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Abstract

Lake Kivu on the Rwanda-Congo border is one of three known lakes that have
dangerous accumulations of methane and carbon dioxide trapped within their
depths. There is concern that the gases could be spontaneously released leading
to massive destruction and life loss, as has occurred in Cameroon in Lake Nyos in
1986 and Lake Monoun in 1984. Here we investigate some of the processes that
cause the accumulation of gases that may lead to an eruption. We also examine
power extraction issues.

1 Introduction

Lake Kivu is on the border between the Republic of Rwanda and the Democratic
Republic of Congo and is one of three killer lakes, the others being Lake Nyos and Lake
Monoun in Cameroon, see Figure 1. These lakes are very deep and heavily stratified
with large quantities of methane and carbon dioxide trapped within the heavier lower
layers. The spontaneous release of these gases at Lake Nyos in 1986 and at Lake
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Figure 1: Location of the killer lakes in Cameroon and Rwanda [1].

Monoun in 1984 caused massive destruction in the area and 1700 lives were lost, see
Figure 2. In the case of Kivu, 300 km3 of carbon dioxide and 55-60 km3 of methane
gas is trapped at depth in the lake, that is 300 times more gas than in Nyos before its
eruption. An eruption at Kivu would be disastrous; there are two million people living
in the area. In fact there is evidence of eruptions at Kivu in about 1000 year cycles
and predictions based on observed accumulation rates (10-14% per year) suggest an
eruption in the next 100-200 years, see Report [1].

Figure 2: Lake Nyos (1987): before and after the eruption [1].

The Study Group was asked to examine relevant scientific issues including those
related to the safe extraction and use of methane for power production in the area.
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Figure 3: Lake Kivu plan [1].

There is a small (3.5 MW) test power station that has been operating since 2007.
Earlier (July 2006) an expert committee produced an excellent Expert Committee
Report on the Lake Stability [1] and much of the data collected in this report will
be used to assist in the study to follow. Many of the results obtained in this article
confirm those obtained by the committee and as such offer no new insights but at least
provide confirmation. There are however new results that we think are useful.

Lake Kivu is a fresh water lake that is approximately 90 km long and 50 km at its
widest and has a total surface area of about 2700 km2, see Figure 3. The surface sits
at a height of 1,500 m above sea level. The lake has a maximum depth of 474 m and a
mean depth of 220 m, making it the world’s eighteenth deepest lake by maximum depth
and 9 th largest by mean depth. The total lake volume is about 550 km3. The lake bed
sits upon a rift valley that is slowly being pulled apart, causing volcanic activity in the
area. Nearby is the volcano Nyiragongo, see Figure 4. Most of the gases of interest are
likely to have this volcanic source. The world’s tenth-largest island on a lake, Idjwi,
lies in Lake Kivu, within the boundaries of Virunga National Park. Settlements on the
lake’s shore include Bukavu, Kabare, Kalehe, Sake and Goma in Congo, and Gisenyi,
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Kibuye, and Cyangugu in Rwanda. There are about 2 million people in the area.

1.1 Geological and hydrological structure

Figure 4: Lake Kivu: a section. Note that the lake is deep (500 m) and stratified as
the shading indicates, see Figure 5. Nearby sits the volcano Nyiraongo which is the
primary source of carbon dioxide. The methane derives from the biological degradation
of organic matter near the bottom [1].

A simple schematic of the hydrological situation is shown in Figure 5. The lake
is strongly stratified into layers separated by locations of rapid density changes: the
thermocline is located at 60 m below the surface and there is a picnocline a further
200 m below the surface. Above the thermocline there is the biozone, so named because
within this layer there is a plentiful supply of oxygen necessary for biological growth;
surface stresses cause efficient mixing throughout this layer. This layer is fed primarily
through run off from the surrounding ground and there is a through-flow via Lake
Ruzizi into Lake Tanganyika. There are other more minor rivers feeding into and out
of the lake.
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Figure 5: Schematic: density stratification in Lake Kivu. There are basically three
layers separated by a thermocline at 80 m and a picnocline at 260 m [1].

Below the thermocline the density is significantly larger than within the biozone,
and as a result there is little fluid motion and little interaction with the biozone.
A further rapid increase in density occurs across the picnocline at 260 m, and it is
below the picnocline that most of the volcanic gases are trapped. It would appear
that groundwater passing close to the volcanic region carries the volcanic gases into
the two lower layers. Also much of this groundwater passes through the very deep
sedimentation layer below the lake, see Figure 4. This zone likely contains nutrients
carried into the lake from above. The lowest density layer is estimated to contain
300 km3 carbon dioxide and 55− 65 km3 methane. The local stability of this stratified
hydrological structure can be assessed by estimating the relative density gradient dρ

dz
/ρ

as a function of depth z; a locally high value of this index indicates that turbulent
disruptions to the local density structure are unlikely. Looking at Figure 6 one can see
that dynamic changes in the locations of the thermocline and picnocline are unlikely
unless there is a dramatic geological event. It would appear that the borders of these
zones are determined by overall hydrological issues and that changes to the depths of
these zones are not likely to happen; models developed later assume this situation.
A more detailed picture of the density structure is shown in Figure 7, and Figure 8
provides an estimate for the gas levels required for saturation in the lower layer; if such
levels are exceeded the Lake will spontaneously ‘boil’.

According to Schmid et al [4], there are three major risks that could potentially
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Figure 6: Stability: the bigger the relative density gradient the bigger the resistance to
turbulent mixing. Note that this relative density gradient is large near the thermocline
and the picnocline [1].

Figure 7: Methane concentration levels from 1975 to 2004, reproduced from the Lake
Kivu gas extraction Report [1].
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Figure 8: Estimated gas pressures based on 2003/4 data and perceived saturation risks
[1]. If concentration levels reach beyond saturation (the red line) then an eruption will
occur.

trigger a gas eruption:

• relatively small uplift of water by a strong internal wave

• a volcanic event could produce sufficient thermal energy that would lift water
with high gas concentrations to a level where it is oversaturated and bubbles
could form;

• a large amount of gas could be injected into the lake, for example by a gas release
from the sediments triggered by intruding magma.

These risks have directed many of the investigations. As indicated most of the data
above comes directly out of the Lake Kivu gas extraction Report [1] and this data will
be used to examine certain issues in more depth.

In Section 2 factors related to the accumulation of gases and nutrients within the
sublayers are investigated and associated stability issues are considered. Additionally
the effect of the removal of gases (as in a power station) on the density structure are
investigated. In Section 3 we examine gas solubility and bubble production issues and
further examine the effect of an eruption on the release of gas from the lowest layer.
Catastrophic release of trapped gases in the lower layer may occur if internal waves
are generated within the stratified region and this is likely to happen if there is an
earthquake or mud slide. The generation of such strong internal waves in discussed
in Section 4. In Section 5 we use a simple chimney model to determine the gas and
water flux that will result using the siphon system for power generation. Finally in
Conclusions 6 we summarise our findings.
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2 Gas accumulation and stability

Lake Kivu has a highly complex structure that is comprised of stratified layers. In
this section, the lake is divided into four layers: The top layer, which refers to the
biozone; a gradient layer at a depth of approximately 80m which protects the overlying
biozone; another gradient layer at a depth of approximately 260m; and a bottom layer
into which the gases are deposited [1]. The lower gradient layer acts as a barrier to
the bottom layer where the gases are deposited which causes an accumulation of gases.
Before discussing the various properties of the layers of Lake Kivu, it is important to
understand the term ‘lake stability’. If a less dense fluid lies on top of a denser fluid,
there will be no movement and very little mixing. However, if a heavier fluid lies above
a lighter fluid, mixing will take place. Lake stability refers to the situation where the
density of the water increases with depth [1]. Variations of the key parameters with
depth as obtained by Tietze [3] are displayed in Figure 9. The densities of the layers
are dependent on the following properties [1]:

Figure 9: Variations of key parameters with depth in Lake Kivu
(
after [3]

)
.

• Temperature - In most lakes, the temperature decreases with depth and therefore
the density increases with depth resulting in lake stability. However, the situation
in Lake Kivu is more complicated. Here the temperature starts to increase with
depth below 80m. Lake Kivu remains stable because the effects of a decrease in
density with depth due to temperature variations is compensated by the effect of
the dissolved gases [4].



N.D. Fowkes, D.P. Mason and A.J. Hutchinson 35

• Concentration of dissolved salts - Dissolved salts cause an increase in the density
of the water. These salts settle at the bottom of the lake and therefore aid in
lake stability. However, these salts are vital to living organisms in the biozone
layer and although their transport out of the biozone layer helps maintain lake
stability, it has a detrimental effect on the living organisms.

• Concentration of dissolved gases - Dissolved carbon dioxide increases the density
of water. However, dissolved methane decreases the density of water. In the
bottom layer, both methane and carbon dioxide are deposited. Accumulation of
methane gas could disrupt lake stability.

• Pressure and depth - The density of the water in the lake increases with pressure
and depth.

For our purposes it is convenient to divide Lake Kivu into four relatively distinct
regions, see Figure 10:

ρ1, P1, C1,

M1, S1

ρ2, P2, C2,

M2, S2

ρ3, P3, C3,

M3, S3

ρ4, P4, C4,
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Layer 4
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Layer 1

485m
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 of CH4 and CO2

Confines layer 4 so 

gas can't escape
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after re-injection
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120m

60m

225m

Low nutrients

Inflow

Figure 10: Stratified layers in the Lake

• Layer 1: The biozone layer or thermocline: An inflow of fresh water into the
top layer supports life in the biozone. This region is oxygen rich. However, the
nutrients sink through this layer to settle at the bottom of the lake, depriving
living organisms of these essential nutrients. This means that this layer is not as
good for life support as one would hope, see later [1]. Additionally, the continuous
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bubbling of methane through this layer can be a threat to marine life as well as
humans; swimmers have drowned because of asphyxiation.

