STOPE BOUNDARY OPTIMISATION FOR UNDERGROUND MINES

Supervisor: Prof. Montaz Ali

Alex Alochukwu, Babatunde Sawyerr, John Atherfold, Krupa Prag, Micheal Olusanya, Patience Adamu, Peter Popoola, Sakirudeen Abdulsalaam, Vincent Langat

January 19, 2018

GROUP 3: MATHEMATICS IN INDUSTRY STUDY GROUP (MISG) 2018
The Stope Boundary Optimization Problem (SBOP) involves choosing a certain configuration of stopes which maximizes the Net Profit Value, (NPV), subject to the stope dimension constraints.
Our approach involves the following:

- The development of a mathematical model for the SBOP
- The exploration of various optimization algorithms for the SBOP
- The development of a hybrid algorithm for the SOP which contains components of Dynamic Programming (DP) and Particle Swarm Optimization (PSO).
2D Schematic of Stope Configuration Instance

<table>
<thead>
<tr>
<th></th>
<th>15</th>
<th>0</th>
<th>3</th>
<th>-8</th>
<th>7</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>74</td>
<td>1</td>
<td>19</td>
<td>27</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>-22</td>
<td>10</td>
<td>90</td>
<td>2</td>
<td>-71</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>60</td>
<td>32</td>
<td>-40</td>
<td>3</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>-13</td>
<td>-44</td>
<td>22</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>-22</td>
<td>33</td>
<td>64</td>
<td>2</td>
<td>-9</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Mathematical Modelling

For the sake of simplicity, we developed the mathematical formulation in 2D, and extend it to 3D. The following assumptions were made in creating the 2D mathematical model:

- Let the mining area be represented by a grid with dimension, \(n \times m \).
- The grid is made up of distinct blocks with predefined values.
- The stope dimension is fixed for 2D case, say \(\alpha \times \beta \).
- The decision variable is binary.
- To ensure that the stopes are on the same level for easy mining, we use the following strategy: If \(x_{ij} = 0 \), then move to \(x_{ij+1} \); If \(x_{ij} = 1 \), then move to \(x_{ij+\beta} \); Once the level has been exhausted, move to \(x_{i+\alpha j} \), and repeat the steps.
MATHEMATICAL FORMULATION: 2D

Maximize \[
\sum_{i=1}^{n-p} \sum_{j=1}^{m-q} V_{ij} x_{ij},
\] (1)

Subject to:

\[
\sum_{i}^{i+p} \sum_{j}^{j+q} x_{ij} \leq 1, \forall i \in \{1, \cdots n - p\}, \forall j \in \{1, \cdots m - q\} \quad (2)
\]

\[
x_{ij} - \sum_{j' = j+1}^{j+q} x_{ij'} = 1 \quad \forall i \in \{1, \cdots n - p\}, \forall j \in \{1, \cdots m - q\} \quad (3)
\]

\[
x_{ij} - \sum_{i' = i+1}^{i+p} x_{i'j} = 1 \quad \forall i \in \{1, \cdots n - p\}, \forall j \in \{1, \cdots m - q\} \quad (4)
\]
MATHEMATICAL FORMULATION: 2D

\[x_{ij} - \sum_{i' = i+1}^{i+p} \sum_{j' = j+1}^{j+q} x_{i'j'} = 1 \quad \forall \ i \in \{1, \ldots n - p\}, \forall \ j \in \{1, \ldots m - q\} \] (5)

where \[V_{ij} = \sum_{i}^{i+p} \sum_{j}^{j+q} u_{ij}, \quad p = \alpha - 1 \text{ and } q = \beta - 1. \quad x_{ij} \in \{0, 1\} \]
Next, we extend this model to the 3D SBOP, allowing for variable stope dimensions:

Maximize \(\sum_{i=1}^{n-p} \sum_{j=1}^{m-q} \sum_{k=1}^{s-r} V_{ijk} x_{ijk} \), \hspace{1cm} (6)

