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Abstract

After the exploration phase, data collected are analysed and interpreted using
geostatistical modelling techniques to produce an orebody model. The orebody
model is delineated into thousands of mining blocks in 3 dimesniosnal (3D) space
with assigned grade values. The geological information will inform the type of
mining to be adopted, whether surface or underground mining. Consequently, the
appropriate mining method is selected depending on the type of deposit. It is at
this stage that mine planners can commence with the generation of an optimal stope
layout subject to economic and technical constraints. The selection of an optimum
stoping layout is one of the important areas of mine planning; however, it is still
relatively underdeveloped. There are several algorithms that have been developed to
generate a stope layout for underground mining. However, none of these algorithms
guarantees an optimal solution in 3D. This paper develops several methods of finding
(sub)-optimal solutions in 2D and 3D. The problem is mathematically formulated,
and solves using a deterministic Multi-Start algorithm, and a heuristic Particle
Swarm Optimisation Algorithm.
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1 Introduction

Mining projects have long turnaround times and require large start-up capital to build and
operate. The objective of mine production is to maximise return on investment, which
is derived from the extraction and sale of the mineral. The return on investment will
depend on the physical location of the ore, the mining layout and extraction sequence,
technical factors associated with the orebody, grade of the orebody and the available
mining methods [9]. It is in the early planning stages where a mine has the greatest level
of flexibility to make decisions on the economic and technical criteria for operating a mine.

Thorough planning done in advance of constructing the mine lowers the risk of failure.
Once the construction of the mine begins, the ability to alter the mine design diminishes
exponentially as the mine matures [7]. Therefore, the mining engineer is required early
on in a mining project to make long-term decisions that must optimise the cost efficiency
and profitability of the mine operation.

The limited number of tested operations research (OR) techniques and the lack of tools
and appropriate computer programs to address underground mine planning problems is
an issue of concern to mining professionals[12]. This lack of software limits a company’s
capacity to develop underground mine plans that maximises the net present value (NPV)
of the project [2, 9]. There is a recognised need by the mining industry for improved
software tools to support the planning, design and operation of underground mines [3].
The strategic planning tools could help to minimise the potential for sub-optimal decisions
being made at the outset of an operation by reviewing many different alternatives.

In the mine design process of underground mines, the mining engineer must first select a
mining method that is amendable to extracting the orebody and then decide on a cut-off
grade for extracting the orebody. The next step is to create a stope design that maximis-
es the value of the mine. A stope is an underground production area from which ore is
extracted from the surrounding rock mass [15]. The mine engineer will then design the
access to the identified stopes. In addition, the mining engineer must sequence the extrac-
tion order of the stopes with the purpose to maximise economic ore recovery. Throughout
this process, the mining engineer must consider the technical factors associated with the
orebody and economic factors associated with the selected mining method [7]. Therefore,
the design of the mine stopes, mainly their dimensions and location, is a critical aspect
of the mine design process. One particular technical consideration to account for in the
mining design is the level constraint. This constraints restricts the stopes to be selected
in an ad-hoc query manner. In a 3D search space, a level would be defined to have the
same dimensions as the stope for two of its dimensions, and where the third dimension
is unrestricted. Mining a particular combination of dimensions and levels makes it easier
to apply to the corresponding abstraction space. Moreover, applying level constraints
reduces the search space [1].

The study of the best selection and configuration of a collection of objects adhering to an
objective function defines Combinatorial Optimisation Problems (COP) [14]. Since the
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optimality of the mine design is determined by the selection and configuration of both
the orebody and its stopes, this problem can be classified as a COP.

Historically, the mining engineer would design the stopes manually, which is a time con-
suming process. Furthermore, the use of rules-of-thumb in determining the dimensions
and locations of the stopes would be common practice. However, rules-of-thumb calcu-
lations do not always produce optimised designs. Since the subsequent introduction and
proliferation of computers, the use of software applications with built-in algorithms that
can automatically design and optimise the stope layout has increased. While this has
reduced the time required for the stope design process, the literature indicates that none
of the current algorithms are able to guarantee the optimum stope design [13].