• Layer 2: This layer is below the thermocline and thus is not stirred by surface
winds.

• Layer 3: This gradient layer prevents the gases that accumulate in the bottom
layer from being released. It essentially traps the carbon dioxide and methane.

• Layer 4: Carbon dioxide and methane are deposited into this layer. Because the
layer above prevents the gases from escaping, the levels of these gases increase
with time. Water from this layer is pumped out during the extraction process.

Equations describing the concentrations of salts, carbon dioxide and methane gas
in each layer are formulated. The equations developed are based on the assumption
that the depth of these layers is determined by ‘external’ hydrological factors and
thus remain unchanged as gases accumulate in the various layers. The depth of the
thermocline will vary seasonally but not by much, and fluxes of ‘surface water’ into
and out of the lake will occur into this portion of the lake unless the density of these
waters is large. The isopicnic location which separates the second layer from the third
layer is likely to be determined by the hydrographical structure of the lake as well as
groundwater flow. The time scale associated with such external forcing is likely to
much greater than that associated with changes in gas concentration (100 years).

2.1 Concentration Equations

Both methane and carbon dioxide enter into layer 4 through groundwater. The extrac-
tion of water rich in methane, carbon dioxide and nutrients from the bottom layer and
the re-entry of the processed water with a high nutrient content, but low carbon diox-
ide and methane gas concentrations, into the second layer is also incorporated into the
model. The relevant conservation equations for these gases and the salts and nutrients
are given by:

Methane
dM4

dt
= −α4(M4 −M3) + k1 ,

dM3

dt
= −α3(M3 −M2) + α4(M4 −M3) ,

dM2

dt
= −α2(M2 −M1) + α3(M3 −M2) + I(t) ,

dM1

dt
= α2(M2 −M1) + α1(MA −M1) .
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Here, Mi is the methane concentration in the various layers with M4 > M3 > M2 > M1,
MA is the methane concentration in the atmosphere and k1 is the inflow rate kg/sec
through groundwater. The term I(t) represents the methane that is injected into layer
2 after the extraction process. Although it is likely that I(t) can be neglected, for
clarity it is included.

Carbon Dioxide
dC4

dt
= −β4(C4 − C3) + k2 ,

dC3

dt
= −β3(C3 − C2) + β4(C4 − C3) ,

dC2

dt
= −β2(C2 − C1) + β3(C3 − C2) ,

dC1

dt
= β2(C2 − C1) + β1(CA − C1) .

Here, Ci is the concentration of carbon dioxide in the i’th layer, with C4 > C3 > C2 >
C1, CA is the concentration of carbon dioxide in the atmosphere and k2 is the inflow
rate of carbon dioxide. When water is re-injected into layer 2 after the extraction
process, it is assumed that all carbon dioxide has been removed.

Salts and Nutrients

dS4

dt
= −γ4(S4 − S3) ,

dS3

dt
= γ3(S2 − S3) + γ4(S4 − S3) ,

dS2

dt
= −γ2(S2 − S1) + k3(t)− γ3(S2 − S3) ,

dS1

dt
= γ2(S2 − S1) .

Here, Si is the concentration of salts and nutrients in the i’th layer, with S4 > S2 >
S3 > S1. Nutrients that leave the biozone to settle into lower parts of the lake are
re-introduced into the second layer after the extraction process as indicated by the
term k3(t).

2.2 Density and temperature variations

The layers stratify because of density differences arising from factors such as temper-
ature gradients, concentrations of dissolved salts and gases, pressure and depth. Lake
stability is threatened by the accumulation of methane gas in the bottom layer which
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decreases the overall density. Carbon dioxide has the opposite effect which increases
the density. Empirical results give [4]:

ρ(T, S, C,M) = ρ(T ) (1 + βsS + βcC + βmM) ,

where
βs = 0.75× 10−3kg.g−1 ,

βc = 0.284× 10−3kg.g−1 ,

βm = −1.25× 10−3kg.g−1 ,

ρ(T ) =
ρw

0.002 + ∆T + 1
,

and ρw is the density of water at standard temperature and pressure.

2.3 Concentration profiles through the Lake

Based on the above model equations a number of simulations were carried out, a
sample of which are displayed in Figures 11, 12 and 13. It should be noted that the
concentrations of methane, carbon dioxide and salts affect the density of the layers in
the lake. Lake stability is not obtained in many cases.

The simulation shown in Figure 11 represents an ideal situation where the concen-
tration of salts and nutrients increases in the upper layer and lake stability is main-
tained. These results can be achieved by careful management of the extraction and
re-injection process. In Figures 12 and 13, lake stability is not maintained. In Figure
12, the deepest two layers remain stable but the upper two layers do not. In Figure
13 the salt concentration increases in the upper layer but the lower levels are unstable.
Improper management of the extraction process or a lack of intervention would likely
cause this result.
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Figure 11: Concentrations of methane Mi, salts Si, carbon dioxide Ci and the density
of each layer in Lake Kivu. In this scenario, lake stability is maintained and the salt
concentration is successfully increased in the biozone.
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Figure 12: Concentrations of methane Mi, salts Si, carbon dioxide Ci and the density
of each layer in Lake Kivu. In this scenario, the methane concentration increased in
the bottom layer. Lake stability is not maintained.
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Figure 13: Concentrations of methane Mi, salts Si, carbon dioxide Ci and the den-
sity of each layer in Lake Kivu. In this scenario, the methane and carbon dioxide
concentrations increase in the bottom layer. Lake stability is not maintained.
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2.4 Methane levels and extraction models

In the absence of extraction, methane levels are observed to increase linearly in time,
see Figure 7, evidently described by

dM

dt
= κ ,

where κ is the inflow rate of methane from underground and M(t) is the total volume
of methane, mainly at levels 3 and 4. If one assumes a uniform extraction rate from
power plants using a siphon process, see Figure 15, then

dM

dt
= κ− CT

describes the process, where CT is the total extraction rate from all processing plants.
A more realistic model would be

dM

dt
= κ− CTM ,

however, data is provided in such a way that the extraction rate is constant, regardless
of the volume of methane in the lake. We have data from 2004 relating the methane
volume in 2004 to 1975, and based on this data we find κ = 2.47 × 10−10 Mm3 yr−1;
according to literature, the value of κ ranges from 1.71 × 10−10 Mm3 yr−1 to 2.5 ×
10−10Mm3yr−1. Using the results for κ we have plotted expected methane levels in the
lake, see Figure 14. These results are broadly consistent with those given in the report
[1], suggesting they used the same or equivalent assumptions.

2.5 Power plant extraction
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Figure 14: Methane levels in the presence of power stations.

The extraction rate of the KP1 plant is 6.29× 10−11Mm3yr−1. Based on this figure
we have calculated the effect of a number of plants of this size on levels of methane
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in the lake. The results are displayed in Figure 14, where we plot concentration levels
in the lake as a function of years from the present. The horizontal line corresponds to
saturated levels in the lake. We can see from this figure that saturated conditions are
expected 100 years from now in the absence of extraction, and if five plants are used
then concentration levels in the lake are predicted to remain unchanged.

Figure 15: Siphoning off gases, and a power plant using a siphon [1].

3 Bubble formation and movement

Carbon dioxide and methane gases are both soluble in water and in this aqueous form
are released into the bottom layer of Lake Kivu to accumulate over time, see Figure 8.
Until supersaturation levels are reached these gases will remain in aqueous form and
will not bubble to the surface of the lake, and so do not pose an immediate risk. As
indicated earlier and as displayed in Figure 8, present saturation levels in this lower
layer are at most 44% with this level being reached at the top of the lower stratified
layer at roughly 225 m depth. Recorded accumulation rates suggest saturation levels
will be reached in about 100 years if the supply rate remains at present levels. This
assumes, however, that there are no significant eruptions. The saturation concentration
level increases with pressure so that if fluid particles carrying gas are carried upwards
then under the associated reduced pressure conditions gasification may occur with
the gases then bubbling to the surface. At the present time particles would need to
move vertically a distance of 130 m in order for gasification to occur, see Figure 8.
Such a vertical movement of fluid particles is unlikely unless there is a catastrophic
volcanic eruption. However as concentration levels increase more moderate eruptions
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may results in internal waves of sufficient magnitude to cause gasification. We examine
this situation here and in the next section.

We first describe the processes of bubble formation and movement and in the fol-
lowup section we will discuss internal wave generation in the Lake Kivu context. It
should be noted that carbon dioxide has a much larger solubility than methane (a
factor of 5) and so is less likely to form bubbles than methane, so, although carbon
dioxide volumes in the lake are five times greater than methane volumes, gas release
is primarily a methane phenomenon for Lake Kivu. It can be seen in Figure 8 that in
the Lake Kivu case that methane contributes 80% to the partial pressure with carbon
dioxide just 20%. With this in mind our discussions below will be concerned with the
vaporization of a single gas which we will think of as being methane.