Subject to:

\[\sum_{i}^{i+p} \sum_{j}^{j+q} \sum_{k}^{k+r} x_{ijk} \leq 1, \forall i \in \{1, \cdots n-p\}, \forall j \in \{1, \cdots m-q\}, \forall k \in \{1, \cdots s-r\} \]

\[x_{ijk} - \sum_{j'=j+1}^{j+q} x_{ij'k} = 1 \hspace{1cm} \forall i \in \{1, \cdots n-p\}, \forall j \in \{1, \cdots m-q\}, \forall k \in \{1, \cdots s-r\} \]
MATHEMATICAL FORMULATION: 3D

\[X_{ijk} - \sum_{i'=i+1}^{i+p} X_{i'jk} = 1 \quad \forall \ i \in \{1, \ldots n-p\}, \forall \ j \in \{1, \ldots m-q\}, \forall \ k \in \{1, \ldots s-r\} \]

\[X_{ijk} - \sum_{k'=k+1}^{k+r} X_{ijk'} = 1 \quad \forall \ i \in \{1, \ldots n-p\}, \forall \ j \in \{1, \ldots m-q\}, \forall \ k \in \{1, \ldots s-r\} \]

\[X_{ijk} - \sum_{i'=i+1}^{i+p} \sum_{j'=j+1}^{j+q} \sum_{k'=k+1}^{k+s} X_{i'j'k'} = 1 \quad \forall \ i \in \{1, \ldots n-p\}, \forall \ j \in \{1, \ldots m-q\}, \forall \ k \in \{1, \ldots s-r\} \]

\[\forall \ k \in \{1, \ldots s-r\} \]
MATHEMATICAL FORMULATION: 3D

\[X_{ijk} - \sum_{i'=i+1}^{i+p} \sum_{j'=j+l}^{m-1} \sum_{k'=k+1}^{s-1} X_{i'j'k'} = 1 \quad \forall \ i \in \{1, \ldots n-p\}, \forall \ j \in \{1, \ldots m-q\}, \]

\[\forall \ k \in \{1, \ldots s-r\} \]

where \(V_{ijk} = \sum_{i}^{i+p} \sum_{j}^{j+q} \sum_{k}^{k+r} u_{ijk} \), \quad \text{(7)}

\(p = \alpha - a \), \(q = \beta - b \) and \(r = \gamma - 1 \) \quad \text{(8)}

\(x_{ijk} \in \{0, 1\} \) \quad \text{(9)}

\(a = 1, \ldots, n \), \(b = 1, \ldots, m \). \quad \text{(10)}
We have been able to successfully implement and test the following heuristics for the SBOP:

- Maximum value algorithm
- Multi-Start Algorithm
- DP-inspired Heuristic
- Particle Swarm Optimisation
This heuristic is inspired by the Dynamic Programming idea of sub-dividing a large problem into smaller ones, solving them, and then combining the solutions to get a solution to the large version of the problem. The algorithm is as follows:

- **Input**: Array containing the value of each block, stope size, mining site dimensions. Let \(K \) be the stope size, \(fd \), the width of the site, and \(fl \) the length of the site.
- **STEP 1**: Create an array \((fd - k + 1 \times fl - k + 1)\) that stores all the possible stopes.
- **STEP 2**: Get the value of each possible stope.
- **STEP 3**: Get all the possible configurations with their values, skipping stopes with negative values.
- **STEP 4**: Pick the stope layout with the highest revenue.
STEP 1: Calculate the V_{ij} by summing the u_{ij} for each possible stope.

STEP 2: Demarcate the whole orebody into levels of size equal to the height of the stope.

STEP 3: In each level determine the possible number of stopes that can be extracted based on their values (A stope with a maximum value chosen first, followed by a stope with the second maximum value, and so on, ensuring that there is no stope overlap.