1.1 Objectives

The objectives of the research are as follows:

• Develop a mathematical model describing the Stope Boundary Optimisation Prob-
lem (SBOP).

• Apply multiple optimisation methods to obtain an optimal mining configuration for
an underground mine.

• Test the methods on the available data and quantitatively express their performance.

2 Mathematical Model

2.1 Development of Stope Boundary Optimisation Model

For the sake of simplicity, the mathematical formulation is developed in 2D, and extended
to 3D. The following assumptions are made in creating the 2D mathematical model:

• Let the mining area be represented by a grid with dimension, n×m.

• The grid is made up of distinct blocks with predefined values.

• The stope dimension is fixed for 2D case, say α× β.

• The decision variable is binary.

• To ensure that the stopes are on the same level for easy mining, the following
strategy is used: If xij = 0, then move to xij+1; If xij = 1, then move to xij+β; Once
the level has been exhausted, move to xi+αj, and repeat the steps.
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In 2D, the optimisation problem is specified as follows:

maximise

n−p∑
i=1

m−q∑
j=1

Vijxij, (1)

which models the SBOP as an optimisation problem subject to the constraints:

i+p∑
i

j+q∑
j

xij ≤ 1 ∀ i ∈ {1, · · ·n− p},∀ j ∈ {1, · · ·m− q} (2)

xij −
j+q∑

j′=j+1

xij′ = 1 ∀ i ∈ {1, · · ·n− p},∀ j ∈ {1, · · ·m− q} (3)

xij −
i+p∑

i′=i+1

xi′j = 1 ∀ i ∈ {1, · · ·n− p},∀ j ∈ {1, · · ·m− q} (4)

xij −
i+p∑

i′=i+1

j+q∑
j′=j+1

xi′j′ = 1 ∀ i ∈ {1, · · ·n− p},∀ j ∈ {1, · · ·m− q} (5)

where:

Vij =

i+p∑
i

j+q∑
j

uij, p = α− 1 and q = β − 1, xij ∈ {0, 1} . (6)

Extending the problem to 3D yields the following:

maximise

n−p∑
i=1

m−q∑
j=1

s−r∑
k=1

Vijkxijk, (7)

subject to:

i+p∑
i

j+q∑
j

k+r∑
k

xijk ≤ 1 ∀ i ∈ {1, · · ·n− p},∀ j ∈ {1, · · ·m− q},∀ k ∈ {1, · · · s− r} (8)

xijk −
j+q∑

j′=j+1

xij′k = 1 ∀ i ∈ {1, · · ·n− p}∀ j ∈ {1, · · ·m− q},∀ k ∈ {1, · · · s− r} (9)

xijk −
i+p∑

i′=i+1

xi′jk = 1 ∀ i ∈ {1, · · ·n− p},∀ j ∈ {1, · · ·m− q},∀ k ∈ {1, · · · s− r} (10)
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xijk −
k+r∑

k′=k+1

xijk′ = 1 ∀ i ∈ {1, · · ·n− p},∀ j ∈ {1, · · ·m− q},∀ k ∈ {1, · · · s− r} (11)

xijk−
i+p∑

i′=i+1

j+q∑
j′=j+1

k+s∑
k′=i+1

xi′j′k′ = 1 ∀ i ∈ {1, · · ·n−p},∀ j ∈ {1, · · ·m−q},∀ k ∈ {1, · · · s−r}

(12)

xijk−
i+p∑

i′=i+1

m−1∑
j′=j+l

s−1∑
k′=k+1

xi′j′k′ = 1 ∀ i ∈ {1, · · ·n−p},∀ j ∈ {1, · · ·m−q},∀ k ∈ {1, · · · s−r}

(13)

where:

Vijk =

i+p∑
i

j+q∑
j

k+r∑
k

uijk, (14)

p = α− a , q = β − b and r = γ − 1 (15)

xijk ∈ {0, 1} (16)

a = 1, ..., n, b = 1, ...,m. (17)