3.1 Nucleation and bubble growth

Consider a closed vessel containing water with a single absorbed gas (methane) and
with a headspace above the water also containing a small amount of the gas. An
evaporative/condensation exchange of the gas occurs between the two phases until
thermodynamic equilibrium is attained. Henry’s Law relates the concentration of the
absorbed gas in the water cl to the partial pressure of the gas p in the headspace once
thermodynamic equilibrium is reached:

cl = H(T )p, or equivalently p = kH(T )cl. (3.1)

Aside: Henry’s constant H varies with temperature (more gas is released by the liquid
phase at higher temperatures) and the van’t Hoff equation

kH(T ) = k0H exp

[
−C

(
1

T
− 1

T0

)]
(3.2)

is used to describe the variation with C fitted to experimental results. Here T0 refers
to the standard state temperature 298.15 K. For methane kH=56.9 atmos/(mol/litre)
or 5.69 MPa/(mol/litre) at T = 25◦ C). In the Lake Kivu context pressure effects
dominate temperature effects so to first order the temperature effects can be ignored.

If the vessel is open then no such equilibrium is reached except within a diffusive
boundary layer close to the surface. Outside this boundary layer the gas will disperse
into the far environment in response to external (conductive and convective) exchanges.

Whilst Henry’s law also applies to a bubble in contact with a liquid one needs to
account for the additional pressure drop across the surface of the bubble due to surface
tension described by Laplace’s Law

pb = pl +
2σ

R
; (3.3)
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here pl is the pressure in the liquid just outside the bubble, pb is the pressure just inside
the bubble surface, R is the bubble radius and σ is water/air surface tension. Thus
the exchange of gas molecules across the bubble surface will balance and we will have
thermodynamic equilibrium realised when

cl = H(T )pb ≡ cb = H(T )(pl + 2σ/R), (3.4)

where we have identified cb as being the equivalent bubble ‘concentration’ which is
normally defined in terms of the associated partial pressure pb in the bubble.

Thus, using (3.4) and solving for R we see that equilibrium will only be realised for
a bubble with radius given by the critical value

Rc =
2σ

(cl/H − pl)
. (3.5)

However this equilibrium is unstable. For if R < Rc then cl < cb, so gas is expelled from
the bubble and it shrinks, whereas if R > Rc then cb > cl and the bubble grows. Thus
bubbles with radius less than the critical radius will disappear and won’t normally be
created or seen, whereas those with radius greater than this critical value will continue
growing. The critical radius result is often expressed in terms of the supersaturation
ratio

S =
cl
Hpl
− 1,

in terms of which

Rc =
2σ

plS
; (3.6)

thus supersaturated conditions are required (S > 0) for bubble growth and, even under
supersaturation conditions, the bubbles need to be large enough to survive and grow.
Note that the bubble size for growth varies inversely with the supersaturation level S,
so the higher the saturation level the greater the probability of bubble formation. The
critical radius for methane bubbles at atmospheric pressure is Rc = 1.44 µm for S = 1
which is very small. At the picnocline at a depth of 225 m the hydrostatic pressure is
about 20 pa so the critical radius is much smaller.

The effect of surface tension is thus dramatic and perhaps can be best explained
in terms of the energy requirements for bubble formation. Surface tension tends to
contract the surface so that there is an energy barrier that needs to be overcome
before bubbles can be formed even when thermodynamically conditions prevail i.e.
S > 0. Note especially that the surface tension effect is very large for small radius
bubbles, so that bubbles cannot grow from an initial radius R = 0; as shown above
the bubble’s radius must in fact be greater than Rc for it to grow. This explains why
homogeneous nucleation (that is growth in the body of the fluid) will not normally
occur; the probability of enough gas molecules in the liquid finding themselves at
the same location to form a critical radius bubble is very small. However gas can
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Bubble

Bubble skin

Bubble

cb

Diffusion
boundary layer

ClδN

Figure 16: Gas transfer across the surface of a bubble. There is a concentration differ-
ence between the dissolved gas in the liquid bulk and the dissolved gas concentration
cb = Hpb in the bubble skin given by ∆c = cl − cb. The concentration falls from cl to
cb over a diffusion boundary of thickness δN .

accumulate, and bubbles form, on a sufficiently large particle within the liquid or
indentation in the containing vessel; these particles/indentations are called nucleation
sites and the process is referred to as heterogeneous nucleation. In the Lake Kivu case
there will be many nucleation sites (dust etc.) so that heterogenous nucleation will
result in bubble release under supersaturation conditions.

Bubbles will move vertically in the liquid because of buoyancy and additionally may
be swept along in any background flow. Because of this movement the fluid particles
surrounding the bubble will be continuously exchanged so that the bubbles will be
surrounded by liquid with absorbed gas concentration cl, that is the undisturbed con-
centration in the water locally. Under such circumstances the concentration difference
driving the evaporative exchange is given by ∆c = cl−cb ≡ cl−Hpb and the associated
flux will be k∆c, where k is the mass transfer coefficient. This mass transfer coefficient
can be estimated by assuming that gas transfers by diffusion across a skin of thickness
δN , see Figure 16. Based on a simple model one can estimate δN in terms of the flow
variables and this gives

κ = k/ρb =

(
D

2

)2/3(
ρlg

9µl

)1/3

/ρb,
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see ([9]), where D is the diffusion coefficient for methane in water. With D= 1.88×10−9

m 2/s [10], ρb= 1.22 kg/m3, this gives κ = 1.0 µ m/sec. Mass conservation for the
bubble gives

d

dt

(
4

3
πR3ρb

)
= k(4πR2)∆c = k(4πR2) [cl −H(pl + 2σ/R)] ,

which, using (3.3), (3.4) and (3.5), can be written in the form

d

dt

(
ρbR

3
)

= kR2

[
δcd + 6σH

(
1

Rc

− 1

R

)]
, where δcd = cl − ceqll (pl). (3.7)

Here ceqll (pl) is the liquid concentration corresponding to the bubble equilibrium con-
centration at liquid pressure pl and at the associated bubble radius Rc(pl). In this form
we have ‘separated out’ the various processes causing bubble growth or collapse: gas
transfer across the bubble surface, surface tension driven adjustments, and pressure in-
duced adiabatic expansion or contraction. Thus if a bubble of radius R0 is introduced
into the solution there will be a quick surface tension adjustment (exponentially with
time scale Rc/(2Hσ)) which will collapse the bubble if R < Rc, or will expand the bub-
ble if R > Rc. If R0 > Rc the bubble will first quickly expand and achieve mechanical
equilibrium and then surface tension effects will become relatively small so that gas
transfer effects then will dominate with the time scale of growth being (ρbR0)/(kδc).
If there are significant changes in the pressure pl then there will be associated bubble
radius adjustments.

In the Lake Kivu situation there will be significant changes in the hydrostatic
pressure acting on the bubble as it moves from its initial location z above the bottom
of the lake to the surface at z = h at pressure pa described by

pl(z) = pa + ρlg(h− z).

This will produce a change in density of the bubble described by the perfect gas law

pl(z) = ρb(z)RT (z) ,

which gives approximately
pl(z)

pa
=
ρb(z)

ρa
, (3.8)

where we have ignored changes in (absolute) temperature in the lake, being relatively
small. Thus the bubble gas density will vary with depth according to

ρb(z) = ρa

(
1 +

ρlg(h− z)

pa

)
. (3.9)

At the picnocline (a depth of 225 m) the hydrostatic pressure is 2.1 MPa, which is
21 times the pressure at the surface of the lake, so that the density of bubble gas at
the picnocline is 21 times of its value at the lake’s surface. Thus there will be a large
change in bubble size ((ρz/ρa)

1/3 = 2.75) as it travels from this depth to the surface
just due to (adiabatic) pressure adjustments.
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3.2 Bubble movement

V
ṙ

bouyancy force
ρlg((4/3)πR3)k

Figure 17: Bubble moving in a convection flow V. The buoyancy force acts to deflect
the path away from the flow.

Assuming the bubble, with effective zero mass, is moving with velocity ṙ in a
prescribed flow field V, then under quasi-steady conditions we have a balance between
the Stokes drag acting on the bubble and the buoyancy force giving

(V − ṙ)απRµl + ρl

(
4

3
πR3

)
gρlk = 0,

where µl, ρl are the dynamic viscosity and density of the liquid and the drag coefficient
α lies in the range 4 < α < 6 for the bubbles depending on the absence/presence of
surface-active impurities in the water (Batchelor[9]) so that we obtain

( ˙rtr−V) =
4

3α

R2gρl
µl

k; (3.10)

the buoyancy force causes the bubble to drift vertically away from the flow field, see
Figure 3.2. Taking α = 6 we obtain a drift velocity of 0.27 cm/s for a 5 × 10−5 m
radius bubble (µ = 2 × 10−3 Pa s, ρl = 103 kg /m3) and this increases (rapidly) by a
factor of 100 to 27 cm/s for a 5× 10−4 m radius bubble; small bubbles move with the
flow whilst bigger bubbles quickly escape the flow.

The coupled equations (3.7, 3.9, 3.10), together with initial conditions on bubble ra-
dius and depth, determine the motion and growth of individual bubbles in a prescribed
flow field, hydrostatic pressure and gas concentration cl environment.
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In the Lake Kivu context considerable simplifications are possible. We are especially
concerned with bubble growth and movement in the neighbourhood (say 10 m) of the
pinocline located at 225 m where saturated conditions will be first reached; bubbles
leaving this zone will expand by a factor of about 2.7 due to adiabatic expansion and
rapidly accelerate to the lake surface with some additional gas transfer depending on
concentration levels in the lake. Such details can be easily computed using the defining
equations and will not be addressed here; our concern here is with what happens near
the isopicnic (say within 10 m).

