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Abstract

We investigate the phenomenon of spontaneous combustion in stockpiles of coal. That
is, piles of coal left alone in the absence of any heat input may, over days or weeks, rise
to a high enough temperature for combustion to occur. The internal heat is thought
to be generated by slow surface reactions of the coal with atmospheric oxygen. If the
generated heat is unable to escape quickly, then the internal temperature rises.

Spontaneous combustion is a huge problem in the coal industry, where the resource
is often stored or transported in large piles, so understanding and preventing fires is
important. There are many factors which may contribute to spontaneous combustion
including: pile size, atmospheric moisture content, wind, coal type, internal heat and
oxygen transfer, specific chemical kinetics, and stockpile geometry.

We analyse a series of continuum models of increasing complexity to explain spon-
taneous combustion. It is found that the pile size is a strong contributing factor. It is
also shown that for accuracy of the model, the internal consumption and transport of
oxygen must be taken into account.

These models will form a basis for future investigations using sophisticated models
which could, for example, explore the influence of stockpile geometry.
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1 Introduction

In the energy industry, it is quite common to keep coal in large piles for storage or trans-
portation. Occasionally, the coal catches fire for no discernible reason which is obviously a
tragic event for a pile of combustible fuel. As well as the monetary loss of coal stock, these
fires can be catastrophic to the industrial infrastructure, pollute the local environment and
endanger human lives. Spontaneous combustion during ship transportation is particularly
dangerous.

Spontaneous combustion occurs not just in coal but in other piles of materials including
hay, compost, manure and pistachio shells. We have even seen a similar problem in sugar
cane bagasse at the 2017 Cape Town MISG [1].

There has been a wealth of literature in the past few decades explaining the spontaneous
combustion of coal. It turns out that even at atmospheric temprerature, the coal reacts
slowly with the oxygen in the environment releasing small amounts of heat in an exothermic
reaction [2]. This is a problem for large pile of coal as the heat can accumulate, pushing
the temperatures upward. If the coal becomes hot enough for combustion reactions to occur
then this generally leads to catastrophic fires which we want to avoid.

At low temperatures (< 70◦), the atmospheric oxygen attaches to the surface of the coal
via adsorption reactions. These reactions tend to occur slowly and release a small amount
of heat. Combustion reactions begin to occur between 70◦ and 130◦ [2]. Here, the carbon in
coal reacts with atmospheric oxygen to produce carbon dioxide:

C +O2 → CO2.

Once these reactions become significant enough to become self-sustaining, we could say
that spontaneous combustion has begun. This two-reaction synopsis is a simplification, and
further subclasses of reactions can be detailed [3].

While size of the coal pile seems to be the main contributing factor to the likelihood of
spontaneous combustion, other factors include moisture level [2], wind speed and degree of
shelter.

The main question brought to us by the industry representative was how the shape of the
coal pile effects the likelihood of combustion. In industry, piles of coal can be arranged as
inverted cones (or pyramids), in straight lines or in zig-zag lines (sometimes called chevrons).
See figure 1 for a cartoon of these arrangements.

In Section 2, we begin by modelling a very simple one dimensional coal bed where heat
is generated uniformly in time and space. This will provide us with a foundational base
upon which we can better understand the problem before adding complexities. In Sec-
tion 3, we consider the effect of temperature-dependent heat generation which is a common
phenomenon in chemical reactions. Finally, in Section 4, we model the consumption and re-
plenishment of atmospheric oxygen to better understand the spatial location of the oxidation
reactions.
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Figure 1: Possible storage shapes from left to right: Cone piles, straight line piles and chevron
piles.

2 Uniform heating model

∂T / ∂x = 0

x=L

x=0

T= Ta

Figure 2: A cartoon of a coal bed, which would be modelled by a one-dimensional heat
equation in the vertical coordinate, x.

We begin our modelling process by first restricting our attention to a simple one-dimensional
coal bed (see Figure 2) to understand how the temperature changes in time. To model the
generation of heat via the low temperature exothermic oxidation reactions we assume this
occurs everywhere within the bed at a constant rate. Thus, the equation governing temper-
ature in the bed is given by

ρc
∂T

∂t
= k

∂2T

∂x2
+ q,

where T is the temperature, x is the height coordinate, t is time, ρ is the effective density
of the coal pile, c the specific heat, k the thermal conductivity and q is the rate of heat
generation per unit volume. Physically, q would be dependent on the rate of adsorption
reactions and the individual heat generated. We can approximate the heat generated by an
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Arrhenius term, such that

q = XHFe
−E
RT , (1)

where X is the local concentration of oxygen, H is the enthalpy, F is the exponential pre-
factor, E is the activation energy of the adsorption reaction, and R is the universal gas
constant. Including oxygen and temperature dependence in the heat source term complicates
the model so we make the simplification here that the reactions happen at the rate determined
by the ambient temperature, Ta, and the coal pile is well oxygenated so the oxygen remains
at concentration Xa. That is, we let X = Xa and T = Ta in equation (1). We relax these
assumptions in later sections.