2.2 Development of Multi-Start Algorithm

The Multi-Start (MS) algorithm aims to find a global optima or its close approximation
to an objective function. The MS algorithm is a search technique which primarily consists
of repeated application of constructive methods [11]. MS is a two-phase method; a global
search followed by a local search. The global search entails the objective function being
evaluated in a number of randomly sampled point (uniform distribution), and the local
search manipulates points samples in the global search to yield candidate global optima.
The MS algorithm is classified as deterministic or non-deterministic by the scheme used
to make a selection during the search process. If a greedy selection is repeatedly made
then the MS is classified as deterministic, and non-deterministic if a stochastic scheme is
used. Stochastic schemes used include random selection or application of perturbation.
Three key elements in MS methods that can be used for further classification purposes
are: memory, randomisation and degree of rebuild.

The MS algorithm is commonly embedded to heuristic search schemes [10] to provide
diversification in exploring a search space for solutions to COPs. These heuristics are
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based on local optimisation that aspire to find global optima. Hence, the MS algorithm is
proposed to guide the search by repeatedly restarting the procedure from a new solution
once a new solution has been found.

The MS algorithm’s search space can be represented by binary decision variables (i.e., 0’s
and 1’s). Starting from a null solution and selecting variables are then set to 1.

The application of the MS algorithm to the SBOP is now considered.

2.2.1 Application of Multi-Start Algorithm to the Stope Boundry Optimisa-
tion Problem

The first step of applying the MS algorithm to finding a solution to the mining problem
is to project the selected orebody as a binary representation. The orebody is delineated
into unit blocks which compose individual stopes. An example of a 2D representation is
given in Figure 1.

Figure 1: Representation of delineated orebody.

An example of stope configurations is shown in Figure 2. In this example stopes of size 2×2
are formed from the unit blocks into which the orebody was delineated. At initialisation
a number of stope configurations are predefined which obey the level constraint.



M. Ali, J.M. Atherfold and K. Prag 95

Figure 2: Examples of predefined stope configurations.

At initialisation each of the unit blocks is set to 0. Until some termination criterion
is not met, the algorithm repeatedly selects the highest value stope from any of the
predefined configurations which has not been previously selected and does not violate
the level constraints. Next, the level in which the stope was selected is probed to find
other feasible stopes to mine. Both the mine design and mine value are updated with the
selected stopes. This procedure is summarised in Algorithm 1.

Algorithm 1 Multi-Start Algorithm
1: procedure Multi-Start Algorithm(κ, ζ) . Global Termination Criterion, Local Termination Criterion
2: for i = 0 : 1 : κ do
3: Find highest value stope . This stope is previously unselected and does not violate any level constraints
4: for j = 0 : 1 : ζ do
5: Probe level for any other feasible stopes
6: Update mine value
7: end for
8: end for
9: return Mine value
10: end procedure

The MS algorithm applied to this problem is classified as deterministic because the greedy
selection scheme is utilised.

2.2.2 Parameters

The parameters selected for the MS algorithm were based on the delineation of the ore-
body, the stope size and the restrictions enforced by the level constraint.

2.3 Development of Particle Swarm Optimisation Algorithm

The Particle Swarm Optimisation (PSO) algorithm optimises a problem by generating a
population of particles, representing candidate solutions, and having each particle iter-
atively try to improve on its solution with regard to a given measure of quality. Each



96 Stope boundary optimisation for underground mines

Table 1: Selected MS parameters

Parameter Description Value
κ Number of global restarts (equivalent to the maximum number of 3200

stopes in the mine.)

ζ Number of local searches (equivalent to the maximum number of 16
stopes per level).

η Number of predefined stope configurations. 8

particle will evaluate its current solution quality against the personal best solution it has
achieved so far and also the global best solution found by any particle in the population.
Each particle moves in search of better solutions throughout the search-space according
to simple mathematical formulae that define the particle’s position and velocity over time
[8] . To search for the optimal solution, the velocity and positions of each particle are
updated by the following equations:

{
vd
i (k + 1) = ωvd

i (k) + c1r1
(
Pd

best(k)−Pd
i (k)

)
+ c2r2

(
gd
best(k)−Pd

i (k)
)

Pd
i (k + 1) = Pd

i (k) + vd
i (k + 1) ,

(18)

where c1 and c2 are acceleration constants regulating the relative velocities with respect
to the personal best and global best positions respectively; r1 and r2 are N × 1 vectors
of random numbers drawn from a uniform distribution in the interval (0,1); and ω is an
inertia parameter given by

ω = ωmax −
ωmax − ωmin

K
k , (19)

where ωmax and ωmin are the initial and final weights respectively, k is the iteration number
and K is the total number of iterations.