With the above in mind in the pinocline zone we can replace the bubble density ρh
by its local value of ρh = 21ρa, and this leads to the simple result

dR

dt
=

k

ρh
∆c (3.11)

for bubble growth; density effects decouple. If we further ignore the initial surface
tension induced changes then ∆c = δcd so that, with a fixed supersaturation ratio,
there will be a linear growth in bubble radius with time given by

dR

dt
=

k

ρh
δc, so that R(t) = (

k

ρb
δc)t+R0, (3.12)

with the (radius doubling) time scale of order ρbR0/(kδc). With a methane concen-
tration of δcd = 1.1 m3/m3 of water this give 44 secs for evaporative induce radius
doubling. The associated drift in velocity from the background flow field is quadratic
in bubble radius and thus quartic in time as seen from (3.10). Of course once the bub-
ble escapes the picnocline zone there will be a further large change in bubble radius
due to hydrostatic pressure changes and this in turn will induce a much accelerated
motion.

4 Internal waves

It should be noted that the effect of surface winds on the lake are only seen in the
upper 60 m so that the lower depths of the lake containing the absorbed gases will
be unaffected. However geological eruptions can change the size and shape of the lake
either directly by moving the walls or changing the depth or by causing underwater mud
slides. Also lava may flow into the lake and an explosion could result. The situation
is entirely analogous to a tsunami on the ocean; it is the vertical displacement of
the water of the lake that provides the potential energy for the generated waves. The
eruption may be ‘instantaneous’ or the vibration may be sustained as in an earthquake.
The effect of this shape change will be to generate an internal wave on the interface
between the higher density bottom layer and the lower density upper layers. Of course
this movement will be transmitted to the upper stratified layers so what will be seen
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will be a wave propagating backwards and forwards and around the island of the lake
involving all layers. The energy of these waves will be slowly dissipated mainly through
shoreline breaking. From our point of view it is the effect of such waves on the release
of gases from the lower layers that is important. The fluctuations in wave height of the
lake tsunami result in decreased (and also increased) hydrostatic pressures experienced
by supersaturated fluid particles in the lower zone bubbles and this will cause bubbles to
come out of solution as described in Section 3. Generally long waves will be generated
by eruptions and (natural standing modes) seiching modes will be generated, and these
modes are the most destructive for the gas release point of view. The lake is deep but
nevertheless its depth is relatively small compared with its length and width so that
long wave approximations are appropriate. Also small amplitude theory is appropriate;
the amplitude of the waves will normally be very small compared with the depth.

We combine the three upper layers in Lake Kivu to form one uniform layer and
analyse the properties of the internal waves on the interface between the lowest layer
in the lake and the upper layer. This interface is called the picnocline. A diagram
of Lake Kivu is presented in Figure 18. Both fluids are incompressible and inviscid.
The flows are irrotational and are formulated in terms of velocity potentials. The long
wavelength and small amplitude approximations are made. In Appendix A the prob-
lem is formulated mathematically and solved. In this section the results are analysed
physically.

The concentrations of carbon dioxide and methane in the bottom layer of the lake
could slowly increase until the sum of their partial pressures would tend to the local
hydrostatic pressure. A sufficiently strong internal wave at the interface could lift the
fluid a relatively small amount to a level where it is over-saturated and gas bubbles
could form and rise due to buoyancy, thus triggering a gas eruption. We will obtain
estimates for the phase velocity, period and pressure change for the internal wave and
the wave induced on the lake surface. The orbit of a fluid particle in the lower layer
due to the internal wave on the interface will also be studied.

Consider first the speed of the internal wave,

c =
ω

k
= ±

[
g

2

(
h1 + h2 ±

[
(h1 + h2)

2 − 4(ρ1 − ρ2)
ρ1

h1 h2

]1/2)]1/2
, (4.1)

which can be written equivalently as

c =
ω

k
= ±

[
g

2

(
h1 + h2 ±

[
(h1 − h2)2 + 4

ρ2
ρ1

h1 h2

]1/2)]1/2
. (4.2)

Equations (4.1) and (4.2) are derived in Appendix A as (A.64) and (A.65). There
are two waves, the fast speed wave which we will refer to simply as the fast wave,
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Figure 18: Diagram of Lake Kivu showing the coordinate system and an internal wave
on the interface separating the denser lower layer from the less dense upper layer. The
internal wave induces a wave on the lake surface.

with speed

c+ =
ω

k
= ±

[
g

2

(
h1 + h2 +

[
(h1 + h2)

2 − 4(ρ1 − ρ2)
ρ1

h1h2

]1/2)]1/2
. (4.3)

or equivalently

c+ =
ω

k
= ±

[
g

2

(
h1 + h2 +

[
(h1 − h2)2 + 4

ρ2
ρ1

h1h2

]1/2)]1/2
(4.4)

and the slow speed wave or slow wave with speed
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c− =
ω

k
= ±

[
g

2

(
h1 + h2 −

[
(h1 + h2)

2 − 4(ρ1 − ρ2)
ρ1

h1h2

]1/2)]1/2
(4.5)

or equivalently

c− =
ω

k
= ±

[
g

2

(
h1 + h2 −

[
(h1 − h2)2 + 4

ρ2
ρ1

h1h2

]1/2)]1/2
. (4.6)

Since both the fast and slow waves travel in both directions standing waves can be
generated.

We see from (4.4) that the fast wave is always stable even when ρ2 > ρ1 and the
upper fluid is the heavier fluid. From (4.6) the slow wave is unstable if[

(h1 − h2)2 + 4
ρ2
ρ1

h1h2

]1/2
> h1 + h2 , (4.7)

that is if
ρ2 > ρ1 . (4.8)

The slow wave is unstable if the density of the upper fluid is greater than that of the
lower fluid which is the Rayleigh-Taylor instability.

Consider now approximate expressions for the wave speeds. From (4.3) and (4.5),

c± =
ω

k
= ±

[g
2

(h1 + h2)
]1/2 [

1±
(

1− 4(ρ1 − ρ2)
ρ1

h1h2
(h1 + h2)2

)1/2
]1/2

. (4.9)

We expand c± for small values of δ where

δ =
4(ρ1 − ρ2)

ρ1

h1h2
(h1 + h2)2

. (4.10)

An estimate for δ is made when numerical values are substituted later. Neglecting
terms of order δ2, (4.9) gives

c+ =
ω

k
= ±

[
g(h1 + h2)

]1/2(
1− (ρ1 − ρ2)

2ρ1

h1h2
(h1 + h2)2

)
, (4.11)

c− =
ω

k
= ±

[
g

(ρ1 − ρ2)
ρ1

h1h2
(h1 + h2)2

]1/2
. (4.12)

The fast speed c+ is primarily dependent on the total depth of the lake while the
slow speed c− is strongly dependent on the difference in density across the picnocline.
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The phase speed does not depend on wavelength. The internal waves are therefore
non-dispersive.

The periods of the fast and slow waves are

T+ =
λ

c+
=

λ[
g(h1 + h2)

]1/2 [1 +
(ρ1 − ρ2)

2ρ1

h1h2
(h1 + h2)2

]
, (4.13)

T− =
λ

c−
= λ

[
ρ1(h1 + h2)

g(ρ1 − ρ2)h1h2

]1/2
, (4.14)

where λ is the wavelength. The fast wave is the high frequency wave while the slow
wave is the low frequency wave. In order to estimate values for the wave speeds and

the periods of the fast and slow waves we use

h1 = 225 m , h2 = 260 m ,

ρ1 = 1001 kg m−3 , ρ2 = 1000 kg m−3 , λ = 50× 103 m (4.15)

The estimates for the density are taken from the paper by Schmid et al [4] and do not
include the effect of the pressure on the density. The maximum length of the lake is
89 km and the maximum width is 48 km. We therefore took for the wavelength 50 km.
This gives from (4.10),

δ = 9.94× 10−4 � 1 (4.16)

and the approximation that terms O(δ2) can be neglected is justified. Also,

c+ = 68.97 ms−1 , c− = 1.09 ms−1 . (4.17)

The spread of the fast wave is about 63 times greater than that of the slow wave. The
periods of the fast and slow waves are

T+ = 12.08 mins , T− = 12.78 hrs . (4.18)

The longer period of the slow wave gives more time for bubbles to be generated within
the moving fluid and more time for the gases to escape from the interface. The slow
waves correspond to lower frequency longer period waves and will be more strongly
generated by low frequency geological vibrations and by secondary shocks several hours
after a seismic event. These estimates of physical quantities depend strongly on the
estimate for the density difference across the interface.

