Storage of Sugar Cane Bagasse

G. Fareo, G. Weldegiyorgis, H. Laurie, M. Kgatle, N. Mhlongo, S. Mitchell, T. Myers

Mathematics in Industry Study Group (MISG)
January 15, 2016
Introduction

Sugar cane → Sugar cane breaks → Water added

Bagasse → Sugar Extraction

Figure: Moisture levels of 45 - 55%
Problem Description

• Stockpile as a resource
• Spontaneous combustion
• T. F. Dixon (1988)
• B. F. Gray et al (2002)

Figure: One Dimensional Model with an insulated bottom
Desired Outcomes

• Maximum height of the bagasse heap to avoid spontaneous combustion?

• Advantage in adjusting the moisture? (Usable energy per unit area)

• Advantage in pelletizing the bagasse? (Usable energy per unit area)
1D-Model formulation: B. F. Gray et. al 2001

Governing equations

\[
(\rho_b c_b + m_w X c_w) \frac{\partial U}{\partial t} = Q \rho_b Z W \exp(-E/RU) \\
+ Q_w \rho_b Z_w X W \exp(-E_w/RU)f(U) \\
+ L_v [Z_c Y - Z_e X \exp(-L_v/RU)] + \kappa \nabla^2 U, \quad (1)
\]

\[
\frac{\partial Y}{\partial t} = Z_e X \exp(-L_v/RU) - Z_c Y + D_Y \nabla^2 Y, \quad (2)
\]

\[
\frac{\partial X}{\partial t} = -Z_e X \exp(-L_v/RU) + Z_c Y, \quad (3)
\]

\[
\frac{\partial W}{\partial t} = -F \rho_b Z W \exp(-E/RU) - F \rho_b Z_w X W \exp(-E_w/RU)f(U) \\
+ D_w \nabla^2 W. \quad (4)
\]

\(U\) is temperature, \(Y\) is vapour concentration, \(X\) is liquid concentration, \(W\) is oxygen concentration.
1D-Model formulation cont’d

Boundary Conditions

At the bottom, $x = 0$, we impose the no flow condition (of heat or material)

$$\frac{\partial U}{\partial x} = 0, \quad \frac{\partial Y}{\partial x} = 0, \quad \frac{\partial W}{\partial x} = 0,$$

(5)

At the top surface, $x = L$,

$$k \frac{\partial U}{\partial x} = h(U - U_a), \quad -D_Y \frac{\partial Y}{\partial x} = h_Y(Y - Y_a), \quad -D_W \frac{\partial W}{\partial x} = h_W(W - W_a),$$

(6)

Initial Conditions

$$U(x, 0) = U_0(x), \quad Y(x, 0) = Y_0(x),$$

(7)

$$X(x, 0) = X_0(x), \quad W(x, 0) = W_0(x).$$

(8)
Steady-state equations

\[0 = D_Y \frac{\partial^2 Y}{\partial x^2} + Z_e X \exp \left(-\frac{L_v}{RU} \right) - Z_c Y \]
\[\text{(9)} \]

\[0 = -Z_e X \exp \left(-\frac{L_v}{RU} \right) + Z_c Y \]
\[\text{(10)} \]

\[Y_{xx} = 0 \Rightarrow Y_s = Y_a, \quad X_s = \frac{Z_c Y_a}{Z_e} \exp \left(\frac{L_v}{RU} \right) \]
\[\text{(11)} \]

\[0 = k \frac{\partial^2 U}{\partial x^2} + Q \rho_b Z W \exp \left(-\frac{E}{RU} \right) + Q_w \rho_b Z_w X_s W \exp \left(-\frac{E_w}{RU} \right) f(U) \]
\[\text{(12)} \]
1D-Model formulation cont’d

\[0 = D_W \frac{\partial^2 W}{\partial x^2} - F \rho_b Z W \exp \left(- \frac{E}{RU} \right) - F \rho_b Z_w X W \exp \left(- \frac{E_w}{RU} \right) f(U) \]

(13)

If bagasse is hot (everywhere above 58C), then

\[\frac{k}{Q} \frac{\partial^2 U}{\partial x^2} + \frac{D_W}{F} \frac{\partial^2 W}{\partial x^2} = 0 \]

(14)

Applying boundary conditions at \(x = 0 \)

\[\frac{k}{Q} U + \frac{D_W}{F} W = C_0 \]

(15)

\[\Delta Y = Y_a \quad \Delta W = W_a \quad \Delta X = \frac{Z_c Y_a}{Z_e} \exp \left(\frac{L_v}{RU_i} \right) \quad \Delta U = U_i - U_a \]
Dimensionless form

Non-dimensional model

\(\hat{t} = \frac{t}{\Delta t}, \quad \hat{x} = \frac{x}{L}, \quad \hat{U} = \frac{U - U_a}{\Delta U}, \quad \hat{Y} = \frac{Y}{\Delta Y}, \)