We consider the pile to have a height L, and the temperature at the upper surface to
be the atmospheric temperature, Ta. The ground is taken to be insulating and the pile
is initially assumed to be at atmospheric temperature. Thus, the boundary conditions are
given by

T (L, t) = Ta,
∂T

∂x

∣∣∣∣
x=0

= 0, T (x, 0) = Ta.

To nondimensionalise the problem, we have a natural spatial scale in L, while the time and
temperature scales need to be obtained. Thus we make the transformation

x′ =
x

L
, t′ =

t

τ
, T ′ =

T − Ta
∆T

To balance the terms and eliminate any dimensionless parameters, we define

τ =
L2

κ
, ∆T =

qL2

k
.

Dropping the prime notation, the dimensionless equation is given by

∂T

∂t
=
∂2T

∂x2
+ 1, (2)

subject to

T (1, t) = 0,
∂T

∂x

∣∣∣∣
x=0

= 0, T (x, 0) = 0. (3)

As equation (2) has no dimensionless constants, we see that changing the value of the physical
parameters will not change the behaviour of the system and will only change the temperature
values. From the temperature scale, we also learn which physical parameters are important in
determining the maximum temperature. We see that ∆T is proportional to L2, meaning that
the maximum temperature is strongly dependent on the height of the pile. This explains why
pile size is a huge factor in spontaneous combustion. Increasing the heat input, q increases
the maximum temperature for obvious reasons. A low thermal conductivity also increases
the maximum temperature as the heat is trapped within the coal pile.
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We can solve equation (2) analytically, which is one of the main advantages of the sim-
plified model. We begin by separating the transient and steady state solutions such that

T (x, t) = U(x, t) + Ts(x).

As t → ∞, the transient solution, U(x, t), decays to zero leaving only the steady state
solution, Ts(x), which should satisfy the boundary conditions in its own right. Thus, the
steady state problem is given by

d2Ts
dx2

= −1 ,
dTs
dx

∣∣∣∣
x=0

= 0, Ts(1) = 0. (4)

The steady state solution is then given by

Ts(x) =
1

2
(1− x2). (5)

The transient problem is given by

∂U

∂t
=
∂2U

∂x2
,

∂U

∂x

∣∣∣∣
x=0

= 0, U(1, t) = 0, U(x, 0) = −Ts(x).

This eigenvalue problem can be solved by separation of variables, and the solution is given
by

U(x, t) =
∞∑
n=1

Ane
−λ2

nt cos(λnx),

where

λn =
2n− 1

2
π, An = −2

∫ 1

0

Ts(x) cos(λnx)dx.

Convergence is quite fast for this series; even just using one term in U results in errors less
than 5%. We take three terms to reduce the error below 1%. The full solution is shown in
Figure 3 at various times.

The steady state solution (5) shows the maximum temperature that the coal pile will
obtain after warming slowly by the low temperature oxidation reactions. We see here that
the maximum temperature occurs at the bottom of the coal pile, at a dimensionless maximum
temperature of T = 1/2. Thus we can determine that maximum dimensional temperature by
redimensionalising. If we were to set a threshold temperature at which combustion occurs,
Tc then we would say the coal pile is in danger if

Ta +
qL2

2k
≥ Tc.

As a practical concern, the maximum height of a coal pile with no danger of combustion is
given by

L =

√
2k

q
(Tc − Ta).
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Figure 3: The temperature within the bed increases as time passes. The profiles are shown
for t = 0.2, 0.4, 0.8 and t→∞ (the steady-state solution).

Symbol value units
coal density ρ 1300 kg m−3

coal specific heat c 1003 J K−1 Kg−1

coal thermal conductivity k 0.2 W m−1 K−1

ambient temperature Ta 300 K
critical temperature Tc 370 K
adsorption activation energy E 4× 104 J mol−1

gas constant R 8.31 J mol−1 K−1

atmospheric oxygen concentration Xa 9.4 mol m−3

enthalpy H 4× 105 J mol−1

exponential pre-factor F 50 s−1

diffusivity of oxygen in air D 2× 10−5 m2 s−1

flow speed in porous medium u 1× 10−3 m s−1

heat transfer coefficient h 5 W m−2 K−2

mass transfer coefficient hX 1× 10−3 m s−1

Table 1: Physical parameters and their values, taken from [2] and [3].