The internal wave at the interface is the real part of

η1 (x, t) = η10 exp
[
i(kx− ωt)

]
. (4.19)
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For the fast wave for all positive values of ρ1 and ρ2 and for the slow wave with ρ1 > ρ2
the real part of (4.19) is

η1(x, t) = η10 cos
[
k(x− c±t)

]
(4.20)

where c± is given by (4.9) and in expanded form by (4.11) and (4.12). When ρ2 > ρ1
the slow wave is unstable and the real part of (4.19) is

η1(x, t) = η10 exp(±βt) cos(kx) (4.21)

where

β = k
[g

2
(h1 + h2)

]1/2 [(
1 +

4(ρ2 − ρ1)
ρ1

h1h2
(h1 + h2)2

)1/2

− 1

]1/2
, (4.22)

or neglecting terms of order δ2,

β = k

[
g

(ρ2 − ρ1)
ρ1

h1h2
(h1 + h2)

]1/2
. (4.23)

Dissolved salt and carbon dioxide increase the density, ρ1, and stabilise the lower layer
while dissolved methane decreases the water density and destabilises the lower layer.
Although we are primarily interested in the release of gases from the lower layer, it is
of interest to estimate the growth rate of the Rayleigh-Taylor instability, 1/β, should
sufficient methane be added to result in ρ1 < ρ2. The result depends strongly on the
density difference ρ2 − ρ1. Using (4.23) and the values of the parameters in (4.15) but
with ρ1 = 999.9 kg m−3 and ρ1 = 999 kg m−3 we obtain

1

β
= 6.43 hrs and

1

β
= 2.03 hrs , (4.24)

respectively.
The fast and slow internal waves on the picnocline generate fast and slow waves on

the surface of the lake given by

η2(x, t) = − pA
g ρ2

+

[
ρ1
ρ2

(h1 + h2)

2h1

{
1±

(
1− 4(ρ1 − ρ2)

ρ1

h1h2
(h1 + h2)2

)1/2
}

−(ρ1 − ρ2)
ρ2

]
η10 exp

[
i(kx− ωt)

]
(4.25)

which have the same speed and frequency as the internal waves but have a different
amplitude. Equation (4.25) is derived in Apendix A as equation (A.79). Expanding



54 Gas emissions from Lake Kivu

(4.25), neglecting terms of order δ2 and taking the real part we obtain for the fast
surface wave

η2(x, t) +
pA
g ρ2

=
(h1 + h2)

h1

[
1 +

(ρ1 − ρ2)
ρ2

h22
(h1 + h2)2

]
η10 cos

[
k(x− c+t)

]
(4.26)

and for the slow surface wave

η2(x, t) +
pA
g ρ2

= −(ρ1 − ρ2)
ρ2

h1
(h1 + h2)

η10 cos
[
k(x− c−t)

]
. (4.27)

Using the values of the physical quantities in (4.15) we obtain for the fast surface wave

η2(x, t) +
pB
g ρ2

= 2.155
[
1 + 2.8× 10−4

]
η20 cos

[
k(x− c+t)

]
(4.28)

and for the slow surface wave

η2(x, t) +
pB
g ρ2

= −4.64× 10−4 η10 cos
[
k(x− c−t)

]
. (4.29)

The fast surface wave will be stable for all positive values of ρ1 and ρ2 but the slow
surface wave will be unstable if ρ2 > ρ1 with characteristic growth time 1/β where β
is given by (4.23).

The amplitude of the fast wave on the surface is greater than the amplitude η10 of
the internal waves at the picnocline by a factor of (h1 + h2)/h1. An internal wave of
amplitude η10 = 2 m might be expected from a minor volcanic eruption and would give
rise to a fast wave on the surface of amplitude 4.3 m which could cause damage around
the shores of the lake. The slow surface wave has a phase difference of π with the slow
internal wave. Its amplitude is proportional to ρ1−ρ2 and is negligibly small when the
density difference across the picnocline is small. The fast wave is more dangerous than
the slow wave at the surface of the lake because of its greater amplitude and speed, but
at the picnocline the slow wave is much more dangerous than the fast wave because it
allows more time for gases to escape from the fluid.

The pressure changes associated with the internal wave at the interface could cause
gas bubbles to form if the sum of the partial pressures of the carbon dioxide and the
methane approach the local hydrostatic pressure and the water approaches supersat-
uration conditions. The fast and slow internal pressure waves on the picnocline are
given by

p1(x, 0, t) = p2(x, 0, t)
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= ρ2 g h2

+ρ1 g

[
(h1 + h2)

2h1

{
1±

(
1− 4(ρ1 − ρ2)

ρ1

h1 h2
(h1 + h2)2

)1/2
}
− 1

]
η10 exp

[
i(kx− ωt)

]
.

(4.30)
Equation (4.30) is derived in Appendix A as (A.80). Expanding (4.30) neglecting terms
of order δ2 and taking the real part gives for the fast pressure wave

p1(x, 0, t)− ρ2 g h2 = ρ1 g
h2
h1

[
1− (ρ1 − ρ2)

ρ1

h1
(h1 + h2)

]
η10 cos

[
k(x− c+t)

]
(4.31)

and for the slow pressure wave

p1(x, 0, t)− ρ2 g h2 = −ρ1 g
[
1− (ρ1 − ρ2)

ρ1

h2
(h1 + h2)

]
η10 cos

[
k(x− c−t)

]
. (4.32)

For the values of the physical quantities given in (4.15) and expressed in Pascals, the
fast pressure wave is

p1(x, 0, t)− 2.55× 106 = 1.13× 104
[
1− 4.63× 10−4

]
η10 cos

[
k(x− c+t)

]
, (4.33)

and the slow pressure wave is

p1(x, 0, t)− 2.55× 106 = −9.82× 103
[
1− 5.36× 10−4

]
η10 cos

[
k(x− c−t)

]
. (4.34)

Although the ratio of the pressure change in the slow wave to that in the fast wave
is approximately h1/h2 = 0.865 the slow wave plays a more important part in the
formation of bubbles because the larger period of the slow wave, about sixty times
greater than the period of the fast wave, gives more time for the formation of bubbles.
For the slow wave the maximum displacement corresponds to the minimum pressure.
This is expected because the wave will lift the fluid to a higher level. Interestingly, for
the fast wave the opposite is the case and the maximum displacement corresponds to
the maximum pressure.

The amplitude of the fast pressure wave is approximately

ρ1 g
h2
h1

η10 = 1.13× 104 Pa (4.35)

for η10 = 2 m which could be expected for a minor eruption. The hydrostatic pressure
at 260 m is

ρ2 g h2 = 2.55× 106 Pa . (4.36)

The ratio of the maximum pressure change in the fast wave to the hydrostatic pressure
at the picnocline is therefore

ρ1
ρ2

η10
h1

= 8.8× 10−3 = 0.88% . (4.37)
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For the slow pressure wave, its amplitude is

ρ1 g η10 = 9.82× 103 Pa (4.38)

and the ratio of this pressure to the hydrostatic pressure at the picnocline is

ρ1
ρ2

η10
h2

= 7.7× 10−3 = 0.77% . (4.39)

These pressure changes will only likely affect the number of heterogeneous nucleation
sites unless the water is supersaturated in which case all the gases at the interface will
be spontaneously released.

Finally, consider the path of a fluid particle in the lower layers due to the internal
wave on the interface [7]. A fluid particle is initially at x = X0, y = Y0. At a later time

x = X0 +X1(t) , y = Y0 + Y1(t) , (4.40)

where

X1(0) = 0 , Y1(0) = 0 (4.41)

and
dX1

dt
=
∂φ1

∂x
= v(1)x (x, y, t) , (4.42)

dY1
dt

=
∂φ1

∂y
= v(1)x (x, y, t) . (4.43)

We use (A.85) and (A.86) derived in Appendix A for v
(1)
x (x, y, t) and v

(1)
y (x, y, t). Thus

v(1)x (x, y, t) = ωη10

[
1

k h1
+

(
1

3
+

y

h1
+

1

2

(
y

h1

)2
)
k h1

+ O
(

(k h1)
3
)]

cos(kx− ωt ) , (4.44)

v(1)y (x, y, t) = ωη10

[
1 +

y

h1
+

(
1

3

y

h1
+

1

2

(
y

h1

)2

+
1

6

(
y

h1

)3
)

(k h1)
2

+O
(

(k h1)
4
)]

sin(kx− ωt) , (4.45)
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and make the approximation of replacing x and y by X0 and Y0.Then

dX1

dt
=
ωη10
k h1

[
1 + O

(
(k h1)

2
)]

cos(k X0 − ωt) , (4.46)

dY1
dt

= ωη10

[
1 +

Y0
h1

+ O
(
(k h1)

2
)]

sin(k X0 − ωt) . (4.47)

Integrating with respect to time and imposing the initial conditions (4.41) gives

X1(t) = − η10
k h1

[
1 + O

(
(k h1)

2
)]

sin(k X0 − ωt) + α , (4.48)

Y1(t) = +η10

[
1 +

Y0
h1

+ O
(
(k h1)

2
)]

cos(k X0 − ωt) + β , (4.49)

where
α =

η10
k h1

[
1 + O

(
(k h1)

2
)]

sin(k X0) , (4.50)

β = −η10
[
1 +

Y0
h1

+ O
(
(k h1)

2
)]

cos(k X0) . (4.51)

Substituting (4.48) and (4.49) into (4.40) and eliminating time t we obtain(
x− (X0 + α)

)2
A2

+

(
y − (Y0 + β)

)2
B2

= 1 , (4.52)

where
A =

η10
k h1

(
1 + O

(
(k h1)

2
))

, (4.53)

B = η10

(
1 +

Y0
h1

+ O
(
(k h1)

2
))

. (4.54)

The particle path is therefore an ellipse with centre at (X0+α, Y0+β) and semi-major
axis A and semi-minor axis B.

A fluid particle describes the ellipse clockwise when the wave is propagating in the
positive x-direction and a fluid particle on a crest moves in the direction of the wave
and in a trough it moves in the opposite direction to the wave.

The fluid particle describes the ellipse with the same period as the wave that gen-
erates the motion. Although the particle path is the same for both the fast and slow
waves a significant difference in the particle motion driven by the fast and slow wave
is the time it takes for the particle to move round the ellipse. These times are given by
(4.13) and(4.14) for the fast and slow waves. For the values of the physical parameters
given in (4.15) it takes 12.08 min for a particle to describe the ellipse driven by the fast
wave and 12.78 hrs to describe the ellipse driven by the slow wave which is 63 times
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longer. There is therefore more time for the bubbles to form in the part of the orbit
with reduced pressure when the motion is driven by the slow wave.

