THE NATURE OF GOLD MINERALIZATION IN THE SABIE-PILGRIM'S REST GOLDFIELD, EASTERN TRANSVAAL, SOUTH AFRICA

R.H. BOER, F.M. MEYER, L.J. ROBB, J.R. GRANEY and T.W. VENNEHMANN
THE NATURE OF GOLD MINERALIZATION IN THE
SABIE-PILGRIM'S REST GOLDFIELD,
EASTERN TRANSVAAL, SOUTH AFRICA

by

R.H. BOER\(^1\), F.M. MEYER\(^2\), L.J. ROBB\(^2\),
J.R. GRANEY\(^3\) and T.W. VENNEMANN\(^3\)

\(^1\) Economic Geology Research Unit, \(^2\) Department of Geology,
University of the Witwatersrand, Private Bag 3, P.O. WITS 2050,
South Africa and \(^3\) Department of Geological Sciences,
University of Michigan, Ann Arbor, Michigan 48019,
U.S.A.)

ECONOMIC GEOLOGY RESEARCH UNIT
INFORMATION CIRCULAR No. 262

April, 1993
THE NATURE OF GOLD MINERALIZATION IN THE
SABIE - PILGRIM'S REST GOLDFIELD, EASTERN TRANSVAAL,
SOUTH AFRICA

ABSTRACT

New geochemical data obtained from fluid inclusion, as well as whole rock, light stable isotope and inclusion fluid gas analyses provide evidence of the temperature, composition and sources of hydrothermal fluids associated with the formation of the Sabie-Pilgrim's Rest Goldfield. Gold mineralization is epigenetic and confined to transgressive, vertical reefs, stratabound flat reefs, as well as sill/dyke-associated quartz-carbonate reefs. Reef-forming fluids were focused into permeable northeasterly trending lineaments and averted along low angle, bedding parallel, simple shear thrusts. The lower age limit of gold mineralization (2027 ± 31 Ma; initial ⁸⁷Sr/⁸⁶Sr ratio = 0.70416) corresponds well with the emplacement age of the mafic phase of the Bushveld Complex. Textural relationships among reef-filling minerals indicated that chalcopyrite, bismuth, bismuth sulphosalts, fahlores and native gold precipitated last as fracture-fillings in pyrite. Fluid inclusion petrography revealed the presence of the following types of inclusions: Type 1 - H₂O-carbonic with the occasional daughter crystal; Type 2 - high salinity H₂O-carbonic inclusions with multiple daughter crystals; and Type 3 - low salinity late-stage aqueous inclusions often occurring without a vapour bubble. The nature of the ore-bearing fluid in the Sabie-Pilgrim's Rest Goldfield was predominantly aqueous with less than 5 mole% consisting of mainly carbonic species, sulphur components and nitrogen. On the basis of relative N₂, Ar and CO₂ contents, large scale fluid interaction with air saturated meteoric water is ruled out. Oxygen isotope values of quartz from the vertical reefs yielded an average δ¹⁸O value of 14.2 ‰, an average δ¹⁸O value of 16.1 ‰ was obtained for the flat reefs, while the sill/dyke associated deposits showed an average δ¹⁸O value of 20.7 ‰. ¹⁸O content progressively decreases with increasing depth and the δ¹⁸O values in individual reef systems are remarkably homogeneous. δ³⁴S values of reef pyrite range from -2.8 to +3.1 ‰. δD, δ¹⁸O and δ¹³C values from inclusion fluids (δD = -37 to -67 ‰; δ¹⁸O = +6.5 to +15.4 ‰; δ¹³C = -11.7 to -1.4 ‰) coincide predominantly with values of primary magmatic water. Interaction of the ore fluid with the host rocks was of limited extent such that the magmatic isotopic and gas chemistry signature of the fluids remains clear. This limited interaction places constraints on the possible sources of gold - a magmatic source, rather than a remobilized sedimentary source being favoured. Mineralization occurred at temperatures around 320°C, at pressures in the range 2.2 to 2.5 kb and at depths of 7 to 8 km. Ore-bearing fluids were probably derived from a deep seated portion of the granitic phase of the Bushveld Complex.
THE NATURE OF GOLD MINERALIZATION IN THE
SABIE - PILGRIM'S REST GOLDFIELD, EASTERN TRANSVAAL,
SOUTH AFRICA

CONTENTS

INTRODUCTION ... 1

GEOLOGICAL RELATIONSHIPS 2

Geological setting .. 2
Age of gold mineralization 3

MINERALOGY .. 5

FLUID INCLUSIONS DATA 7

Description of fluid inclusions 7
Type 1 inclusions .. 7
Type 2 inclusions .. 9
Type 3 inclusions .. 9
Quadrupole mass spectrometer gas analyses 10

LIGHT STABLE ISOTOPE RELATIONSHIPS 13

Quartz oxygen isotopic data 13
Pyrite sulphur isotopic data 15
Fluid inclusion stable isotopic data 15

DISCUSSION ... 17

Temperature, pressure and fluid composition .. 17
Gold solubility and depositional mechanisms .. 20

A GENETIC MODEL FOR THE SABIE - PILGRIM’S REST GOLDFIELD 21

CONCLUSIONS ... 23

ACKNOWLEDGEMENTS 24

REFERENCES .. 24

Published by the Economic Geology Research Unit
Department of Geology
University of the Witwatersrand
1 Jan Smuts Avenue, Johannesburg 2001
South Africa
ISBN 1 86838 058 1
THE NATURE OF GOLD MINERALIZATION IN THE
SABIE - PILGRIM'S REST GOLDFIELD, EASTERN TRANSVAAL,
SOUTH AFRICA

INTRODUCTION

This study presents an evaluation of newly acquired fluid inclusion, as well as whole rock, light stable isotope and inclusion fluid gas analyses. The aim of this paper is to discuss the nature of gold mineralization and to provide quantitative information on the fluids associated with mineralization in the Sabie-Pilgrim's Rest Goldfield. To this end the writers have selected samples representative of the various gold deposits found throughout the stratigraphy. Temperature, composition and stable isotopic data from fluid inclusions in quartz carbonate reefs, as well as stable isotopic data from quartz and pyrite, were used to specify pressure, temperature, f_O and a_HS conditions under which mineralization occurred.