STEP 4: Determine the the Net Present Value (NPV) by summing up the V_{ij} for all the possible stopes that can be extracted.
BLOCK VALUES AT EACH CELL

\[
\begin{pmatrix}
-20 & -20 & 2 & 7 & 9 & -1 & 4 & -5 & 7 \\
9 & 6 & 3 & 2 & 3 & -13 & 23 & 56 & -21 \\
1 & -2 & 4 & 5 & 7 & -40 & 0 & -11 & 51 \\
3 & 0 & 5 & 4 & -60 & 30 & 14 & 1 & 31 \\
-4 & -7 & 6 & 3 & -10 & 4 & 12 & 14 & 34 \\
3 & 0 & 7 & 2 & -23 & 2 & 4 & 22 & -15 \\
-4 & -7 & 8 & 1 & 12 & 12 & 3 & 1 & 11 \\
5 & 2 & 6 & 2 & 3 & 0 & 1 & -50 & -20 \\
11 & 8 & 0 & -1 & 17 & -42 & 11 & 0 & 17 \\
17 & 0 & 3 & 4 & 23 & -2 & 2 & 65 & 23 \\
-3 & -6 & 2 & -60 & 18 & 11 & 1 & 54 & 12 \\
8 & 5 & 6 & 3 & 1 & 0 & 3 & 3 & 2 \\
10 & 7 & -7 & -2 & 18 & 4 & 14 & 9 & -57 \\
-8 & -11 & 0 & -50 & 12 & 18 & -45 & 21 & 7
\end{pmatrix}
\]
STOPE VALUES AT EACH CELL

$$
\begin{pmatrix}
-25 & -9 & 14 & 21 & -2 & 13 & 78 & 37 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 7 & 18 & -44 & -63 & 4 & 4 & 72 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-8 & 6 & 18 & -28 & -27 & 22 & 52 & 55 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-4 & 9 & 17 & 18 & 27 & 16 & -45 & -58 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
36 & 11 & 6 & 43 & -4 & -31 & 78 & 105 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
4 & 7 & -49 & -38 & 30 & 15 & 61 & 71 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & -11 & -59 & -22 & 52 & -9 & -1 & -20 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
$$
MULTI-START ALGORITHM

For k iterations

Randomly select a block

Blocks used?

Yes

No

Perform Local Search

Improves Global Value?

Reject

Accept

Update Global Value
Max Search Multi-Start

<table>
<thead>
<tr>
<th></th>
<th>Case A</th>
<th>Case B</th>
<th>Case C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Searches</td>
<td>14</td>
<td>2 * 14</td>
<td>14^2</td>
</tr>
<tr>
<td>Local Searches</td>
<td>9</td>
<td>2*9</td>
<td>9^2</td>
</tr>
<tr>
<td>Average Stopes</td>
<td>11.2</td>
<td>11.6</td>
<td>11.6</td>
</tr>
<tr>
<td>Average Global Value</td>
<td>471.4</td>
<td>493.8</td>
<td>484.0</td>
</tr>
<tr>
<td>Stope Fraction</td>
<td>0.36</td>
<td>0.37</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Random Search Multi-Start

<table>
<thead>
<tr>
<th></th>
<th>Case A</th>
<th>Case B</th>
<th>Case C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Searches</td>
<td>14</td>
<td>2 * 14</td>
<td>14^2</td>
</tr>
<tr>
<td>Local Searches</td>
<td>9</td>
<td>2*9</td>
<td>9^2</td>
</tr>
<tr>
<td>Average Stopes</td>
<td>2.6</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Average Global Value</td>
<td>112.8</td>
<td>78.8</td>
<td>74.6</td>
</tr>
<tr>
<td>Stope Fraction</td>
<td>0.08</td>
<td>0.08</td>
<td>0.07</td>
</tr>
</tbody>
</table>
• Is a greedy modification beneficial?