For both the fast and slow waves the semi-major and semi-minor axes of the ellipse
are given by (4.53) and (4.54). Using the values given by (4.15) and an internal wave
amplitude η10 = 2 m,

A = 70.77
[
1 + O (8× 10−4)

]
m , (4.55)

B = 2

[
1 +

Y0
h1

+ O (8× 10−4)

]
m , −225 ≤ Y0 ≤ 0 . (4.56)

The eccentricity of the ellipse at Y0 = 0 is e = 0.9996. The semi-major axis decreases
very slowly with depth. More important for the formation of bubbles in the lower layer
is the steady decrease in the semi-minor axis with depth. At the bottom of the lake,
Y0 = −h1 = −225 m, and B = 0 thus satisfying the boundary condition

y = −h1 :
∂φ1

∂y
(x,−h1, t) = 0 . (4.57)

on the normal component of the fluid velocity which was imposed through (A.27) on
the solution in Appendix A. The fluid particles slip on the bed of the lake and oscillate
horizontally with no pressure change.

The results of this section show that two internal waves can propagate on the
picnocline, a fast wave and a slow wave. Although the pressure change due to the slow
wave is slightly less than that of the fast wave the slow wave is much more important in
the formation of bubbles. The period of the slow wave is about sixty times greater than
that of the fast wave which gives much more time for bubble formation. However, the
pressure changes due to the internal waves are very small and will only be important
if the water is supersaturated. The fast and slow internal waves on the picnocline
generate fast and slow waves with the same speed and frequency on the surface of the
lake. The amplitude of the slow wave on the surface is proportional to the density
difference across the picnocline and is very small but the amplitude of the fast wave
is more than twice the amplitude of the fast wave on the interface and could cause
damage around the shores of the lake. On the surface of the lake the fast wave is
more dangerous than the slow wave because of its greater amplitude and speed and
this is independent of whether or not degassing occurs. The fluid particle path in the
lower layer due to the internal wave on the interface describes an ellipse with the same
period as the wave which generates the motion. The particle path is the same for both
the slow and fast wave but the particle takes about sixty times longer to describe the
ellipse driven by the slow wave which gives more time to form bubbles. The semi-minor
axis of the ellipse decreases steadily with depth and therefore the formation of bubbles
in the lower layer due to the internal wave on the interface will decrease steadily with
depth.
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5 Siphoning off the gas: a chimney model

Gas can be extracted from the lake by extending a pipe from the surface into the lower
layer containing the gas. Because of stratification the siphon will extract liquid from
a lake wide horizontal layer at the same level as that of the lower end of the pipe.
Eventually liquid will be drained from above that level but not from below so the pipe
end should be as deep as possible whilst covering as much lake area as possible. The
siphon needs to be primed by first sucking fluid up the pipe. A pressure gradient will
develop along the pipe, and fluid particles travelling up the pipe will be subjected to
a lower pressure than those outside the pipe and absorbed gases will be released. The
buoyancy uplift will then act to carry the fluid particles up and out the siphon, as seen
in Figure 15. The methane then needs to be separated out from the carbon dioxide and
sent to the power station. There are several flow regimes that can occur in the siphon

ρ1

p = pa + ρwgL

ρ2

Figure 19: The chimney model.

pipe depending on the bubble/liquid volume ratio, but we will assume ‘plug flow’, see
Wallis [11]. It could well be that there are engineering advantages in arranging for the
flow to be restricted to one of the flow types by changing the radius of the pipe or the
length of the pipe; we will address such issues here.
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Gas flows up the chimney/pipe length L because the density ρp inside the pipe is
less than the density ρw outside the chimney/pipe.

5.1 The chimney model

The pressure drop driving the flow is given by (ρw−ρp)gL where ρw is the water density
outside the pipe, ρp the (average) mass per unit volume (of water and gas) inside the
pipe. Bernoulli’s principle determines the flow velocity v of the gas and water mixture
going up the pipe as

(ρw − ρp)gL =
1

2
ρwv

2 ,

assuming gas and water move with the same velocity v, so

v =

√
2(ρw − ρp)gL

ρw
.

The associated volume flux of water is approximately given by√
2(ρw − ρp)gL

ρw
A ,

where A is the pipe area; the mass flux of gas is relatively small. The gas flux out of
the pipe is obtained by factoring in the gas concentration at the bottom end of the
pipe.

Note that the pipe flux increases in proportion to the square root of density differ-
ence between the outside and inside of the pipe times the pipe length.

6 Conclusions

Based on the data and observations presented in The Report on Lake Stability [1] we
have examined the processes of gas accumulation and release in Lake Kivu. Because
of the high pressure levels in the lower stratification layers gas will be stored until
saturation levels are reached and observations suggest this would first occur at the
top of the lowest stratification layer. A more detailed hydrodynamic model would be
required to understand what determines the observed stratification, however present
observations indicate that the present layering is not changing with time. Any such
change, which could be caused by ‘natural processes’ or human intervention (extracting
methane), would be extremely significant.

We examined the generation of internal waves within the lake due to eruptions;
such eruptions can cause gas release. The results indicate that both fast (periods
about 12 mins) and slow travelling waves (periods of about 12 hours) will be generated
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by ground movements associated with eruptions. Because of long period and relatively
large amplitude of the slow internal wave, gas is more likely to be released by these slow
waves. Thus one would expect eruption induced ‘vibrations’ with periods of about 12
hours to be most damaging as far as gas release is concerned. Thus for example mud
slides on the bottom of the lake are likely to be more dangerous than higher frequency
impulse vibrations. Gas release is likely to occur near the edge of the lake because of
the nonlinear build up of the wave height.

Whilst we can claim to understand the mechanisms involved in this release, it
is difficult to obtain estimates for the volume of gas release under specific eruption
circumstances because the amplitude and modal mix of the internal waves generated
by an eruption will strongly depend on the specifics of the ground movement. Thus for
example a vertical displacement of the lake’s bottom will generate a large slow internal
wave which will result in large gas release, whereas a horizontal movement of the bottom
will generate no internal wave with no gas release (as with a tsunami). Additionally
there is much uncertainty associated with bubble production. The bubbles will be
produced by heterogeneous nucleation and the number of nucleation sites will depend
on conditions above the lake as well as below its surface. For example if there is a wind
blowing then dust particles in air falling on the lake will sink and act as nucleation
sites; under eruption conditions weather patterns are probably unpredictable. An
overestimate of the gas release can be obtained by assuming that all gas will be released
from the pycnocline zone with the zone thickness related to the amplitude of the slow
wave generated by a prescribed vertical drop on the lake’s bottom; this calculation is
under way.
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hazardous is the gas accumulation in Lake Kivu? Arguments for a risk assesment
in light of the Nyiragongo volcanic eruption of 2002. Acta Vulcanologica, 15
(2003), 115-122.

[5] Schmid M, Halbwachs M, Wehrli B and Wüst A. Weak mixing in Lake Kivu:
new insights indicate increasing risk of uncontrolled gas eruption. Geochemistry,
Geophysics, Geosystems 6, (2005), 1–11.
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Appendix

A Internal waves

Four layers have been identified in Lake Kivu. When considering internal layers the
three upper layers are combined to form one uniform layer from the surface of the
lake to a depth of 260 m. The fourth and lowest layer which contains the dissolved
methane and carbon dioxide has a thickness of 225 m and extends from a depth of
260 m to the bottom of the lake at 485 m. The interface between the two layers is
called the picnocline. In this Appendix we present the mathematical formulation and
mathematical solution for internal waves on the picnocline. The results are analysed
in Section 4.

Internal waves may be generated by volcanic activity or by a seismic event. Mud
slides could also generate an internal wave. The wavelength of the internal wave will
be the order of magnitude of the length or width of the lake. The maximum width is
48 km. The wavelength will therefore be greater than about 50 km and therefore much
greater than the depth of the lake. The amplitude of the wave will be much smaller
than the depth and therefore the approximations of shallow water waves can be made.
Boundary conditions will be imposed at the bottom of the lake and at the surface.

A diagram of the lake and the coordinate system is presented in Figure 18. The
origin of the coordinate system is on the picnocline with the x-axis along the picnocline
and the y-axis vertically upwards. The bottom of the lake is at y = −h1 = −225 m
and the surface is at y = h2 = 260 m. Suffices 1 and 2 will be used to denote fluid
variables in the lower and upper fluids, respectively.

A.1 Mathematical formulation

The internal wave generated on the picnocline is

y = η1(x, t) (A.1)

and this will generate at the surface of the lake the wave

y = h2 + η2 (x, t) . (A.2)

It is assumed that both fluids are inviscid and incompressible with densities ρ1 and ρ2.
Thus

∇ · v(1) = 0, ∇ · v(2) = 0 , (A.3)

where v denotes the fluid velocity. It is also assumed that both fluids are irrotational
so that

ω(1) =∇× v(1) = 0 , ω(2) =∇× v(2) = 0 . (A.4)
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Thus
v(1) =∇φ1 , v(2) =∇φ2 , (A.5)

where φ = φ(x, y, t) is the velocity potential. From (A.3) and (A.5) the velocity
potential satisfies Laplace’s equation,

∇2φ1 = 0 , ∇2φ2 = 0 . (A.6)

We make the approximation that the amplitudes of the waves are sufficiently small
that the squares and products of φ1 , φ2 , η1 , η2 and their partial derivatives can be
neglected.