The Sabie-Pilgrim's Rest Goldfield lies along the edge of the Transvaal Drakensberg escarpment in the eastern Transvaal. Small alluvial placer gold occurrences led to the discovery of the Goldfield in 1873. Gold mineralization in this, the third largest gold-source in South Africa, is epigenetic and confined to transgressive, vertical reefs1, stratabound flat reefs, as well as sill/dyke-associated quartz-carbonate reefs. The stratabound reefs are composed of multiple sheets of quartz-carbonate, usually associated with thin slivers of carbonaceous shale host rock. Anhedral buck quartz, similar to that described by Dowling and Morrison (1989), comprise the bulk of the reefs. Small vugs lined with euohedral crystals of quartz are found locally. The average thickness of the horizontal reefs ranges between 5 - 40 cm. Massive quartz blows, stockworks, and breccias, consisting of a mixture of reef material and host-rock fragments, are locally abundant and economically significant. Surrounding such zones of reef thickening (commonly up to 3m) are subparallel stringer veins, which are locally mineralized, and occasional subvertical stringer veins. These stringers pinch-out within tens of centimetres from the main reef component. The gold grade is highly variable (from traces to over 60 g/t), with the overall grade in the order of 5.4 g/t Au (A.R.C. Fowler, pers. comm. 1993; Boer, 1993). In most deposits there are gradational differences in gold grade along strike such that alternations between ore-grade zones and low-grade waste zones can be distinguished. This situation gives rise to a characteristic ore-shoot pattern (Wybergh, 1925; Zietsman, 1967), with little evidence of mineralogical or elemental zoning present.

Wall-rock alteration associated with emplacement of the quartz reefs is limited in extent, and vein selvaging has played a major role in controlling fluid/mineral interaction. Within the surrounding shales, a well-developed subhorizontal planar fabric, comprising a closely spaced cleavage, is developed. Cleavage surfaces often bear slickensides as evidence of early faulting and fine-grained euohedral pyrite occurs as fabric-parallel layers within the shales (Harley and Charlesworth, 1992). Mineralogically, the shale horizons are mainly composed of sericite with minor amounts of quartz and organic carbon.

1Within the Sabie-Pilgrim's Rest Goldfield, individual ore bodies or lodes are locally referred to as "reefs" (c.f. Witwatersrand conglomerate hosted ore deposits). This usage is followed in the paper with a reef being defined as a quartz-carbonate-sulphide-gold vein deposit.
A prominent series of northeasterly trending lineaments are evident within the Goldfield. Mafic dyke emplacement, post-mineralization normal faulting, and limited graben development have occurred parallel to this trend. Bedding in the Goldfield dips between 4° and 15° to the west. Reef emplacement is controlled by low angle (α ≤ 5°) southeastward verging bedding-parallel simple shear thrusts (Harley and Charlesworth, 1992). Small-scale duplexes and shallowly westward-dipping ramp structures as well as asymmetric folds, are typically developed within the mineralized carbonaceous shale.

GEOLOGICAL RELATIONSHIPS

Geological setting

In the Sabie-Pilgrim's Rest area (Fig. 1), the protobasinal Wolkberg Group forms the lowermost part of the Proterozoic Transvaal Sequence and lies unconformably on the

![Geological map of the Sabie-Pilgrim's Rest Goldfield with schematic stratigraphic column.](image)

Figure 1: Geological map of the Sabie-Pilgrim's Rest Goldfield with schematic stratigraphic column. Positions of mines are indicated (modified after Harley and Charlesworth, 1992, 1993).
Archaean Nelspruit batholith. The latter comprises a large, composite body of granodiorite-adamellite (Robb et al., 1983). Disconformably overlying the Wolkberg Group, are the siliciclastic sedimentary rocks of the Black Reef Formation which forms the top of the main escarpment in the area. The Black Reef Formation consists of feldspathic quartzite with interlayered lenses of grit and conglomerate. The Malmani Subgroup (part of the Chuniespoort Group) conformably overlies the Black Reef Formation. The Malmani Subgroup consists of the Oaktree, Monte Christo, Lyttelton and Eccles Formations and is host to the majority of gold-bearing quartz reefs. Formational divisions within the Malmani Subgroup are based mainly on the variations in the chert content and type of algal structures found in the dolomite (Button, 1973; Clendenin, 1989). The Oaktree Formation is comprised of iron- and manganese-rich dolomite, carbonaceous shale, and quartzite, whereas the Monte Christo Formation is characterised by a widely developed sequence of oolitic carbonate rocks (Button, 1986). Siliciclastic sediments (quartzite and/or shale) mark the base of the overlying chert-poor Lyttelton Formation, which is composed mainly of dark-coloured quartz-arenite in the Sabie-Pilgrim’s Rest area (Tyler, 1989). This unit grades upward to the upper dolomite and chert zone of the Eccles Formation. Following the deposition of these sediments, the strata were exposed and an extensive erosional period ensued. This resulted in the formation of a widely developed chert breccia and chert pebble conglomerate at the base of the siliciclastic dominated Pretoria Group, the so-called Bevetts Conglomerate. The Pretoria Group consists of alternating shale and quartz-arenites, with minor conglomerates, granulestones and interlayered volcanic units (Button, 1973). The succession, as developed in the eastern Transvaal, is approximately 7000-8000 m in thickness (Button, 1986).

A large number of basic sills, of different ages, have intruded into the Transvaal Sequence in the Sabie-Pilgrim’s Rest area. The majority of these sills are probably related to the Bushveld Complex and increase in frequency upwards in the stratigraphy (Sharpe, 1984). The Transvaal Sequence sediments and volcanic rocks are metamorphosed, both by the intrusive sills and by the Bushveld Complex. The metamorphic effects of the Bushveld Complex transgress the stratigraphy and extend down to the Malmani Subgroup in places (Button, 1986).

Age of gold mineralization

Determination of the age of mineralization in the Goldfield presents problems due to the lack of suitable datable ore-stage material. However, age constraints can be placed on the sedimentation of the Transvaal Supergroup (e.g. by the pre-Transvaal acid lavas from the Dennilton area that yielded an age of 2460 ± 12 Ma, Coetzee et al., 1978). Furthermore, Jahn et al. (1990) established an age of 2557 ± 49 Ma for the stromatolitic dolomites of the Schmidtsohr Formation in the Griqualand West basin, which is a facies equivalent of the Malmani Subgroup in the Transvaal (Beukes, 1973). In addition, Beukes and Klein (1990) have suggested that deposition of the Transvaal Sequence commenced at approximately 2500 Ma, based on sedimentological evidence. The upper age limit to Transvaal sedimentation is indicated by Rb/Sr whole rock data of 2070 ± 90 Ma from basalts of the Olifantshoek Group, which overlie the Transvaal Sequence in the northern Cape Province (Crampton, 1974).
The uppermost stratigraphic limit of Pilgrim’s Rest gold mineralization (the Finsbury Reef) occurs at the contact of the Strubenkop and the Dwaalheuwel Formations of the Pretoria Group. The underlying Hekpoort Formation has been dated at 2224 ± 11 Ma (Burger and Coertze, 1975), and establishes a lower limit on the age of quartz-reef gold mineralization. At the Olifantsgeraamte Mine, near Sabie, a metamorphosed diabase sill is intersected by an auriferous quartz reef associated with pronounced wall-rock alteration (Fig. 2a). Rubidium and strontium abundances and isotopic compositions of metamorphosed and altered dolerite samples were analyzed, following the procedure described by Potts (1987), and are indicated in Table 1 and Figure 2b. Samples affected by the reef-associated alteration are randomly distributed on Figure 2b, and were therefore not used in calculating an isochron. However, the Rb-Sr isotopic ratios of the metamorphosed dolerite samples, not affected by the reef-associated alteration, yield an errorchron corresponding to an age of 2027 ± 39 Ma with an initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of 0.704163 ± 0.000311 (MSWD = 15.523).