For bed heights above this value, there would be a very real danger of spontaneous
combustion. Using the physical parameters from Table 1 (where we take Tc ≈ 100◦C), we
find that the critical height is given by L = 1.18 m. This seems to be a little bit low given
the industry experience, and so it is clear that our assumptions may be too harsh, and that
we must extend the model.
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3 Temperature-dependent reactions

Here we allow the Arrhenius term to be temperature-dependent such that the rate of oxi-
dation is allowed to increase for larger temperatures. The dimensional heat equation then
becomes

ρc
∂T

∂t
= k

∂2T

∂x2
+XaHfe

−E
RT . (6)

To obtain an analytical solution, we can modify the Arrhenius term by an approximation,
by setting

1

T
≈
(

1

Tc

)(
2− T

Tc

)
,

to give

ρc
∂T

∂t
= k

∂2T

∂x2
+XaHfe

E
RTc

(TaTc −2)e
E∆T

RT2
c
T
,

with the boundary conditions as in (3) above. To nondimensionalise, we repeat the procedure
above with the exception of the temperature scale which we define as

∆T =
L2XaHfe

E
RTc

(TaTc −2)

k
.

The dimensionless heat equation is thus given by

∂T

∂t
=
∂2T

∂x2
+ eµT , (7)

subject to

T (1, t) = 0,
∂T

∂x

∣∣∣∣
x=0

= 0, T (x, 0) = 0,

where µ = E∆T/(RT 2
c ). Myers et al. [4] found a similar equation in the context of

temperature-dependent viscosity in fluid flow. Following their procedure, we can find the
steady state solution, Ts(x), by solving

d2Ts
dx2

= −eµTs .

Multiplying both sides by dTs
dx

and integrating, we find that

dTs
dx

= ±
√

2

µ
(eµTm − eµTs), (8)
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where Tm := Ts(0) is unknown but (8) satisfies the boundary condition (4) at x = 0. Now,
as we expect the temperature to be the hottest at the centre, it is the negative branch of
this solution which is physically viable. We can then further integrate to find the solution

Ts =
1

µ
log

(
eµTm

[
1− tanh

(
(x− b)

√
µeµTm

2

)])
,

where b is chosen to satisfy the boundary condition (4) at x = 1:

b = 1−
√

2

µeµTm
tanh−1

(√
1− e−µTm

)
.

The temperature at the centre, Tm can then be found by using Tm = Ts(0), which gives the
implicit solution

Tm =
1

µ
log

(
eµTm

[
1− tanh

(
−b
√
µeµTm

2

)])
. (9)

This equation is difficult to solve analytically, so we will resort to numerical methods.
Using L as our bifurcation parameter, we find that for L < 0.375 m, there are two tangential
roots to (9), indicating two possible steady state solutions. For L > 0.375 m, no roots are
found. For example, for L = 0.37 m, the two roots are found; the lower at Tm = 1.14 and the
upper at Tm = 1.63. Figure 4 shows a graph of Tm − Ts(0) for subcritical and supercritical
values of L. Decreasing L does not effect the location of the lower solution too much, but
the upper solution can grow quite substantially

Without any serious analysis, we can infer the stability of these two solutions. We see
from (7) that if the temperature is uniformly zero as per the initial condition, (3), then the
conduction term is zero and the temperature grows in time toward the lower solution which
appears to be stable. To facilitate the saddle-node bifurcation at L = 0.375 m, the upper
solution must be unstable. For internal temperatures between the two solutions, heat is able
to adequately escape from the coal bed and so temperatures return to the lower solution
where the loss of heat equals the heat generated. Conversely, for temperatures above the
upper solution, the Arrhenius term generates a significant amount of heat at a faster rate
than the heat can escape. In this case, the temperature climbs indefinitely in a runaway
process.

For L > 0.375 m, there are no stable solutions. The heat generated by the Arrhenius
term is always greater than the heat escaping and runaway temperatures are inevitable,
regardless of our initial conditions. Now we see that we have two conditions for which
spontaneous combustion may occur; Either the stable-steady state solution exceeds our
threshold temperature, or we have no stable solution and have runaway temperatures.