\(\hat{X} = \frac{X}{\Delta X}, \quad \hat{W} = \frac{W}{\Delta W}, \) (16)

Diffusion time scale is

\(\Delta t = \frac{L^2(\rho_b c_b + m_w c_w \Delta X)}{k} = \frac{L^2}{D_U}, \) (17)

The liquid equation is

\(\frac{1}{Z_e \Delta t} \exp \left(\frac{L_v}{RU_i} \right) \frac{\partial \hat{X}}{\partial \hat{t}} = -\hat{X} \exp \left(\frac{\alpha_{L_v}(\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) + \hat{Y}, \) (18)

where

\(\alpha_{L_v} = \frac{L_v \Delta U}{RU_i}. \) (19)
Dimensionless form

Coefficient of LHS is $O(10^{-5})$, hence

$$
\hat{X} = \exp \left(-\frac{\alpha_{Lv}(\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) \hat{Y}
$$

(20)

Lose terms in heat and vapour equations

Vapour equation

$$
\kappa_Y \frac{\partial \hat{Y}}{\partial \hat{t}} = \frac{\partial^2 \hat{Y}}{\partial \hat{x}^2}, \quad \text{where} \quad \kappa_Y = \frac{L^2}{\Delta t D_Y} = O(10^{-1}).
$$

(21)

$$
(\beta_1 + \beta_2 \hat{X}) \frac{\partial \hat{U}}{\partial \hat{t}} = \frac{\partial^2 \hat{U}}{\partial \hat{x}^2} + A_E \hat{W} \exp \left(\frac{\alpha_E (\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right)
$$

$$
+ A_{Ew} \hat{X} \hat{W} \exp \left(\frac{\alpha_{Ew} (\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) f(\hat{U}),
$$

(22)
where

\[\beta_1 = \frac{\rho_b c_b L^2}{k \Delta t} \quad \beta_2 = \frac{m_w c_w \Delta X L^2}{k \Delta t} \quad (23) \]

\[A_E = \frac{Q \rho_b Z \Delta W L^2}{k \Delta U} \exp \left(- \frac{E}{R U_i} \right) \quad (24) \]

\[A_{E_w} = \frac{Q_w \rho_b Z_w \Delta X \Delta W L^2}{k \Delta U} \exp \left(- \frac{E_w}{R U_i} \right), \quad (25) \]

\[\alpha_E = \frac{E \Delta U}{R U_i}, \quad \alpha_{E_w} = \frac{E_w \Delta U}{R U_i} \quad (26) \]
Dimensionless form

The oxygen equation becomes

\[\kappa_W \frac{\partial \hat{W}}{\partial \hat{t}} = \frac{\partial^2 \hat{W}}{\partial \hat{x}^2} - B_E \hat{W} \exp \left(\frac{\alpha_E (\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) \]

\[- B_{Ew} \hat{X} \hat{W} \exp \left(\frac{\alpha_{Ew} (\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) f(\hat{U}), \tag{27} \]

where

\[\kappa_W = \frac{L^2}{\Delta t D_W} \quad B_E = \frac{F \rho_b Z L^2}{D_W} \exp \left(- \frac{E}{RU_i} \right) \tag{28} \]

\[B_{Ew} = \frac{F \rho_b Z_w \Delta X L^2}{D_w} \exp \left(- \frac{E_w}{RU_i} \right). \tag{29} \]
Dimensionless form

Boundary conditions

At \(\hat{x} = 0 \):
\[
\frac{\partial \hat{U}}{\partial \hat{x}} = 0, \quad \frac{\partial \hat{Y}}{\partial \hat{x}} = 0, \quad \frac{\partial \hat{W}}{\partial \hat{x}} = 0, \quad \text{at} \ \hat{x} = 0,
\]

(30)

At \(\hat{x} = 1 \):
\[
- \frac{\partial \hat{U}}{\partial \hat{x}} = \gamma \hat{U}, \quad - \frac{\partial \hat{Y}}{\partial \hat{x}} = \gamma_Y (\hat{Y} - 1), \quad - \frac{\partial \hat{W}}{\partial \hat{x}} = \gamma_W (\hat{W} - 1),
\]

(31)

where
\[
\gamma = \frac{hL}{k}, \quad \gamma_Y = \frac{hYL}{D_Y}, \quad \gamma_W = \frac{hWL}{D_W}.
\]

(32)

Note \(\gamma = O(10) \), \(\gamma_Y = \gamma_W = O(10^5) \) so we may simplify the boundary conditions \(\hat{Y} = \hat{W} = 1 \) at \(\hat{x} = 1 \). The initial conditions are
\[
U = U_0, \quad Y = Y_0, \quad W = W_0, \quad \text{at} \ t = 0
\]

(33)
Discussion

Simplest model

Steady-state temperature

\[0 = \frac{\partial^2 \hat{U}}{\partial \hat{x}^2} + A \exp \left(\frac{\alpha(\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) \] (34)