Figure: MS Evaluation using Max Search and Random Search
Figure: MS Evaluation using Max Search and Random Search
· Modification of Pure Random MS algorithm improves solutions.
· Number of search iterations influences the outcome.
· Possible improvement implementations:
 · Parallel MS
 · Alternate local search techniques
Simulates the motion of flocking birds
- *Population* - Initial positions of each particle in the swarm
- P^i_k - Personal best position of the i^{th} particle after the k^{th} time step
- g_k - Global best position of all particles at k^{th} time step.

$Population_{k+1} = Population + Vel_{k+1}$

$Vel_{k+1} = \omega \times vel_k + c_1 \times r_1 \times (P^i_k - Pop) + c_2 \times r_2 \times (g_k - Pop)$
PSO - Encoding Details

- Stope fraction = $\frac{\text{No. of stopes used}}{\text{Total number of allowed stopes}}$.
- Stope fraction was fixed - binary decision matrices were initiated.
- 1000 population members - 1000 matrices
- Each member of the population was a set of co-ordinates representing the ones in their respective matrix.
- $\text{Fitness} = \text{Config Value} - k \times (\text{Overlap Penalty}) - k \times (\text{Level Penalty})$
PSO - But does it work? - Yes

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td>-20</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>-1</td>
<td>4</td>
<td>-5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-13</td>
<td>23</td>
<td>56</td>
<td>-21</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>-40</td>
<td>0</td>
<td>-11</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>-60</td>
<td>30</td>
<td>14</td>
<td>1</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>-7</td>
<td>6</td>
<td>3</td>
<td>-10</td>
<td>4</td>
<td>12</td>
<td>14</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>-23</td>
<td>2</td>
<td>4</td>
<td>22</td>
<td>-15</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>-7</td>
<td>8</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>-50</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>0</td>
<td>-1</td>
<td>17</td>
<td>-42</td>
<td>11</td>
<td>0</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>23</td>
<td>-2</td>
<td>2</td>
<td>65</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>-6</td>
<td>2</td>
<td>-60</td>
<td>18</td>
<td>11</td>
<td>1</td>
<td>54</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>-7</td>
<td>-2</td>
<td>18</td>
<td>4</td>
<td>14</td>
<td>9</td>
<td>-57</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td>-11</td>
<td>0</td>
<td>-50</td>
<td>12</td>
<td>18</td>
<td>-45</td>
<td>21</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
• **Constant** stope size was considered (2 x 2)
• Various stope fractions were considered.
• For each stope fraction, five experiments were run, with 100 iterations per experiment.
• For each iteration, the maximum fitness value of that population is taken and stored.
• After each experiment, the mean maximum population values were considered, for every iteration.
• These results are presented for various stope fractions.
Different configuration values for different stope fractions.
Upon convergence, 0.4→worst, 0.48→best.
Is there a relationship between stope fraction and mine value? Consider mine 2...
Upon convergence, 0.84→worst, 0.76→best.
No clear relationship - maybe some intrinsic properties of each mine that dictate optimal stope fraction (BEV distribution?)
Looking at the data slightly differently...
- Variation of maximum values as a function of mass fraction
- Since these curves are completely uncorrelated, the BEV distribution per mine plays a large role in stope configuration design.
Hybrid Algorithm

The pseudo-code for the hybrid algorithm which we have developed is as follows:

- **Input:** Mining site dimensions, array containing mining data with BEVs for each block, stope dimensions.
- **STEP 1:** For \(i = 1 \) to \(\text{swarmSize} \)
 - \(dpSolution = \text{DPH()} \) swarm.add(\(dpSolution \))
- **STEP 2:** \(\text{PSO(swarm)} \)
 - Output \(\text{PSO.gbest} \) as best solution
 - Output \(\text{swarm} \) as set of alternative solutions.
In conclusion, we have been able to successfully achieve the following:

- Develop Mathematical model for the 2D SBOP
- Develop Mathematical model for the 3D SBOP
- Develop and test DP-esque heuristic, Multi-Start, and PSO

What we haven’t been able to do (for shortness of time):

- Extend solution methods to 3D case
- Implement hybrid DP-esque and PSO algorithm