![Figure 2: (a) Underground exposure at the Olifantsgeraamte Mine, near Sabie, of an auriferous quartz vein, associated with a pronounced alteration halo, cross-cutting a dolerite sill. (b) Rb-Sr errorchron of unaltered whole rock dolerite samples shown in (a). The errorchron gives an age of 2027 ± 39 Ma with an initial $^{87}\text{Sr}/^{86}\text{Sr}$ of 0.70416 (MSWD = 15.5). The Rb-Sr ratios of altered samples have been completely reset.](image)

This age is considered to represent the timing of metamorphism of the dolerite sill, brought about by emplacement of the mafic phase of the Bushveld Complex, which has been dated at 2061 ± 27 Ma (Walraven et al., 1990). Interpretation of the Rb-Sr data for both altered and metamorphosed samples clearly show that gold-reef associated alteration overprints the metamorphism, disturbing the metamorphic errorchron. This dictates that mineralization post-dates metamorphism, and by implication the mafic phase of the Bushveld Complex. The metamorphic age thus represents a lower age limit for Pilgrim’s Rest-type gold mineralization. Gold mineralization is probably related to the granitic phase of the Bushveld Complex, which was emplaced later and is therefore younger than the mafic layered rocks (Walraven, 1988).
Table 1. Composition of quartz-hosted inclusion fluids in mole % as determined by quadrupole mass spectrometer gas analyses. Abbreviations for the different localities are as follow: AST - Astra; CLW - Clewer West; FKM - Frankfort; GLS - Glynn's Lydenburg Sheba; GRR - Gregory; JBH - Jubilee; LJM - Little Joker; MGL - Morgenzon; NSM - Nestor; OGM - Olifantsgeraamte; SUD - Sudwala; SUN - Sunlight; VLH - Vaalhoek. Exact localities within the Goldfield of BM & S samples are unknown.

<table>
<thead>
<tr>
<th>Sample</th>
<th>H₂O</th>
<th>CO₂</th>
<th>CH₄</th>
<th>C₂H₆</th>
<th>N₂</th>
<th>Ar</th>
<th>H₂S</th>
<th>SO₂</th>
<th>HCl</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST109</td>
<td>96.641</td>
<td>3.216</td>
<td>0.078</td>
<td>0.000</td>
<td>0.0000</td>
<td>0.0065</td>
<td>0.0043</td>
<td>0.0007</td>
<td>0.0520</td>
<td>99.998</td>
</tr>
<tr>
<td>BM184A</td>
<td>99.538</td>
<td>0.249</td>
<td>0.053</td>
<td>0.069</td>
<td>0.0000</td>
<td>0.0067</td>
<td>0.0170</td>
<td>0.0091</td>
<td>0.0560</td>
<td>99.998</td>
</tr>
<tr>
<td>BM184B</td>
<td>99.744</td>
<td>0.127</td>
<td>0.050</td>
<td>0.008</td>
<td>0.0169</td>
<td>0.0019</td>
<td>0.0074</td>
<td>0.0019</td>
<td>0.0430</td>
<td>100.000</td>
</tr>
<tr>
<td>BM7384</td>
<td>98.635</td>
<td>1.088</td>
<td>0.157</td>
<td>0.008</td>
<td>0.0138</td>
<td>0.0009</td>
<td>0.0250</td>
<td>0.0005</td>
<td>0.0720</td>
<td>99.999</td>
</tr>
<tr>
<td>CLW016</td>
<td>96.969</td>
<td>2.814</td>
<td>0.128</td>
<td>0.017</td>
<td>0.0235</td>
<td>0.0021</td>
<td>0.0047</td>
<td>0.0020</td>
<td>0.0370</td>
<td>99.998</td>
</tr>
<tr>
<td>SUD211</td>
<td>99.010</td>
<td>0.758</td>
<td>0.029</td>
<td>0.047</td>
<td>0.0805</td>
<td>0.0041</td>
<td>0.0045</td>
<td>0.0019</td>
<td>0.0650</td>
<td>99.999</td>
</tr>
<tr>
<td>FKM075B</td>
<td>84.634</td>
<td>14.930</td>
<td>0.394</td>
<td>0.007</td>
<td>0.0000</td>
<td>0.0009</td>
<td>0.0089</td>
<td>0.0029</td>
<td>0.0120</td>
<td>99.990</td>
</tr>
<tr>
<td>FKM076B</td>
<td>94.374</td>
<td>5.363</td>
<td>0.214</td>
<td>0.015</td>
<td>0.0000</td>
<td>0.0026</td>
<td>0.0043</td>
<td>0.0026</td>
<td>0.0210</td>
<td>99.997</td>
</tr>
<tr>
<td>GLS052</td>
<td>94.67</td>
<td>5.210</td>
<td>0.046</td>
<td>0.009</td>
<td>0.0181</td>
<td>0.0040</td>
<td>0.0059</td>
<td>0.0015</td>
<td>0.0310</td>
<td>99.996</td>
</tr>
<tr>
<td>GRR300</td>
<td>99.482</td>
<td>0.330</td>
<td>0.079</td>
<td>0.021</td>
<td>0.0251</td>
<td>0.0085</td>
<td>0.0085</td>
<td>0.0025</td>
<td>0.0430</td>
<td>99.999</td>
</tr>
<tr>
<td>JBH043</td>
<td>89.518</td>
<td>10.313</td>
<td>0.114</td>
<td>0.011</td>
<td>0.0000</td>
<td>0.0020</td>
<td>0.0051</td>
<td>0.0010</td>
<td>0.0290</td>
<td>99.993</td>
</tr>
<tr>
<td>LJM090</td>
<td>93.792</td>
<td>5.951</td>
<td>0.178</td>
<td>0.025</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.00045</td>
<td>0.0007</td>
<td>0.0330</td>
<td>99.984</td>
</tr>
<tr>
<td>MGL204</td>
<td>98.824</td>
<td>0.992</td>
<td>0.043</td>
<td>0.079</td>
<td>0.0000</td>
<td>0.0017</td>
<td>0.0050</td>
<td>0.0031</td>
<td>0.0520</td>
<td>99.999</td>
</tr>
<tr>
<td>NSM093</td>
<td>99.340</td>
<td>0.529</td>
<td>0.053</td>
<td>0.019</td>
<td>0.0000</td>
<td>0.0048</td>
<td>0.0031</td>
<td>0.0006</td>
<td>0.0500</td>
<td>100.000</td>
</tr>
<tr>
<td>NSM098</td>
<td>88.794</td>
<td>10.534</td>
<td>0.561</td>
<td>0.023</td>
<td>0.0000</td>
<td>0.0077</td>
<td>0.0069</td>
<td>0.0024</td>
<td>0.0620</td>
<td>99.991</td>
</tr>
<tr>
<td>OGM078</td>
<td>98.491</td>
<td>1.147</td>
<td>0.081</td>
<td>0.074</td>
<td>0.1067</td>
<td>0.0108</td>
<td>0.0140</td>
<td>0.0027</td>
<td>0.0710</td>
<td>99.998</td>
</tr>
<tr>
<td>S1017</td>
<td>97.453</td>
<td>2.380</td>
<td>0.081</td>
<td>0.007</td>
<td>0.0181</td>
<td>0.0039</td>
<td>0.0055</td>
<td>0.0012</td>
<td>0.0480</td>
<td>99.998</td>
</tr>
<tr>
<td>SUN003</td>
<td>99.150</td>
<td>0.733</td>
<td>0.031</td>
<td>0.019</td>
<td>0.0000</td>
<td>0.0036</td>
<td>0.0032</td>
<td>0.0002</td>
<td>0.0590</td>
<td>100.000</td>
</tr>
<tr>
<td>VLH040A</td>
<td>97.421</td>
<td>2.521</td>
<td>0.025</td>
<td>0.009</td>
<td>0.0000</td>
<td>0.0024</td>
<td>0.0041</td>
<td>0.0022</td>
<td>0.0130</td>
<td>99.998</td>
</tr>
<tr>
<td>VLH040B</td>
<td>93.265</td>
<td>6.607</td>
<td>0.021</td>
<td>0.014</td>
<td>0.0481</td>
<td>0.0036</td>
<td>0.0055</td>
<td>0.0017</td>
<td>0.0290</td>
<td>99.995</td>
</tr>
</tbody>
</table>
MINERALOGY