The dimensionless stable solution at the critical point, L = 0.375 m, is shown in Figure 5.
For very low values of L, we find that the lower solution corresponds to Tm ≈ 0.5. This
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Figure 4: The subcritical (L = 0.37 m) and supercritical (L = 0.376 m) graphs of Tm−Ts(0),
respectively. The subcritical case has two roots, indicating two steady-state solutions, while
the supercritical case has none.

makes complete sense because if L� 1, then µ� 1 and the Arrhenius term in (7) becomes
approximately equal to 1. This equation is then equivalent to the previous section where we
found the dimensionless maximum temperature to be 1/2. Our Tm = 1.32 at our critical point
is the maximum stable temperature our system can reach. Dimensionally, this corresponds to
T = 60.3◦C. As this maximum temperature is below our threshold temperature of 100◦C for
combustion we find that as long as we have a stable solution combustion will not occur. So
we say that coal beds of a height greater than 37.5 cm will experience runaway temperatures
and thus combustion.

Just like the previous section, the bed height for which combustion occurs appears to
be a little bit low. While we have included temperature-dependent reaction rates, we still
have not considered the consumption and transportation of oxygen and how this affects the
problem.
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Figure 5: The steady state solution for L = 0.375 m. If we increase the bed height, no stable
solution exists.

4 Coupled oxygen and temperature transport.

We now begin to incorporate other factors that effect the reaction rate, such as the local
concentration of oxygen. Strictly speaking, the presence of water is required to catalyse
the adsorption reaction. Paradoxically large amounts of water can also inhibit the reaction
rate by providing a diffusion barrier to oxygen (see [5]). We are interested in modelling the
worst-case scenario where the reaction rate is maximised, so we assume the presence of a
thin layer of water and forego a detailed model of moisture transport.

The oxygen is consumed by the chemical reactions and must be replenished from the
atmosphere. The heat equation remains similar to (6), however, the oxygen level is no
longer constant and must be modelled by its own governing equation. The dimensional
coupled system is given by

ρc
∂T

∂t
= k

∂2T

∂x2
+ FHXe

−E
RT , (10)

∂X

∂t
+ u

∂X

∂x
= D

∂2X

∂x2
− FXe

−E
RT , (11)

where X(x, t) is the local oxygen concentration, u is the air flow speed through the porous
medium, D is the diffusivity of oxygen in air. The oxygen model in essence describes how
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the concentration of oxygen changes due to diffusion, advection and consumption by chem-
ical reactions. The initial and boundary temperature condition are similar to the previous
section, except here we use a Newton cooling condition at the top of the pile to allow greater
flexibility. Thus we have

T (x, 0) = Ta,
∂T

∂x

∣∣∣∣
x=0

= 0, k
∂T

∂x

∣∣∣∣
x=L

= −h(T − Ta),

where h is the heat transfer coefficient. Similarly, we assumed that the coal bed is initially
well oxygenated and can be replenished via a “Newton cooling” type condition at the top of
the bed:

X(x, 0) = Xa,
∂X

∂x

∣∣∣∣
x=0

= 0, D
∂X

∂x

∣∣∣∣
x=L

= −hX(X −Xa),

where hX is the mass transfer coefficient. We then apply the following transformations to
nondimensionalise the problem:

x′ =
x

L
, t′ =

t

τ
, T ′ =

T − Ta
∆T

, X ′ =
X

Xa

,

where

τ =
L2

κ
, ∆T =

FHXaL
2e−ν

k
, ν =

E

RTa
. (12)

The dimensionless equations (dropping the primes) are then given by

∂T

∂t
=
∂2T

∂x2
+Xe

ναT
1+αT , (13)

C1
∂X

∂t
+
∂X

∂x
= C2

∂2X

∂x2
− C3Xe

ναT
1+αT , (14)

subject to initial and boundary conditions,

T (x, 0) = 0,
∂T

∂x

∣∣∣∣
x=0

= 0,
∂T

∂x

∣∣∣∣
x=1

= −C4T (1, t), (15)

X(x, 0) = 1,
∂X

∂x

∣∣∣∣
x=0

= 0,
∂X

∂x

∣∣∣∣
x=1

= −C5(X(1, t)− 1). (16)

The dimensionless parameters are given by

α =
∆T

Ta
, ν =

E

RTa
, C1 =

L

uτ
, C2 =

D

uL
, C3 =

FLe−ν

u
, C4 =

hL

k
, C5 =

hXL

D
.
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Figure 6: After a short amount of time, the internal oxygen is rapidly consumed, leaving a
thin boundary layer at the surface.

This system of equations is then numerically solved for a sample set of parameters by
using the method of lines. We find that the internal oxygen is rapidly consumed, leaving a
small amount of usable oxygen in a thin layer near the surface of the bed. An example of
the steady-state oxygen profile is shown in Figure 6.