One of the advantages of the PSO is that it is simple to code and it only requires the
problem and a few parameters to solve. We will look at the problem definition then
encoding strategy and the parameters and then apply the PSO to an orebody.

2.3.1 Parameter Selection

One of the advantages of the PSO compared to other algorithms is the relatively few
number of parameters that have to be tuned in the algorithm [8]. The parameter values
used for this research was based on a literature survey of the existing research on parameter
selection for the PSO algorithm [4, 6]. These parameters are indicated in Table 2.
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Table 2: Selected PSO parameters based on literature review

Parameter Description Value
ωmax Maximum inertia coefficient 0.9
ωmin Minimum inertia coefficient 0.4
K Total number of iterations 100
c1; c2 Velocity coefficients c1 = c2 = 2

The PSO is known to be very sensitive to the choice of parameters and parameter selection
is one of the most important aspects in the PSO algorithm. It is accepted that generally
the choice of the parameters will be problem dependent and that parameter hypertuning
will often be required.

The encoding of the problem is specified in two dimensions with the intention of clarifying
the strategy for modelling the problem. It was assumed that the sub-level open stoping
method would be used to mine the deposit and three constraints associated with this
mining method, namely overlap constraint, level constraint and uniqueness constraint,
had to be considered in encoding the PSO algorithm. Figure 3 illustrates an example of a
section of ore body, and how the selected mine configuration is encoded such that it can
be passed to the PSO algorithm.
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Figure 3: Encoding of a Mine Configuration.

In this trivial example, there are R rows and C columns in the orebody, representing the
orebody extent. Each block represents a block in the ore body. The stope size is fixed
at 3 × 2 blocks and there are N possible stopes. The stopes selected in this particular
configuration are marked in bold. The starting corner of each selected stope is marked
with the number one and the rest of the ore body is padded with zeros. The co-ordinates
of all the ones in the ore body are then found and stored in a set, as illustrated in Figure
3. This set of co-ordinates forms one member of the population. Each member of the
population is therefore an entire mine configuration. Figure 3 is an illustration of the
encoding of the 2D SBOP. In 3D, the dimensionality of the problem is N × 3.
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2.3.2 Fitness Evaluation

The PSO is initialised by generating random solutions, that is, particles which represent
a specific mine layout. The number of stopes that may be used in the mine layout is pre-
defined. Therefore, each particle will consist of the pre-defined number of stopes randomly
selected from the set of all possible stopes.

The fitness of a particle is a direct function of the final value of the mine, that is, the sum
of the values of the selected stopes in the mine layout. The Net Smelter Return (NSR) was
used as the measure of value. Incorporated into the fitness evaluation are three important
constraints; the level constraint, uniquness constraint, and overlap constraint. The nature
of these constraints is illustrated in Figure 4.
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Figure 4: Visual representation of (a) Level constraint violation, (b) Uniqueness con-
straint violation, (c) Overlap constraint violation.

The level violation indicates multiple stopes which have blocks on different mining levels.
This is not allowed according to the design of the mine as each stope must lie within
the defined level spacing. Uniqueness violation occurs when two stopes occur at the
same location. Since a stope cannot be mined twice, the number or stopes needs to be
explicitly specified in the model. Overlap violation occurs when stopes are overlapping.
These stopes may or may not be on the same level. This incurs a penalty because stopes
may not overlap, again because once a stope or a portion of it has been mined, it cannot
physically be mined again. The fitness of the configuration is therefore taken to be the
linear combination of the mine value and the three penalties:

Fitness = VMine − k1 ∗ PLevel − k2 ∗ PUnique − k3 ∗ POverlap, (20)

where VMine is the calculated value of the mine configuration, P ’s are the penalties in-
curred by each respective constraint violation, and k’s are constants, chosen large enough
such that even if one penalty occurs, the fitness will indicate that the mine configuration
will not be economically viable. This ensures that all economically viable configurations
follow all the constraints. The goal of the algorithm is to maximise the fitness. Figure 5
shows the flow chart for the mine configuration optimisation.
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Figure 5: Flowchart of PSO Algorithm.