We now impose the interface and boundary conditions.

(i) Fluid velocity at the interface y = η1(x, t)

A fluid particle on the interface remains on the interface as the fluid evolves.
Thus

D

Dt

(
y − η1(x, t)

)∣∣∣∣∣
y=η1(x,t)

= 0 , (A.7)

where D
Dt

denotes the convective time derivative. Thus

vy(x, η1, t) =
∂η1
∂t

(x, t) + vx(x, η1, t)
∂η1
∂x

. (A.8)

We perform a Taylor expansion about y = 0 and neglect second order terms in
smallness. This is equivalent to imposing the interface condition on y = 0. Thus

y = 0 : vy(x, 0, t) =
∂η1
∂t

(x, t) (A.9)

and since (A.9)applies for a fluid particle from both the lower and upper fluid
the following two interface conditions are obtained:

y = 0 :
∂φ1

∂y
(x, 0, t) =

∂η1
∂t

(x, t) , (A.10)

y = 0 :
∂φ2

∂y
(x, 0, t) =

∂η1
∂t

(x, t) . (A.11)

(ii) Fluid pressure at the interface y = η1(x, t)

The normal stresses must balance at the interface. Since the viscosity is zero in
both fluids the only normal stress in the pressure. Bernoulli’s equation for the
unsteady irrotational inviscid flow under gravity in each layer is [8]

∂φn
∂t

+
1

2

[(
∂φn
∂x

)2

+

(
∂φn
∂y

)2
]

+
p

ρn
+ g y = Gn(t) , n = 1, 2, (A.12)
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where p = p (x, y, t) is the fluid pressure and G(t) is an arbitrary function which
has to be determined.

Consider first the upper fluid. For the fluid at rest and at y = 0, φ2(x, 0, t) = 0
and p2(x, 0, t) = ρ2 g h2 . Thus

G(t) = g h2 (A.13)

and (A.12) with second order terms neglected becomes

∂φ2

∂t
(x, y, t) +

1

ρ2

(
p2(x, y, t)− ρ2 g h2

)
+ g y = 0 . (A.14)

Thus

p2(x, y, t)− ρ2 g h2 = −ρ2
[
∂φ2

∂t
(x, y, t) + g y

]
. (A.15)

Consider next the lower fluid. For the fluid at rest and at y = 0, φ1(x, 0, t) = 0,
p1(x, 0, t) = ρ2 g h2 and therefore

G1(t) =
ρ2
ρ1

g h2 . (A.16)

Equation (A.12) with second order terms neglected becomes

∂φ1

∂t
(x, y, t) +

1

ρ1

(
p1(x, y, t)− ρ2 g h2

)
+ g y = 0 , (A.17)

which gives

p1(x, y, t)− ρ2 g h2 = −ρ1
[
∂φ1

∂t
(x, y, t) + g y

]
. (A.18)

Since the normal stress must balance at the interface,

y = η(x, t) : p1(x, η1, t) = p2 (x, η1, t) . (A.19)

We use (A.15) and (A.18) and expand about y = 0 neglecting second order terms.
This gives the interfacial condition

y = 0 : ρ1

[
∂φ1

∂t
(x, 0, t) + g η1 (x, t)

]
= ρ2

[
∂φ2

∂t
(x, 0, t) + g η1 (x, t)

]
.

(A.20)

(iii) Fluid velocity at the interface y = h2 + η2 (x, t)

A fluid particle on the surface of the lake remains on the surface as the fluid
evolves. Thus

D

Dt

(
y −

(
h2 + η2 (x, t)

))∣∣∣∣∣
y=h2+η2(x,t)

= 0 (A.21)
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and hence

vy(x, h2 + η2, t) =
∂

∂t
η2 (x, t) + vx (x, h2 + η2, t)

∂η2
∂x

(x, t) . (A.22)

By expanding about y = h2 and neglecting second order terms we obtain

y = h2 :
∂φ2

∂y
(x, h2, t) =

∂η2
∂t

(x, t) . (A.23)

(iv) Fluid pressure at the interface y = h2 + η2 (x, t)

Since the normal stresses must balance at the surface of the lake,

y = h2 + η2 (x, t) : p2(x, h2 + η2, t) = pA , (A.24)

where pA is the atmospheric pressure. Using (A.15) for p2(x, y, t), equation (A.24)
becomes

y = h2 + η2(x, t) : −ρ2
[
∂φ2

∂t
(x, h2 + η2, t) + g η2 (x, t)

]
= pA (A.25)

and expanding about y = h2 and neglecting second order terms we obtain the
interface condition

y = h2 :
∂φ2

∂t
(x, h2, t) + g η2 (x, t) = −pA

ρ2
. (A.26)

(v) Boundary condition at y = −h1
The normal component of the fluid velocity must vanish at the bottom of the
lake. Hence

y = −h1 :
∂φ1

∂y
(x,−h1, t) = 0 . (A.27)

The problem can be summarised as follows.
Solve for η1(x, t), η2(x, t), φ1(x, y, t) and φ2(x, y, t) the Laplace equations

∂2φ1

∂x2
+
∂2φ1

∂y2
= 0 , (A.28)

∂2φ2

∂x2
+
∂2φ2

∂y2
= 0 , (A.29)

subject to the interface and boundary conditions
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y = 0 :
∂φ1

∂y
(x, 0, t) =

∂η1
∂t

(x, t), (A.30)

y = 0 :
∂φ2

∂y
(x, 0, t) =

∂η1
∂t

(x, t), (A.31)

y = 0 : ρ1

[
∂φ1

∂t
(x, 0, t) + g η1(x, t)

]
= ρ2

[
∂φ2

∂t
(x, 0, t) + g η1(x, t)

]
, (A.32)

y = h2 :
∂φ2

∂y
(x, h2, t) =

∂η2
∂t

(x, t), (A.33)

y = h2 :
∂φ2

∂y
(x, h2, t) + g η2(x, t) = −pA

ρ2
, (A.34)

y = −h1 :
∂φ1

∂y
(x,−h1, t) = 0. (A.35)

Once the problem has been solved the pressure at the interface y = 0 is given by

p1 (x, 0, t) = ρ2 g h2 − ρ1
[
∂φ1

∂t
(x, 0, t) + g η1 (x, t)

]
(A.36)

or equivalently, since p1 (x, 0, t) = p2(x, 0, t), by

p2(x, 0, t) = ρ2 g h2 − ρ2
[
∂φ2

∂t
(x, 0, t) + g η1 (x, t)

]
. (A.37)

A.2 Mathematical solution

We first eliminate η1 (x, t) and η2(x, t) from the interface and boundary conditions.
From (A.32) and (A.34),

η1 (x, t) = − 1

(ρ1 − ρ2) g

[
ρ2

∂φ2

∂t
(x, 0, t)− ρ1

∂φ1

∂t
(x, 0, t)

]
, (A.38)

η2 (x, t) = −1

g

[
pA
ρ2

+
∂φ2

∂t
(x, h2, t)

]
. (A.39)

Using (A.38) and (A.39), equations (A.30), (A.31), (A.33) and (A.35) become

y = 0 :
∂φ1

∂y
(x, 0, t) +

1

(ρ1 − ρ2) g

[
ρ1
∂2φ1

∂t2
(x, 0, t)− ρ2

∂2φ2

∂t2
(x, 0, t)

]
= 0 ,

(A.40)
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y = 0 :
∂φ2

∂y
(x, 0, t) +

1

(ρ1 − ρ2) g

[
ρ1
∂2φ1

∂t2
(x, 0, t)− ρ2

∂2φ2

∂t2
(x, 0, t)

]
= 0 , (A.41)

y = h2 :
∂φ2

∂y
(x, h2, t) +

1

g

∂2φ2

∂t2
(x, h2, t) = 0 , (A.42)

y = −h1 :
∂φ1

∂y
(x,−h1, t) = 0 . (A.43)

The problem has now been expressed in terms of φ1(x, y, t) and φ2(x, y, t) alone. It
consists in solving the partial differential equations (A.28) and (A.29) for φ1 (x, y, t)
and φ2 (x, y, t) subject to the four conditions, (A.40) to (A.43). Once φ1 (x, y, t) and
φ2 (x, y, t) have been determined, the internal wave η1(x, t) and the surface wave η2(x, t)
are obtained from (A.38) and (A.39) and the fluid pressure at the interface y = 0 is
obtained from (A.36) or equivalently (A.37).

We look for solutions of the form

φn (x, y, t) = Fn(y) exp
[
i(kx− ωt)

]
, n = 1, 2 (A.44)

and at the end of the calculation the real part is taken. In (A.44)

k =
2π

λ
, ω =

2π

T
,

ω

k
= c , (A.45)

where k is the wave number λ the wave length, ω the angular frequency, T the pe-
riod and c the phase velocity of the wave. Complex values of ω/k are interpreted as
instabilities of the interface.