The gangue within the reefs is overwhelmingly dominated by quartz (Fig. 3a), with lesser amounts of ferruginous carbonates and sporadic occurrences of muscovite, scheelite and rare rutile. Such gangue mineralogy is typical of what may be expected in a selvaged reef with a high fluid/rock ratio (Cathles, 1991). Inclusions of dolomitic and graphitic wall rock material are common and give rise to the sheeted (ribbon textured) nature of these reefs (Fig. 3b). Pyrite is the dominant sulphide, with varying amounts of arsenopyrite, fahlores (tetrahedrite-tennantite), chalcopyrite, bismuth sulphosalts, bismuth and pyrrhotite. Other ore minerals that were recognized in small quantities include galena, bornite and sphalerite (Swiegers, 1949), as well as stannite and native indium (P.H. Bentley pers. comm. 1992). The sulphide mineralogy of the vertical reefs, the stratabound reefs and the sill/dyke associated deposits is very similar. In addition, the modal proportions of sulphide minerals varies to a very limited extent between the various localities as well as within portions of a single orebody. No distinct zoning patterns of hypogene ore mineral assemblages have been observed amongst the various reefs, or even within one particular reef unit. The distribution of the ore minerals in the Goldfield suggests that the horizontal reefs associated with the Oaktree Formation as well as the upper Lyttleton and Eccles Formations are characterized by a more complex suite of ore minerals (i.e. pyrite, arsenopyrite, fahlores, chalcopyrite, bismuth sulphosalts, bismuth and pyrrhotite), whereas the flat reefs occurring at intermediate stratigraphic positions, i.e. Monte Christo and lower Lyttleton Formations, as well as those deposits associated with diabase intrusives, contain predominantly pyrite and lesser amounts of chalcopyrite and sphalerite.

Despite limited variations in the modal proportions amongst the various localities, a strikingly consistent paragenesis has been recognized. Three stages of sulphide mineralization have been identified: (1) early pyrites from the wall rock associated with the gold mineralized reefs are euhedral to subhedral in form and are virtually free from inclusions of other minerals, apart from a few included gold grains; (2) a second stage of mineralization is indicated by coarser-grained pyrites containing inclusions of chalcopyrite and gold. Contemporaneously or slightly later, arsenopyrite was formed which also contains inclusions of chalcopyrite and tetrahedrite and, in places, overgrows and replaces pyrite. This mineralization episode was accompanied by quartz and carbonate gangue deposition; and (3) following the second stage of mineralization was a period of brittle deformation of the ore bodies, as indicated by the abundant fractures in pyrite and arsenopyrite and also by clasts of wall-rock material found enclosed within quartz in the ore zones. These fractures and intergranular spaces in the early sulphide assemblage were filled by a later suite of fahlores, chalcopyrite, bismuth sulphosalts, native bismuth and gold as well as accompanying gangue. There is a distinct increase in gold content towards the later stages of sulphide mineralization, with the majority of gold being emplaced at a very late stage. The history of the ore-forming processes in sill/dyke associated deposits, i.e. the Olifantsgeramte and Vaalhoek Mines, seems to be less complex. It appears that only one generation of pyrite and chalcopyrite was developed, and this suite of minerals also contains the gold, which typically occurs as round inclusions.
Figure 3: Underground exposure of gold-bearing reef. (a). Typical quartz-carbonate reef with abundant coarse-grained pyrite, Elandshoogte Mine. (b). Sheeted appearance (ribbon texture) of reef with graphic and dolomitic wall-rock inclusions, Glynns-Lydenburg Mine, Sheba Section. (c). Quartz-cemented breccias, Elandshoogte Mine. (d). Comb quartz, Clewer Mine.
Quantitative electron microprobe (EMP) analyses of the bismuth sulphosalts indicate that their composition falls within the aikinite (PbCuBiS$_3$) - bismuthinite (Bi$_2$S$_3$) solid solution series (Boer, 1993). Notably, it was Swiegers (1949) who first recognized Pb-rich bismuth sulphosalts in the Sabie-Pilgrim’s Rest Goldfield. Sulphide minerals in the Goldfield are homogeneous and do not show elemental zonation, except for arsenic zonation in euhedral pyrite grains. The size of the gold grains, occurring as fracture fillings in pyrite, vary from $< 5 \ \mu m$ to $\pm 80 \ \mu m$, while the average size was in the order of 20 to 25 μm. This was consistent for the different modes of gold occurrences described above, although nuggets as large as 3.7 kg have been reportedly found in the alluvial deposits by early prospectors. Despite a measure of overlap in fineness, the average values show an increase in silver content as the associated sulphide mineral paragenesis becomes more complex (Boer, 1993). No relationship exists between the size or the stratigraphic position of the gold grains and their chemistry.

FLUID INCLUSION DATA

Description of fluid inclusions

Fluid inclusion data were obtained by microthermometric heating and freezing, using the standard technique described by Roedder (1984). Temperatures of phase changes were obtained with a FLUID INC. adapted U S Geological Survey heating-freezing system, and the thermocouple was calibrated against synthetic fluid inclusions (Sterner and Bodnar, 1984). Microthermometric measurements were made on inclusions that could be confidently classified and were large enough to permit easy observations of phase changes.