The experimental method utilising PSO for the purpose of mine configuration optimisation
can be described as follows:

1. Initialise swarm size, maximum number of generations and initial velocities and
positions of each of the particles, where each particle represents a particular mine
configuration.

2. Calculate the fitness of each member according to Equation 20.

3. Update model parameters if necessary; the personal best position of each particle
and the global best position at the current time step.

4. Update the velocity and positions of each particle according to Equation 18.

5. The algorithm terminates when the maximum number of generations occurs. The
output is an optimal mine configuration.

This method was conducted for a varying number of stopes of a fixed size. Twenty
experiments were conducted for each stope number.
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3 Results

The optimisation of a mine configuration was attempted using PSO as an optimisation
tool. Training data from a conceptual ore body was used to test the optimisation algorithm
and the results are discussed.

The algorithm requires a regularized economic block model. The orebody model used
in this study represents a theoretical gold deposit. The block model consists of 15572
blocks of a uniform block size. The geological attributes assigned to each block are the
gold grade and the rock density. The metal content per block was determined from these
two attributes, taking into consideration the block size. An economical value, the Net
Smelter Return (NSR), was calculated for each block based on assumptions of the mining
costs, processing costs, logistical costs and metal price. The economic block model data
is summarised in Table 3.

Table 3: Summary of Economic Block Model Data

Attribute Value
Number of blocks 15572
Block sizes (x,y,z) 5m× 5m× 5m
Rock density variation 2.8 - 3.6 t/m3

Net Smelter Return Variation 0.6 - 301 USD/tonne

The block model data was then imported into the PythonR© script that was developed for
this research. Then the respective optimisation algorithm was run using the fixed block
sizes and stopes sizes given in Table 4.

Table 4: Mine Configuration

Attribute Value
Block size (x, y, z) 5m x 5m x 5m
Single mine stope dimension x× y × z) 10m× 10m× 20m
Single mine stope dimension (Blocks) x× y × z 2× 2× 4 = 16

3.1 Multi-Start Algorithm

The MS algorithm is used as an optimisation tool to obtain a mine configuration. The
MS algorithm applied specifically to this mining problem is deterministic as the algorithm
constantly makes a greedy choice.

The MS algorithm uses a number of η predefined stope configurations which are used in
making stope selections for the mine design. This research compares the mine configura-
tion and its associated mine value to the number of predefined stope configurations used
for the search. An overview of the predefined stope configurations is given in Table 5.
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Table 5: Predefined stope configurations.

Individual Configurations Overview
Configuration Maximum Avail-

able Stopes
Maximum Mine-
able Stopes

Maximum Mine-
able Stope Value

0 3200 643 754782.0192
1 3100 608 716899.0144
2 3136 663 767009.0959
3 3038 626 727526.7213
4 3100 573 654135.1559
5 3003 541 621057.3940
6 3038 562 648486.8863
7 2943 532 616518.0707

The maximum available stopes in the configuration is the number of stopes that the
orebody is divided into. Maximum mineable stopes is the number of stopes that meet
the constraints which are the stopes that are feasible to mine, that is, if the stope value
is greater than 480 NSV.

The predefined stope configuration overview from Table 5 is visually depicted in Figure 6.
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Figure 6: Stopes available compared to number of mineable stopes.