This means that the oxidation reactions become spatially limited to the surface of the
pile. This is indeed reflected in the temperature solutions (Figure 7), which show the tran-
sient temperature growing predominantly in this outer boundary layer. At steady-state,
however, the internal temperature does plateau. This is due to the build up of heat con-
ducted internally from the surface reactions and not due to internal reactions (which are not
significant due to oxygen starvation).

In obtaining the results, we have assumed that the wind speed at the surface of the pile,
u, is also the speed of the internal air of the pile. This assumption is again made to see the
worst-case scenario of maximum oxygen supply. We see from Figure 7, however, that the
majority of the oxygen is consumed at the surface of the pile. Thus the assumption of a
constant internal u is not a bad approximation, as its value has little effect on the results.

The above results show how crucial it is to take oxygen dynamics into account for the
modelling of coal bed self heating. Molecular diffusion of oxygen is small, so the replenish-
ment of oxygen is largely driven by the airflow which would affect the u and hX parameters.
One conclusion we could make here is that to prevent a coal bed from combustion, we should
deprive it of oxygen by keeping it well sheltered. This is indeed observed in practise [3], but
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Figure 7: The temperature grows rapidly at the surface due to the local reactions there and
eventually plateaus internally at steady-state.

there is another situation where combustion is rarely seen: High wind flow. This seems
contradictory as here oxygen would be abundant, but a high wind flow also acts to cool
down the coal pile [3]. From a modelling perspective, this would change our heat transfer
coefficient, h, or perhaps cause us to add a heat advection term into (11).

4.1 A note on the effect of porosity

We have been assuming that the coal bed is a porous medium so strictly speaking we should
be using appropriately homogenised parameters such as cp, ρp and kp in lieu of c, ρ and k.
The usual thing to do is to take the arithmetic mean by defining

(ρc)p = (1− φ)(ρc) + φ(ρc)a ≈ (1− φ)(ρc),

kp = (1− φ)k + φka ≈ (1− φ)k,

where the “a” subscripts denote the properties of air, which are much smaller than their
solid counterparts, allowing the approximation. These corrected parameters could then be
used in the governing equations for a more accurate result.

In practise, the porous thermal conductivity, kp, does not seem to obey this relationship.
In fact, Rosema et. al [6] use a thermal conductivity model based on the experimental
findings in soil of De Vries [7]:

kp =
s(1− φ)k + φka
φ+ s(1− φ)

,
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where

s =
0.66

1 + 0.125 k
ka

+
0.33

1 + 0.75 k
ka

.

In this relationship, the thermal conductivity decreases more rapidly with porosity.

5 Discussion

Another aspect which requires more consideration is the “consumption” of coal which we have
not taken into account unlike the depletion of oxygen, which we did model. As the oxidation
reaction occurs on the surface of a coal lump, a protective surface layer forms preventing
further reactions [2]. Thus we could model two states where reactive coal becomes unreactive
after sufficient oxidation. Note that even if this surface layer does not form, there is still
only a finite amount of reactive coal.

We can speculate on the results of such a model. Initially, the oxidation reactions will
occur near the surface of the coal pile consuming oxygen in a familiar way. As the surface
coal becomes less reactive, some sort of “reaction front” separating the two phases of coal
will proceed into the depths of the pile. Oxygen will need to penetrate deeper into the pile as
time goes on which acts to slow the reactions down. Another thing to consider is that there
would be no high-temperature steady-state solution; once the coal is oxygen-saturated and
no longer reactive, the temperature of the pile should drop back down to the atmospheric
temperature. While the above models might suggest combustion temperatures are reached,
if we were to include unreactive coal in the model, then we might find that we run out of
fuel long before these temperatures are attained.

In this one-week study group we were able to model the coal combustion problem in one
dimension. To address the question of how the shape and arrangement of coal piles affects
the likelihood of combustion we really need to model a three-dimensional domain with non-
trivial boundaries. Computational models can then be used to obtain detailed results. The
one-dimensional models we used above can then be used to a) validate the accuracy of the
computational models and b) inform us of what behaviour we expect so we can determine if
the computational results are sensible.

6 Conclusion

The main question from the industrial representative was how the shape and arrangement of
the coal piles affects its likelihood to spontaneously ignite. Unfortunately we were unable to
address this directly but the models developed in this week will provide a strong foundation
for more detailed modelling in follow-up work. From these models, we have a strong intuition
of how the temperature and oxygen behaves under various circumstances. The major finding
was that the pile size has a huge effect on combustibility. We can see clearly from these simple
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models that the height of a coal pile has a huge effect on the likelihood of combustion. We
have also seen that due to the faster reactions at high temperatures, there is a possibility of
unstoppable runaway reactions. All precautions should be taken to avoid this.
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