All of the quartz reefs examined experienced repeated fracturing in the presence of aqueous fluids as evidenced by abundant planes of secondary inclusions observed at low magnification. Generally, the high density of randomly oriented fractures decorated with fluid inclusions made it difficult to determine with confidence whether a given inclusion was along one of these fractures or was trapped during crystal growth. For this reason, the authors have not attempted to classify the fluid inclusion types according to the criteria of Roedder (1984), but rather have related groups of inclusions to various stages of reef filling. Two optically distinct varieties of quartz were observed, namely an early, grey to milky translucent variety and a later transparent type which either engulfs or occurs along microfractures in the milky quartz with distinctly different types of fluid inclusions. In all of the samples studied from the horizontal reefs, approximately 95 % of the reef-filling quartz is of the early, milky variety. When quartz specimens are examined microscopically, any given field of view generally contains a number of the types of fluid inclusions described below, the latter "coexisting" with one another. The fluid inclusions occurring in quartz may be classified as follows.

Type 1 inclusions

Three phases, an aqueous liquid, a carbonic liquid, and a vapour bubble, are visible at room temperatures (Fig. 4a). Daughter crystals are occasionally present. The liquid-to-
vapour ratio varies to such an extent that some inclusions appear as two phase inclusions, showing an aqueous liquid and carbonic vapour or a carbonic liquid and vapour bubble. Contemporaneity of aqueous and carbonic fluid inclusions in the late fractures is suggested by the occasional occurrence of aqueous and carbonic inclusions along the same healed fracture. The compositional continuum shown by these fluids strongly suggests a close genetic relationships, which, in turn, supports contemporaneity of these fluids. The morphology of these, the dominant inclusion type, varies from irregular to rounded, with equidimensional negative crystal shapes also developed. The size of the inclusions ranges from 5 to 30μm.

Final melting temperatures (T_m) of the aqueous phase range from -21.2° to -4.3°C, corresponding to a salinity range of 23.5 to 5.5 wt% eNaCl. Most inclusions containing carbonic species deprecipitate in the temperature range between 170° and 290°C, prior to bulk homogenization (T_h). This is a common feature for the majority of reefs and deprecation at such relatively low temperatures suggests high internal fluid pressures. The T_h measurements obtained, occur in the range 105° to 255°C, corresponding to high bulk density of 0.857 to 1.053 g/cm³. Comparison of homogenization and final melting temperatures for the various reefs show different salinities for the different reefs and confirm the salinity ranges within individual reefs (Fig. 5).

First melting temperatures for the carbonic phase are slightly below the value for pure CO₂, and support the presence of other gaseous species, such as CH₄ and N₂. Two distinct populations of carbonic inclusions are recognised on the basis of the CO₂ homogenization temperatures, with histogram peaks occurring at 10° and 23°C respectively. The different densities, indicated by these different temperatures, suggest that these fluids represent different pulses of fluid influx. However, it was not possible to optically distinguish the different density fluid inclusions.

Figure 4: (a). Type 1 fluid inclusions in quartz at room temperature. These are filled with an aqueous liquid and a carbonic phase. (b). Type 2 inclusions typified by multiple daughter crystals. Late-stage Type 3 aqueous inclusions occur with or without vapour bubbles. See text for detailed discussion.
Figure 5: Homogenization temperature versus salinity for Type 1 inclusions. The boxes identify the domains of the mineralizing fluids of different deposits.

Type 2 inclusions

This type of inclusion is characterized by a minimum of three phases at room temperature, namely an aqueous liquid, a vapour bubble and at least one daughter crystal (Fig. 4b). Low first ice melting temperatures, plus the presence of a daughter crystal in addition to halite (or sylvite) indicates that additional fluid components are present (possibly calcium- or magnesium-chlorides). Carbonic species are frequently present, but are not visible and are only evident in the formation of clathrates that obscure accurate determination of final melting temperatures. This type of inclusion is common in the vertical reefs, but does not occur in the stratabound flat reefs. Homogenization temperatures of these inclusions range from 105° to 165°C while dissolution temperatures for the daughter phases plot in the range 220° to 245°C, corresponding to salinities of around 33 wt% eNaCl.

Type 3 inclusions

These inclusions contain an aqueous liquid, with or without a vapour bubble at room temperature (Fig. 4c), and are believed to be the latest-formed inclusion type. They are found in both the milky and clear quartz varieties. However, in the volumetrically minor
late-stage clear quartz the predominant inclusion type is a low salinity aqueous inclusions, while carbonic and aqueous saline inclusions are rare. Cross-cutting relationships between type 3 and type 1 inclusions prove that the former post-date the carbonic-rich inclusions. Final melting temperatures centred around -4.5°C (corresponding to a salinity of about 7 wt% eNaCl), and homogenization temperatures ranged from 110° to 135°C (density range 1.001 - 0.982 g/cm³). The absence of vapour bubbles in many of these late fluid inclusions suggest low entrapment temperatures, and confirms the late temporal relationship.

Quadrupole mass spectrometer gas analyses

Quadrupole mass spectrometer (QMS) gas analyses were performed on fluid inclusion plates less than 2 mm in diameter with a total mass of less than 50 mg. Gases were released from quartz wafers by crushing the samples at 110°C under vacuum in a modified Nupro valve, from which they were passed directly into a VG SXP600 quadrupole mass spectrometer via a short conduit designed to maximize conductance and minimize adsorption between sample and ionizing filament. Inclusion fluids were released from native gold grains by heating small samples under vacuum in a Vycor tube until the inclusions decrepitated (Fig. 6). Gases liberated in this manner passed directly into the quadrupole source and produced episodic signal bursts that probably represent individual inclusions. Gas species from individual inclusions with abundances of less than 0.50 mole% can not be reported with confidence and were therefore omitted. Data for 10 user-specified masses were collected in a cycling period of about 0.2 second, which permitted simultaneous determination of H₂O, CO₂, CH₄, C₂H₆, N₂, Ar, H₂S, SO₂, HCl and H₂. Total response for each mass was obtained by integrating under the individual response-time curve for each mass from the time of crushing until the signal returned to background levels. The integrated response for each mass was converted to mole fraction for the gases of interest using a matrix-inversion procedure that takes into account fragmentation patterns and relative sensitivities (to N₂) determined for the specific instrument (Jones and Kesler, 1992).