Substituting (A.44) into (A.28) and (A.29) gives

d2Fn
dy2

− k2 Fn = 0 , n = 1, 2 (A.46)

and therefore
Fn(y) = An cosh(ky) +Bn sinh (ky) (A.47)

where An and Bn are constants. Thus

φn (x, y, t) =
[
An cosh(ky) +Bn sinh (ky)

]
exp

[
i(kx− ωt)

]
, n = 1, 2 . (A.48)

The four constants A1, B1 A2 andB2 are obtained form the four interface and boundary
conditions, (A.40) to (A.43). Substituting (A.48) into (A.40) to (A.43) gives the four
homogeneous algebraic equations

ρ1
(ρ1 − ρ2)

ω2

k
A1 −g B1 − ρ2

(ρ1 − ρ2)
ω2

k
A2 =0, (A.49)

ρ1
(ρ1 − ρ2)

ω2

k
A1 − ρ2

(ρ1 − ρ2)
ω2

k
A2 −g B2 =0, (A.50)

sinh(k h1)A1 − cosh (k h1)B1 =0, (A.51)
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[
ω2

k
cosh(k h2)− g sinh (k h2)

]
A2

+

[
ω2

k
sinh(k h2)− g cosh (k h2)

]
B2 = 0 . (A.52)

Equations (A.49) to (A.52) can be written in matrix form as

GX = 0 (A.53)

where

G =



ρ1
(ρ1 − ρ2)

ω2

k
−g − ρ2

(ρ1 − ρ2)
ω2

k
0

ρ1
(ρ1 − ρ2)

ω2

k
0 − ρ2

(ρ1 − ρ2)
ω2

k
−g

sinh(kh1) − cosh(kh1) 0 0

0 0
ω2

k
cosh(kh2)

ω2

k
sinh(kh2)

−g sinh(kh2) −g cosh(kh2)


(A.54)

and

X =
[
A1 B1 A2 B2

]T
. (A.55)

Equation (A.54) has a nontrivial solution for X provided

det [G] = 0 , (A.56)

that is, provided,[
ρ2 sinh(k h1) sinh(k h2) + ρ1 cosh(k h1) cosh(k h2)

] ω4

k2
− g ρ1 sinh

(
k(h1 + h2)

) ω2

k

+ g2
(
ρ1 − ρ2

)
sinh (k h1) sinh (k h2) = 0 . (A.57)

Equation (A.57) is the dispersion equation for the internal waves at the interface y = 0
and for the waves at the surface y = h2.

Equation(A.57) is valid for all wavelengths. Consider waves of long wavelength and
an expansion in powers of k h. Now

sinhx =
∞∑
n=0

x2n+1

(2n+ 1)!
= x+

x3

6
+ O(x5) , (A.58)
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coshx =
∞∑
n=0

x2n

(2n)!
= 1 +

x2

2
+ O(x4) , (A.59)

as x→ 0. Expanding (A.57) in powers of k h1, k h2 and k (h1 + h2) we obtain[
ρ1 +

1

2
ρ1 (k h1)

2 +
1

2
ρ1 (k h2)

2 + ρ2 k h1 k h2 + O
(

(k h)4
)] ω4

k2

−ρ1g
[
k (h1 + h2) + O

(
(k h)3

)] ω2

k
+(ρ1−ρ2)g2

[
k h1 k h2 + O

(
(k h)4

)]
= 0 . (A.60)

Correct to first order in k h the dispersion equation (A.60) is

ρ1
ω2

k

[
ω2

k
− k(h1 + h2) g

]
= 0 (A.61)

and therefore

c =
ω

k
= 0 , c =

ω

k
= ±

[
(h1 + h2) g

]1/2
. (A.62)

Correct to second order in k h the dispersion equation (A.60) is[
ρ1 +

1

2
ρ1 (k h1)

2 +
1

2
ρ1 (k h2)

2 + ρ2 k h1 k h2

] ω4

h2

−ρ1 g k (h1 + h2)
ω2

k
+ (ρ1 − ρ2) g2 k h1 k h2 = 0 . (A.63)

Solving the quadratic equation (A.63) for ω2/k and neglecting terms O
(
(k h)3

)
we

obtain

c =
ω

k
= ±

[
g

2

(
h1 + h2 ±

[
(h1 + h2)

2 − 4(ρ1 − ρ2)
ρ1

h1 h2

]1/2)]1/2
(A.64)

which can be written equivalently as

c =
ω

k
= ±

[
g

2

(
h1 + h2 ±

[
(h1 − h2)2 + 4

ρ2
ρ1

h1 h2

]1/2)]1/2
. (A.65)

This dispersion equation will be analysed in the next subsection.
By using (A.48) for φ1(x, 0, t) , φ2(x, 0, t) and φ2(x, h2, t) we can express (A.38),

(A.39) and (A.36), or equivalently (A.37), in terms of the constants A1, B1, A2 and
B2 as

η1(x, t) =
iω

(ρ1 − ρ2) g
(ρ1A1 − ρ2A2) exp

[
i(kx− ωt)

]
, (A.66)
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η2(x, t) = − pA
g ρ2

+
i ω

g

[
A2 cosh(k h2) +B2 sinh(k h2)

]
exp

[
i(kx− ωt)

]
, (A.67)

p1(x, 0, t) = p2(x, 0, t)

= ρ2 g h2 + i ω
ρ1 ρ2

(ρ1 − ρ2)
(A2 − A1) exp

[
i(kx− ωt)

]
. (A.68)

Because (A.53) is an eigenvalue problem only three of the four constants A1, B1,
A2, B2 and only three of the four equations (A.49) to (A.52) are independent. We can
only solve for any three of A1, B1, A2 and B2 in terms of a fourth. We use equations
(A.49) to (A.51) to solve for A1, A2, B2 in terms of B1. It can be verified that

A1 = coth (k h1)B1 , (A.69)

A2 =

[
ρ1
ρ2

coth (k h1)− g
(ρ1 − ρ2)

ρ2

k

ω2

]
B1 , (A.70)

B2 = B1 . (A.71)

Equation (A.66) becomes

η1 (x, t) =
i k

ω
B1 exp

[
i(kx− ωt)

]
. (A.72)

But
η1 (x, t) = η10 exp

[
i(kx− ωt)

]
(A.73)

where the constant η10 is the prescribed amplitude of the wave at the interface. Hence

B1 =
ω

i k
η10 (A.74)

and A1, A2 and B2 can be expressed in terms of η10 instead of B1. Equations (A.67)
and (A.68) become

η2(x, t) = − pA
g ρ2

+
1

g

[
ω2

k

cosh
(
k(h1 + h2)

)
sinh (k h1)

+
(ρ1 − ρ2)

ρ2
cosh (k h2)

{
ω2

k
coth (k h1)− g

}]
η10 exp

[
i(kx− ωt)

]
, (A.75)

p1(x, 0, t) = p2(x, 0, t)

= ρ2 g h2 + ρ1

[
ω2

k
coth (k h1)− g

]
η10 exp

[
i(kx− ωt)

]
, (A.76)
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where ω3/k satisfies the quadratic equation(A.57).
Equation (A.75 and (A.76) apply for all wavelengths. Consider waves of long wave-

length and make an expansion in powers of k h. We use expansions (A.58) and (A.59)
for sinh x and cosh x and the expansion

cothx =
1

x
+

1

3
x+ O(x3) as x→ 0 . (A.77)

Also from (A.64),

ω2

k
=
g

2
k(h1 + h2)

[
1±

(
1− 4(ρ1 − ρ2)

ρ1

h1 h2
(h1 + h2)

)1/2
]

+ O
(
(k h)2

)
. (A.78)

Equations (A.75) and (A.76) become

η2(x, t) = − pA
g ρ2

+

[
ρ1
ρ2

(h1 + h2)

2h1

{
1±

(
1− 4(ρ1 − ρ2)

ρ1

h1h2
(h1 + h2)2

)1/2
}

−(ρ1 − ρ2)
ρ2

]
η10 exp

[
i(kx− ωt)

]
(A.79)

and

p1(x, 0, t) = p2(x, 0, t)
= ρ2 g h2

+ρ1 g

[
(h1 + h2)

2h1

{
1±

(
1− 4(ρ1 − ρ2)

ρ1

h1 h2
(h1 + h2)2

)1/2
}
− 1

]
η10 exp

[
i(kx− ωt)

]
(A.80)

where terms of order (k h)2 are neglected. Equations (A.79) and (A.80) will be consid-
ered further in Section 4.

In Section 4 we will investigate the paths of the fluid particles in the lower layer
as the wave propagates on the interface. To do that we will require the x− and y−
components of the fluid velocity in the lower layer. Now, from (A.48) and using (A.69)
and (A.74),

φ1(x, y, t) = −iω
k
η10

[
coth(k h1) cosh(ky) + sinh(ky)

]
exp

[
i(kx− ωt)

]
(A.81)

and taking the real part gives

φ1(x, y, t) =
ω

k
η10

[
coth(hh1) cosh(ky) + sinh(ky)

]
sin(kx− ωt) . (A.82)
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Hence

v(1)x (x, y, t) =
∂φ1

∂x

= ω η10

[
coth(k h1) cosh(ky) + sinh(ky)

]
cos(kx− ωt) (A.83)

and

v(1)y (x, y, t) =
∂φ1

∂y

= ω η10

[
coth(k h1) sinh(ky) + cosh(ky)

]
sin(kx− ωt) . (A.84)

Expanding (A.83) and (A.84) in powers of k h1 and ky for long wavelengths using
(A.58), (A.59) and (A.77) gives

v(1)x (x, y, t) = ωη10

[
1

k h1
+

(
1

3
+

y

h1
+

1

2

(
y

h1

)2
)
k h1

+ O
(

(k h1)
3
)]

cos(kx− ωt) , (A.85)

v(1)y (x, y, t) = ωη10

[
1 +

y

h1
+

(
1

3

y

h1
+

1

2

(
y

h1

)2

+
1

6

(
y

h1

)3
)

(k h1)
2

+O
(

(k h1)
4
)]

sin(kx− ωt) , (A.86)

where ω/k is given by (A.64).
This completes the mathematical solution. The results are analysed in Section 4.


