
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Coupled non-linear Shrodinger equation

Collision of two waves at angel 6
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Coupled non-linear Shrodinger equation
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Collision of Waves

The angular frequency,

and the magnitude of the wave vector,

K =\/k+ K

:

where,

k,=xcos(0),
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Collision of Waves

and,

k, = xsin (0).

w(k; — Kk — 3k, k) — 2k + 2Kk + 2k5K)
2x2(k, — 2x)
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Collision of Waves

Once the waves collide, the angular frequency becomes,

Q:i\/er

((A2+ B2)+TK?) + \/52 (A2 + B)® + 16022 B2
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Solution To Nonlinear Schrodinger Equation

2(1 —2a) cosh(b¢) +ibsinh(b¢) i
e
v2a cos (wt) — cosh(bé)

wE, D=1+

)

where

b=+/8a(l-2a) w=2v1-2a
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Waves Types by Varying a

0 < a< 0.5 — Akhmediev Breather
a— 0.5 —Peregrine Soliton

0.5 < a < oo — Kuznetsov-Ma Soliton
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a=0.3
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An Upgrade: The Dysthe Model

m Still assumes negligible viscosity and incompressibility, solutions

are still solitons and breathers that go to plane waves at +oo
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One dimensional, nonlinear, Korteweg-de Vries

The KdV equation for a soliton in shallow water in one dimension,

@_ﬁf___ oY _y 2)
h 8hox

Using the following relations to remove the dimensions,
v 1 /g
u=—  r——y/2t
h 6V h
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One dimensional, nonlinear, Korteweg-de Vries

After making the variables dimensionless, the standard form of the KdV

is,
ou ou ou

E+6ua+ﬁ20. 3

The solution for a soliton is,

g(x—ct—xo)] (4)

c
u(x, ) = — Esech2
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The solution of the one dimensional KDV
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The plot of the solution to the one dimensional KdV equation
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Two dimensional, nonlinear, Korteweg-de Vries

0 (0u _Ju GF(u) 0%u
B L —f
ox (ot o 02

Where the stream function is represented by,

)

b 1
F(u) = au+ Euz—gdus (6)

34/43



Two dimensional, nonlinear, Korteweg-de Vries

The solution is then

b Ikv6h

U(t,X1,XZ) = Zi + \/E
t(—4adls — b* I + 4dfiS + 8dhk}
tanh (Fia 1 41dk fk% 1) +kixi+koxo + k3| (7)
1
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Two dimensional, nonlinear, Korteweg-de Vries

The following boundary conditions are imposed on equation 7

o 63u| o 63u| 0
Up,0,0 =Y, 3 xg 0,0,00 = Y, 3 xg (0,0,0) =
>0 L;>0 L, >0
X1 € (O)Ll) X2 € (0) l/Z)

where u has the parameters u(t, x;, X»).
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Two dimensional, nonlinear, Korteweg-de Vries

This allows us to obtain 3 equations to solve for k;, k», k3

b+2v6dhk,tanh(kz) =0
41 tanh?® (k3) sech? (ks) — 2k; sech® (k) = 0

4k§ tanh?(k3) sech® (ks) — Zlcgsech‘*(kg) =\
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The 2D, nonlinear KdV equation

The solution of the two dimensional KDV

The plot of the solution to the two dimensional KdV equation
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The 2D, nonlinear Kadomtsev-Petviashvili equation

Particular case of the KdV equation, with a term y which is dependent

on the dispersion medium

0 a_u u 6 ou ,0%U
6x1 ot 6x3 le

The solution is a hyperbolic function,

u(t, x1,%) = a + ftanh?® (ki x; + koxp + ko + tw)

)

9)
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The 2D, nonlinear Kadomtsev-Petviashvili equation

Where,
a=-03yk-kwo-8k)/6k, p=-2k (10)

The k constants can then be determined as above, with the boundary

conditions
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The 2D, nonlinear Kadomtsev-Petviashvili equation

The plot of the solution to the two dimensional KP equation
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