Results from bulk fluid inclusion gas analyses are presented in Table 1. Great care has been taken to ensure the dominance of Type I fluid inclusions within the pure quartz specimens. This was achieved through handpicking of doubly polished quartz chip fragments under microscopic examination. However, it is inevitable that these analyses of solute compositions are contaminated by other fluid populations (Roedder, 1990) and thus represents a partially time-integrated view of the fluid chemistry. H₂O is by far the most dominant volatile component in the Sabie-Pilgrim’s Rest fluid inclusions and typically comprises 95-99 mole per cent of the inclusion fluid. CO₂ comprises most of the remaining volatile component and the other gases are generally present in amounts smaller than 1 mole per cent. CH₄/CO₂ ratios are consistent and significantly higher, compared to gas discharges from volcanic systems e.g. the Guanacaste Geothermal Province (Giggenbach and Soto, 1992), suggesting more reduced fluid conditions in the Sabie-Pilgrim’s Rest Goldfield compared to volcanic or geothermal systems. In general, two groups of gases can be distinguished. The vertical reefs and the quartz reefs from lower down in the stratigraphy contain the highest concentrations of Ar and HCl, whereas the upper reefs contain larger CO₂ and CH₄ concentrations (Figs. 7 & 8). The higher abundances of carbonic species in the stratigraphically higher reef horizons indicate interaction of the hydrothermal fluid with the dolomitic host rocks, liberating carbonic gases. The scatter is likely to be due to the mixture
of fluid populations, as analytical results were obtained from bulk extraction techniques. The H₂S/SO₂ ratio of the inclusion fluid is approximately 3, much higher than the equilibrium ratio for gases from geothermal systems (Giggenbach et al., 1990). This appears to reflect the presence in the inclusions of SO₂ and possibly thiosulphate (Landis and Rye, 1989; Kesler et al., 1991). However, the relative scarcity of H₂ in the inclusion fluid analyses might suggest that this SO₂ was produced by post-depositional leakage of H₂ out of the inclusions. Diffusion of H₂ out of an inclusion is accompanied by oxidation of H₂S to SO₂. On the basis of relative N₂, Ar and CO₂ contents (Fig. 8), large-scale fluid interaction with air-saturated meteoric water is ruled out. Average N₂/Ar ratios centre around 4.5 (maximum = 19.6), which are well below those of air (84) or air-saturated ground water (38). In a plot of CO₂-N₂-Ar abundances (Fig. 8), most of the fluid inclusion analyses extend outward from the composition of gases in high temperature fumaroles of suspected magmatic origin (Giggenbach et al., 1990), parallel to a mixing line towards the composition of air-saturated water. In general, analyses of porphyry and acid-sulphate deposits, in which magmatic gas contributions should be largest, plot closest to the fumarole compositions. Samples such as porphyry-related tin-tungsten veins, Mississippi Valley Type Pb-Zn and micron-gold deposits, all associated with sedimentary rocks (a possible source of N₂) plot above this line. The absence of air contamination from the Sabie-Pilgrim’s Rest gas analyses is also indicated by the fact that most analyses plot below the mixing line between air and fumarole/magmatic compositions. High Ar contents in some samples probably result from the radiogenic decay of potassium, with subsequent incorporation into fluid inclusions.

H₂O and CO₂ concentrations, as determined from individual fluid inclusion release profiles (Table 2) from pure gold samples, show fairly homogeneous populations, with the exception of fluids released at higher temperatures, which typically contain more CO₂. In
Figure 7: Relative CO$_2$, S$_{Total}$ and HCl contents of hydrothermal gases from quartz specimens of the Sabie-Pilgrim’s Rest Goldfield.

Figure 8: Ternary diagram comparing the CO$_2$, N$_2$ and AR contents of inclusion fluids from the Sabie-Pilgrim’s Rest Goldfield with those of volcanic fumaroles and air and air-saturated meteoric H$_2$O. The tie lines from air and water to CO$_2$ represent possible mixing lines between air and/or meteoric water with magmatic gas.

one instance H$_2$O and CO$_2$ were released abruptly, followed by a more gradual CO$_2$ release. This peculiar cracking pattern was interpreted as representative of a fluid inclusion containing a carbonate daughter crystal. The presence of such daughter crystals in quartz-hosted inclusions were confirmed by Raman spectroscopic studies (Boer, 1993). The average

Table 2: Quadropole mass spectrometer gas analyses of individual fluid inclusions contained in pure gold, presented in mole %

<table>
<thead>
<tr>
<th></th>
<th>H$_2$O</th>
<th>CO$_2$</th>
<th>CO$_2$/H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low T</td>
<td>98.15</td>
<td>1.86</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>96.97</td>
<td>3.03</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>98.50</td>
<td>1.50</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>98.16</td>
<td>1.84</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>98.54</td>
<td>1.46</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>80.12</td>
<td>19.88</td>
<td>contained carbonate burnoff</td>
</tr>
<tr>
<td></td>
<td>96.08</td>
<td>3.92</td>
<td>0.041</td>
</tr>
<tr>
<td>High T</td>
<td>96.17</td>
<td>3.83</td>
<td>0.040</td>
</tr>
</tbody>
</table>
CO₂/H₂O ratios for the fluids from the gold (0.025) compare favourably with those from the quartz specimens (0.035), suggesting that the chemical composition of the ore-bearing fluid could not have been much different from those discussed above. The gas data presented are in agreement with a presumed magmatic-hydrothermal nature of the Sabie-Pilgrim’s Rest system, but also suggest small contributions of carbonic fluids of possible sedimentary origin.

LIGHT STABLE ISOTOPE RELATIONSHIPS

Quartz oxygen isotope data

Oxygen extraction from silicates were performed in accordance with the technique of Borthwick and Harmon (1982) as well as using the laser-based technique of Sharp (1990). NBS-28 and NBS-30 were used as reference standards and yielded, respectively, values of 9.6 ‰ (9.5 ‰ for the laser-ablation technique) and 5.1 ‰ V-SMOW. The δ¹⁸O-values of duplicated samples were generally within 0.2‰ about the mean. All oxygen isotope values are reported in δ-notation in per mil units relative to V-SMOW.

A total of 32 quartz samples from both the vertical and horizontal reefs as well as the sill/dyke associated reefs, covering a vertical span of approximately 350m, were analyzed, in duplicate, for their δ¹⁸O values and the data is presented in Table 3. The vertical reefs yielded an average δ¹⁸O value of 14.2 ‰ (Sₑ =0.34; n=14), a slightly higher average of δ¹⁸O=16.1 ‰ (Sₑ =1.77; n=48) was obtained for the various horizontal reefs, while the diabase sill/dyke associated deposits showed an average value of δ¹⁸O=20.7 ‰ (Sₑ =1.23; n=6). The data in Figure 9 demonstrate a progressive decrease in ¹⁸O content with increasing depth. Variation in δ¹⁸O values within individual quartz reef systems are restricted e.g. Frankfort Mine δ¹⁸O=16.1 ‰ (Sₑ =1.2; n=8). Fluid δ¹⁸O values were calculated from quartz mineral values using the equation of Matsuhisa et al. (1979) in Table 3. These values (δ¹⁸O_{fluid}) ranged from 8.7 to 9.5 ‰ for the vertical reefs, 6.2 to 13.8 ‰ for the flat reefs and 14.2 to 16.8 ‰ for the dyke/sill associated deposits, and overlap the range for magmatic waters (5.5 - 9.0 ‰ ; Taylor, 1979).

