In 1970, Walter Bodmer was part of the reverse brain drain when he left Stanford to take up the post of Professor of Genetics at the University of Oxford. After nine years he moved to London as Director of Research of the Imperial Cancer Research Fund (ICRF) and from 1991 to 1996 as its Director-General. In 1996 he returned to Oxford to become Principal of Hertford College and Head of the ICRF Cancer and Immunogenetics laboratory at the world famous Oxford Institute of Molecular Medicine. He has been Chancellor of the University of Salford since 1995.

He is author of several hundred research papers and his books include, jointly with others *The Genetics of Human Populations; Our Future Inheritance; Choice or Chance; Genetics Evolution and Man;* and *The Book of Man.*

In recognition of his outstanding contribution to science, the University takes great pleasure in conferring upon Sir Walter Bodmer it highest accolade, the degree of Doctor of Science, honoris causa.

HERBERT BASIL SUTTON COOKE

Herbert Basil Sutton Cooke was born in Johannesburg in 1915, and attended King Edward VII School. He began his university career in chemical engineering at the University of the Witwatersrand, but this was interrupted when the opportunity arose to take an honours degree in geology at the University of Cambridge.

After his return to South Africa to take up a position as field geologist with the Central Mining and Investment Corporation, he accepted an appointment at Wits in 1938 to teach 'hard rock' geology, but at the same time his interest in Quaternary geology expanded. He was one of the first geologists to undertake a study of rocks of the Sterkfontein caves where two years earlier Dr Robert Broom had discovered the first fossils of an adult australopithecine. Later, in collaboration with Lawrence Wells, Cooke undertook a pioneering study of the geology, stratigraphy and palaeontology of the Makapansgat hominid site.

In 1939 Cooke and Hamilton produced their famous textbook entitled *Geology for South African Students;* used by thousands of geology students in South Africa, the book has been through several editions. In 1947 Basil Cooke went as principal geologist on the University of California African expedition to the Oligocene fossil beds of the Fayum in Egypt, and in the Miocene deposits in western Turcana in Kenya. On his return to Johannesburg he worked as a consulting geologist, specialising in base metals. He was awarded a Doctor of Science degree by the University of the Witwatersrand. At that time he played a major role in starting the journal *South African Science* as a monthly periodical, but, after two years, it assumed the old name of its predecessor, *South African Journal of Science,* and Cooke continued to edit it for ten years.

Basil Cooke was the first person to undertake the ambitious and visionary task of reconstructing the changing palaeogeography and palaeoenvironments of South Africa through successive geological ages and he also set about applying radiometric age determinations to the stratigraphic succession.

He returned to academia and to Wits in 1953, when he was appointed senior lecturer in the Geology Department. Two years later he was awarded a Royal Society/Nuffield Foundation bursary to study fossil material in England, followed by a year at the Museum of Palaeontology at the University of California, Berkeley. In 1958 he became Reader in Stratigraphic Geology at Wits in recognition of his outstanding academic contributions, not only in the field of geology, but also in palaeontology and Quaternary palaeoenvironments.

The Cooke family emigrated to Canada in 1961 when Cooke was offered an Associate Professorship in Geology at Dalhousie University. It was there that he worked at dating the hominid-bearing cave deposits of South Africa by faunal comparisons with the rich and better dated record of East Africa, since radiometric dating of the dolomitic cave deposits of South Africa had proved successful.

Cooke's fossil work proved to be useful for inter-site correlation, and for long provided one of the most reliable methods of age determination of the early South African hominid-bearing
the most reliable methods of age determination of the early South African hominid-bearing deposits. This research resulted in the publication of a benchmark volume, *The Evolution of African Mammals*, which was edited and partly authored by Cooke in collaboration with Vincent Maglio in 1978. He also undertook geological and palaeontological fieldwork in numerous countries including Australia, the USA, Russia, France, Spain, Italy, India and China.

Basil Cooke retired to British Columbia in 1981 where he continues to write up his many and varied research projects. He has published two books and more than one hundred scientific papers and monographs. His work has received international acclaim and he is regarded as the world’s leading authority on the evolution of mammals over the past five million years.

In recognition of his outstanding accomplishments as a geologist and palaeontologist, it is with great pleasure that the University confers the degree of Doctor of Science *honoris causa* on Herbert Basil Sutton Cooke.

SIR ANDREW HUXLEY

Sir Andrew Huxley, former Master of Trinity College, Cambridge, and President of the Royal Society, London was born in Hampstead, London on 22 November 1917. His father, Leonard Huxley, LLD, was the son of the renowned evolutionist and supporter of Charles Darwin, Thomas Henry Huxley. Andrew Huxley was also a half-brother to the late Sir Julian Huxley, FRS, and to the late Aldous Huxley, the writer and philosopher.

Andrew Huxley was educated at University College School and Westminster School, London. Before World War II, Huxley was an undergraduate at Trinity College, Cambridge. He graduated in the physical sciences in 1938, and then took an advanced course in Physiology, during which one of his teachers was A.L. Hodgkin. But his formal introduction to research was the short period he and Hodgkin spent together at the Marine Biological Laboratory at Plymouth in the summer of 1939 when they succeeded in recording with an internal electrode the resting and action potentials of the giant nerve fibre of the squid. This collaboration may be described as full of potential and exciting, but it was brought to a halt by the prospect of war. After a year as a clinical medical student, Huxley spent the remainder of the war in operational research on the application of radar to gunnery, first for the Anti-Aircraft Command (1940-42) and later for the Admiralty (1942-45).

When the war ended he returned to Cambridge where he was appointed to a demonstratorship in the Department of Physiology in 1946. He then took up a Research Fellowship at Trinity College where he was able to continue the very fruitful collaboration on electrical excitation and conduction in nerve fibres which he had started with Hodgkin in 1939, work for which they shared the 1963 Nobel Peace Prize in Physiology or Medicine jointly with Sir John Eccles. It is a matter of interest that the formidable task of computing theoretical curves of propagated action potentials was performed with the aid of only a hand-operated calculating machine.

In 1951 Huxley was appointed Assistant Director of Research in the Department of Physiology, Cambridge University, and in 1959 Reader in Experimental Biophysics. From 1951, partly as a result of a long standing interest in microscopy, his researches were concentrated in the mechanisms of muscle contraction. He developed a variety of optical, electrical and mechanical techniques for making precise observations on isolated muscle fibres. From 1960 to 1969 he was Jordell Professor and Head of the Department of Physiology at University College, London, and from 1969 to 1983 he was appointed as a Royal Society Research Fellow.

Sir Andrew was elected a Fellow of the Royal Society in 1955, served on the Council from 1960 to 1962 and from 1977 to 1979, and was President of the Royal Society from 1980 to 1985. Among many other appointments, he was President of the British Association for the Advancement of Science for the year 1976-77, a member of the Agricultural Research Council from 1977 to 1980, a Trustee of the National History Museum and also of the Science Museum in South Kensington, London, and a member of the nature Conservancy Council. From 1986 to 1993 he was President of the International Union of Physiological Sciences.

Huxley's active and analytical mind and his calm unruffled temperament have become legendary.