This is standard form, but leads to very small piles
Discussion

What happens when the density is not assumed constant?
Pseudo steady-state

\(\kappa_W, \kappa_Y \) small

\[
\hat{X} = \exp \left(-\frac{\alpha_L (\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) \hat{Y} \quad \hat{Y} = 1
\]

(35)

\[
(\beta_1 + \beta_2 \hat{X}) \frac{\partial \hat{U}}{\partial \hat{t}} = \frac{\partial^2 \hat{U}}{\partial \hat{x}^2} + A_E \hat{W} \exp \left(\frac{\alpha_E (\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) \\
+ A_{Ew} \hat{X} \hat{W} \exp \left(\frac{\alpha_{Ew} (\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) f(\hat{U}),
\]

(36)

\[
0 = \frac{\partial^2 \hat{W}}{\partial \hat{x}^2} - B_E \hat{W} \exp \left(\frac{\alpha_E (\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) \\
- B_{Ew} \hat{X} \hat{W} \exp \left(\frac{\alpha_{Ew} (\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) f(\hat{U}),
\]

(37)
Discussion

Almost full problem

\[\hat{X} = \exp \left(-\frac{\alpha_{Lv}(\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) \hat{Y} \]

(38)

\[\kappa_Y \frac{\partial \hat{Y}}{\partial \hat{t}} = \frac{\partial^2 \hat{Y}}{\partial \hat{x}^2} , \]

(39)

\[(\beta_1 + \beta_2 \hat{X}) \frac{\partial \hat{U}}{\partial \hat{t}} = \frac{\partial^2 \hat{U}}{\partial \hat{x}^2} + A_E \hat{W} \exp \left(\frac{\alpha_E(\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) \]

\[+ A_{Ew} \hat{X} \hat{W} \exp \left(\frac{\alpha_{Ew}(\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) f(\hat{U}) , \]

(40)

\[\kappa_W \frac{\partial \hat{W}}{\partial \hat{t}} = \frac{\partial^2 \hat{W}}{\partial \hat{x}^2} - B_E \hat{W} \exp \left(\frac{\alpha_E(\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) \]

\[- B_{Ew} \hat{X} \hat{W} \exp \left(\frac{\alpha_{Ew}(\hat{U} - 1)}{U_a + \Delta U \hat{U}} \right) f(\hat{U}) , \]

(41)
Note, insulated bottom and 100% humidity. Pile height increases with lower humidity.
Typical evolution of temperature
Often appears piles can be very large without ignition but ...

What if it rains?
Puzzle: why do apparently stable heaps ignite after getting soaked?

— wet reaction is fast, but turns off for temperatures above 58 °C,
— dry reaction is slower
So, near centre the bagasse dries out and starts to heat above the 58 °C limit. We imagine two steady states:

inner: hot and dry, insulated inner end, at 58 °C at interface
outer: warm and wet, 58 °C at interface, cooling condition at surface

Stefan problem with moving boundary
Ignition model — diagram

Please use conformal mapping to imagine this as a square with a hot yellow and a warm red band . . .

We have a good handle on equations for the steady states, but haven’t got a formulation for the velocity of the moving interface.
Conclusion

- We have a model for temperature evolution in bagasse piles - can be made simpler.

Under normal conditions, the pile does not burn, but adding water can then cause ignition. Future work will constitute consideration of a more realistic boundary condition at the bottom, a 2D model with heat loss at the sides, and comparing the full system to simplified models.
Conclusion

- We have a model for temperature evolution in bagasse piles - can be made simpler.
- Steady-state models should be sufficient - to provide bifurcation diagram.

- For any ambient conditions we can cause ignition, by making the pile sufficiently large.
- Under normal conditions pile does not burn, but adding water can then cause ignition.
- We have looked at a worst case scenario - insulated bottom, no heat loss at sides. Model can be improved.
- Future work will constitute consideration of a more realistic boundary condition at the bottom, 2D model with heat loss at the sides; compare full system to simplified models.
Conclusion

- We have a model for temperature evolution in bagasse piles - can be made simpler
- Steady-state models should be sufficient - to provide bifurcation diagram
- For any ambient conditions we can cause ignition, by making the pile sufficiently large
Conclusion

- We have a model for temperature evolution in bagasse piles - can be made simpler
- Steady-state models should be sufficient - to provide bifurcation diagram
- For any ambient conditions we can cause ignition, by making the pile sufficiently large
- Under normal conditions pile does not burn, but adding water can then cause ignition
Conclusion

- We have a model for temperature evolution in bagasse piles - can be made simpler
- Steady-state models should be sufficient - to provide bifurcation diagram
- For any ambient conditions we can cause ignition, by making the pile sufficiently large
- Under normal conditions pile does not burn, but adding water can then cause ignition
- We have looked at a worst case scenario - insulated bottom, no heat loss at sides. Model can be improved.
- Future work will constitute consideration of a more realistic boundary condition at the bottom, 2D model with heat loss at the sides; compare full system to simplified models.
References