Variations in the δ¹⁸O values of hydrothermal quartz occur in response to a number of independent parameters. Quantitatively, the most important of these are the δ¹⁸O value of the fluid and the ambient temperature at which fluid-mineral isotopic equilibrium is attained (Kerrich, 1987). At the site of mineralization, the δ¹⁸O of hydrothermal fluids may be modified by (1) exchange reactions with wall rocks; (2) precipitation or solution of an oxygen-bearing phase either depleted or enriched in ¹⁸O with respect to the fluid, and in a closed system; (3) immiscible separation of CO₂; or (4) mixing with an isotopically distinct fluid reservoir. Options (1) and (2) may be ruled out based on arguments presented above for high fluid/rock ratios in the hydrothermal conduits. Moreover, the solubility of most hydrothermal minerals in the deposits are sufficiently low that their precipitation is accompanied by negligible isotopic shifts in the fluid phase. Fluid mixing can probably be eliminated as a first order effect, from the observation that the ore-forming solutions were close to or greater than lithostatic pressures during hydraulic fracture, fluid advection, and reef-forming events (Harley and Charlesworth, 1993), and from the consistency of paragenetic assemblages in successive reef stages. However, some mixing of deep pore water is indicated. Taking these factors into account, the uniformity in δ¹⁸O values of quartz
Table 3. $\delta^{18}O$ and $\delta^{18}O_{\text{fluid}}$ values for quartz from vertical and horizontal reefs as well as sill-associated gold mineralized localities. Values were determined using the conventional extraction method as described by Borthwick and Harmon (1982). While those values in parenthesis represent data generated following the laser-based extraction method of Sharp (1990). $\delta^{18}O_{\text{fluid}}$ values were calculated from quartz mineral values using the equation of Matsuhisa et al., (1979). All values are expressed in per mil notation relative to VSMOW. Abbreviations for the different localities are as follow: AST - Astra; BRH - Browns Hill; CLW - Clewer West; CLS - Clewer South; DRM - Desireè; FKM - Frankfort; GLS - Glynns Lydenburg Sheba; GRR - Gregory; JBH - Jubilee; LJM - Little Joker; MAM - Mamire; MGL - Morgenzon; NSM - Nestor; OGM - Olfantsgeramte; RFT - Rietfontein; SUD - Sudwala; SUN - Sunlight; THH - Theta Hill; VLH - Vaalhoek

<table>
<thead>
<tr>
<th>Sample</th>
<th>Flat reefs</th>
<th>Vertical reefs</th>
<th>Sill/dyke associated reefs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\delta^{18}O$</td>
<td>$\delta^{18}O_{\text{fluid}}$</td>
<td>$\delta^{18}O_{\text{fluid}}$</td>
</tr>
<tr>
<td>FKM075A</td>
<td>16.3 (15.7)</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>FKM075B</td>
<td>14.7 (14.2)</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>FKM076A</td>
<td>17.4</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>FKM076B</td>
<td>17.2</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>FKM077A</td>
<td>17.2</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>FKM077B</td>
<td>16.5</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>LJM090</td>
<td>14.0 (13.9)</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td>NSM093</td>
<td>14.4 (14.1)</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>BRH112</td>
<td>19.7</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>MAM103</td>
<td>15.2</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>MAM104</td>
<td>14.7</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>CLH110</td>
<td>11.5</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>CLH111</td>
<td>16.0</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>BRH112</td>
<td>19.7</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>MGL032</td>
<td>16.4</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>MGL033</td>
<td>16.2</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>CLS038</td>
<td>16.7</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>JBH043</td>
<td>18.5</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td>DRM044</td>
<td>19.1</td>
<td>13.8</td>
<td></td>
</tr>
<tr>
<td>GLS052</td>
<td>16.6</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>CLW013</td>
<td>16.7</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>CLW017</td>
<td>17.8 (17.8)</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>THH030</td>
<td>15.4</td>
<td>10.1</td>
<td></td>
</tr>
</tbody>
</table>
in the individual Au-reef deposits, implies a corresponding homogeneity in both the $\delta^{18}O$ values of hydrothermal fluids, and a fairly consistent ambient temperature of mineralization. Furthermore, these $\delta^{18}O_{\text{quartz}}$ relationships imply a fluid-dominated system along the hydrothermal conduits.

Pyrite sulphur isotope data

The sulphur in pyrite was converted to SO$_2$ using the Cu$_2$O oxidation method of Coleman and Moore (1978). Sixty pyrite samples from within the quartz reefs were analyzed for $\delta^{34}S$ which ranged from -2.8 $\%$o to +3.1 $\%$o. $\delta^{34}S$ values for pyrite from the lower reef horizons fall into a restricted range close to 0 $\%$o $\delta^{34}S$ and low variance, characteristic of magmatic sulphur. The upper reefs show a tendency toward negative $\delta^{34}S$ values. This tendency coincides with the changeover toward negative $\delta^{34}S$ numbers of the sulphides from the shales, as measured by Cameron (1982). Cameron (1982) identified an isotopic transition zone in the lower Malmane Subgroup, above which the sulphides from the shales were derived from reduction of sulphate, with both biogenic and inorganic processes being involved. The shift towards negative numbers in the reef-associated sulphides could be ascribed to limited isotopic exchange with the latter group of shale-hosted sulphides.

Fluid inclusion stable isotope data

Measurements of $\delta^{18}O$, δ^D and $\delta^{13}C$ were performed on fluids from decrepitated fluid inclusions in selected quartz samples, following the method described by Vennemann and O’Neil (1993). These data are presented in Table 4. The hydrogen isotopic composition of water in fluid inclusions extends from -37 to -67‰. The magnitude of the observed dispersion cannot be accounted for by mixing of fluids from depleted and enriched δ^D fluid reservoirs. Any such mixing would be reflected in shifts of both δ^D and $\delta^{18}O$ fluid, but the uniformity of $\delta^{18}O$ fluid values (as measured and calculated from quartz data) eliminates this possibility (Fyon et al., 1983). Rather, the observed range in $\delta^D_{\text{H}_2\text{O}}$ may be due to the
Table 4. Light stable isotope values (δD, δ¹³C and δ¹⁸O) of extracted inclusion fluids from flat reefs (Clever West - CLW), vertical reefs (Gregory - GRR & Rietfontein - RFT) and sill associated reefs (Olfantsgeraamte - OGM). Data are presented relative to per mil VSMOW.

<table>
<thead>
<tr>
<th>Sample</th>
<th>δD H₂O</th>
<th>δ¹³C CH₄</th>
<th>δ¹³C CO₂</th>
<th>δ¹³C Total</th>
<th>δ¹⁸O Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>OGM082</td>
<td>-47.0</td>
<td>n.d.</td>
<td>-11.7</td>
<td>-11.7</td>
<td>n.d.</td>
</tr>
<tr>
<td>GRR107</td>
<td>-37.3</td>
<td>n.d.</td>
<td>-2.3</td>
<td>-2.3</td>
<td>n.d.</td>
</tr>
<tr>
<td>CLW017</td>
<td>-53.3</td>
<td>n.d.</td>
<td>-10.8</td>
<td>-10.8</td>
<td>n.d.</td>
</tr>
<tr>
<td>RFT001</td>
<td>-67.6</td>
<td>-36.0</td>
<td>-3.6</td>
<td>-4.8</td>
<td>6.5</td>
</tr>
<tr>
<td>CLW017</td>
<td>-53.5</td>
<td>-30.8</td>
<td>-0.3</td>
<td>-1.4</td>
<td>15.4</td>
</tr>
</tbody>
</table>