Three particular configuration combinations are selected to form part of the search space
to deduce how the predefined stope configurations impact the mine configuration design
obtained by the MS algorithm. All the selected predefined stope configurations have a
shift in two dimensions. An overview of selected configurations is tabulated in Table 6.
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Table 6: Individual Configuration Overview

Configuration Selection Overview
Search
Space

Configurations
Selected for
Search
Space

Maximum
mineable
stopes

Maximum
stopes
mined

Maximum
mineable
stope
value

Maximum
stope val-
ue

A 3 and 5:
(x, y) and
(x, z) shifts

1167 12 1348584.12 21845.35

B 3 and 6:
(x, y) and
(y, z) shifts

1188 31 1376013.61 65405.38

C 5 and 6:
(x, z) and
(y, z) shifts

1103 49 1269544.28 109496.89

An overview of the configurations selected for the search space is visually depicted in
Figure 7.
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Figure 7: Stopes available compared to number of mineable stopes forming the search
space.

The the value of the available stopes to the mineable stopes of the 3 specified search
spaces is given in Figure 8. From these results it can be deduced that the predefined
stope configurations impact the mine design. The design of the applied MS algorithm is
of a deterministic nature, hence is restrictive in exploring the search space. The highest
valued search space is C, which obtains a mine design valued at 109496.89 NSV for 49
stopes. This should be considered in conjunction to the single configuration search spaces
given in Table 5. It is highlighted that using a single configuration of predefined stopes in
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a search space may be more viable as the greedy technique reduces the number of stopes
that form a part of the mine design as a results of violating the level constraints.
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Figure 8: Value of stopes available compared to number of mineable stopes forming the
search space.

3.2 Particle Swarm Optimisation Algorithm

The optimisation of a mine configuration was attempted, using PSO as an optimisation
tool. Training data from a conceptual ore body was used to test the optimisation algo-
rithm, and the results are discussed.

The algorithm requires a regularised economic block model. The orebody model used
in this study represents a theoretical gold deposit. The geological attributes assigned
to each block are the gold grade and the rock density. The metal content per block
was determined from these two attributes, taking into consideration the block size. An
economical value, the Net Smelter Return (NSR), was calculated for each block based on
assumptions of the mining costs, processing costs, logistical costs and metal price. The
economic block model data is summarised in Table 3.

The block model data was then imported into the PythonR© script that was developed for
this research. Then the PSO algorithm optimisation was run using a fixed stope size of
10m× 10m× 20m along the x, y and z axis, respectively.

Figure 9 shows the final results of all experiments. The maximum mine values are plotted
as a function of the number of stopes. The maximum value found by the PSO algorithm
is about 22000 with 12 stopes.

Figure 10 shows how the mean and maximum fitnesses in the population change with
iteration number from one of the experimental runs using 13 stopes. Figure 10 illustrates
the convergence process of the algorithm. Convergence does not mean that the population
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Figure 9: Maximum Mine Values for All Experiments.

has reached an optimum (local or global). Rather it means that the population has
reached an equilibrium state, that is, the particles converged to a point, which may not
be an optimum point [5].

(a) Maximum Mine Value (NSR) (b) Mean Mine Value (NSR)

Figure 10: Results from an experimental run with 13 stopes.

From Figure 10(a), the algorithm clearly converges to a maximum value within 100 iter-
ations. In this particular case, the maximum value is relatively small, at approximately
4400 and therefore this value is a local maximum, not the global maximum. The algorithm
becoming trapped in local maxima is the reason multiple experiments are run.

From Figure 10(b), the effect of the heavy penalties on the constraints violations can be
observed. The mean mine value starts off at approximately -3800000, indicating a large
number of constraints violations. The mean mine value then increases with the number
of iterations to about 4000 as the violations are resolved.
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4 Conclusions

The following conclusions can be drawn from the results:

• The mine layout was successfully optimised by both the specified methods.

• Convergence of the PSO was clearly shown.

• The PSO is feasible with this development and warrants further research.

• The predefined mine configurations impact the mine design obtained by the MS
algorithm.

• The MS is a possible solution technique which should be developed by applying it
to the SBOP using stochastic methods.

5 Recommendations

The following recommendations are made for further research in the field:

• Hyper-parameters of the PSO were chosen at random; actual parameter selection
techniques should be considered.

• MS algorithm designed to be deterministic; stochastic schemes should be considered.

• All current work is defined for fixed stope sizes; in reality, stope size is a variable that
changes within an underground mine. It is therefore a useful additional parameter
to include in the problem formulation.
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