Figure 10: A δD vs δ¹⁸O plot depicting the stable isotope geochemistry of Sabie-Pilgrim's Rest ore-bearing fluids. MWL - Meteoric Water Line. Note that the stable isotope chemistry of the ore-bearing fluids requires that the deposits formed from a predominantly magmatic fluid.
presence of H₂ and/or CH₄ in the aqueous fluid, as confirmed by the gas chemistry data (Table 1). When plotted on a δ¹⁸O vs δD diagram (Fig. 10), the Sabie-Pilgrim’s Rest data coincide with the primary magmatic water field, and show no signs of major isotopic interaction with meteoric or basinal water. The Sabie-Pilgrim’s Rest δD and δ¹⁸O data are distinctly different from epithermal, volcanic associated massive sulphide and Mississippi Valley Type deposits (e.g. Ohmoto, 1986), and show a correspondence to the stable isotopic values from the precious metal veins from Archaean Au deposits such as Macassa, McIntyre-Hollinger and Kerr-Addison (Bursnall, 1989). Although it is not possible to discriminate between primary hydrothermal reservoirs using hydrogen and oxygen data alone, the correspondence of the Sabie-Pilgrim’s Rest data with Au vein deposits with known magmatic fluid contributions, suggests a predominant magmatic component in these hydrothermal fluids.

¹³C isotope values for fluid inclusions fall within the range -11.7 to -1.4 per mil, whereas the average δ¹³C value for carbonate minerals from reefs are -2.4 per mil (Schidlowski et al., 1975). These data suggest that hydrothermal fluids may have acquired carbonate (CO₂, H₂CO₃, HCO₃⁻) from carbonate rocks through dissolution or thermal decarbonatization. Given the physico-chemical conditions during entrapment of these inclusion fluids, as discussed below, then δ¹³C_Cₐ(C₇H₆O₇H₂O)_₂ ≈ δ¹³C_fluid (Ohmoto and Rye, 1979). At 300°C the fractionations between oxidized carbon species (CO₂, H₂CO₃, HCO₃⁻) in solution are small (Bottinga, 1969). The calcite-HCO₃⁻ fractionation is ~ +1 ‰ at 300°C, such that calcite of -3 ‰ would have been precipitated from a fluid where δ¹³C HCO₃⁻ = -4 ‰ (Kyser, 1987). This can account for the Rietfontein, Gregory and some of the Clewer West values (Table 4), but does not explain the large shifts in the Olifantsgeramte and some Clewer West samples. Interaction of the hydrothermal fluid with graphite can generate methane following the reaction, C + 2H₂O ⇋ CH₄ + 2[O], where [O] represents oxygen bound in CO₂ and/or carbonate. Methane is depleted relative to CO₂ by 24 ‰ at 300°C. Accordingly, the δ¹³C of hydrothermal CO₂ could be buffered to -11 ‰ (at 300°C) by equilibrium exchange with graphite of -27 ‰ (Bottinga, 1969). Such an isotopic equilibrium between CO₂ and CH₄ is possible without obtaining chemical equilibrium (Giggenbach, 1982). It is clear that the source, or sources, of carbon cannot as yet be resolved with certainty. However, neither magmatic nor meteoric sources alone can account for the observed distribution of δ¹³C values.

DISCUSSION

Temperature, pressure and fluid composition

The confining pressure of the Sabie-Pilgrim’s Rest-type mineralization is not well constrained due to the lack of suitable geobarometers. The observed fluid inclusion relationships within the Type 1 fluids is consistent with a low degree of unmixing, or phase separation. Fluid unmixing may occur in response to fluid-pressure fluctuations. These changes in turn, may be related to brecciation and resealing of the quartz reefs and are consistent with the emplacement mechanism and deformational history of these quartz reefs (Harley and Charlesworth, 1993).
Dissolution of daughter crystals after vapour homogenization indicates relatively high entrapment pressures, taking into account the precautions stipulated by Roedder and Bodnar (1980). A reconstruction of the overburden at the time of quartz reef mineralisation indicates a thickness of approximately 7 to 8 km (Button, 1986) which corresponds to a lithostatic pressure of 2.2 to 2.5 kb (1 kb/3.2 km). This pressure estimate corresponds to a temperature of about 320°C, using the Jacobs and Kerrick (1981) and Holloway (1981) equations of state to calculate isochores for the above fluid characteristics. This temperature estimate is confirmed by the arsenopyrite thermometer (Kretschmar and Scott, 1976) which yielded a value of 320°C (Boer, 1993; Harley, 1993).

Chemical characteristics of the Sabie-Pilgrim’s Rest ore fluids may be estimated using mineral stabilities and fluid inclusion gas data. A pH estimate can be calculated using the white mica composition and assuming solid solution between stoichiometric paragonite and muscovite. The micas are spatially and paragenetically related to late-stage, fracture-hosted gold grains, which are developed within coarse-grained pyrite (Harley and Charlesworth, 1991). Thermodynamic activity calculations of end-member components using homologous site mixing models (Aagaard and Helgeson, 1983) give consistent activities for stoichiometric paragonite and muscovite (paragonite = 0.002; amuscovite = 0.686 ± 0.077) (Harley, 1993; Boer and Harley, in press). The composition of muscovite (senso lato) constrains the Na/K ratio of the equilibrium fluid from which such micas crystallized (Helgeson and Aagaard, 1985). The fluid in equilibrium with the muscovites from the Transvaal Sequence quartz reef deposits, and by inference, the gold (given the known relative timing of gold and muscovite within the reef) is indicated to have a Na:K ratio of 0.1 (Harley, 1993; Boer and Harley, in press). A moderately acidic pH estimate of 4.2 is obtained at 320°C and 2.2 kb for the muscovite/K-feldspar stability boundary, with neutral pH value under these conditions being 5.1. By using the reaction;

\[
\text{CO}_2(g) + \text{H}_2\text{O} \rightleftharpoons \text{HCO}_3^- + \text{H}^+
\]

\[\text{log } K = -7.658\]
(Calculated using SUPCRT92; Johnson et al., 1992)

the authors were able to calculate a pH range of 3.7 to 4.2 for the Sabie-Pilgrim’s Rest fluids, for an average CO₂ concentration of 1.83 molal (\(\gamma_{\text{CO}_2} = 2.26\)) (calculated from Patterson et al., 1981; aCO₂ = 4.13) as obtained from gas data (Table 1). This is consistent with the muscovite stability and \(aK^+ < 10^{-4}\).

The oxidation state of the fluids can be estimated in several ways. The common sulphide assemblage pyrite + chalcopyrite + arsenopyrite found in many of the Sabie-Pilgrim’s Rest district deposits implies that the sulphur species in the fluid are not highly oxidized. As shown in Figure 11, the reduced species H₂S is the dominant sulphur species in the fluid, given such a mineral assemblage. Thus, the range of \(\delta^{34}\)S of -2.8 to 3.15 %o for the Sabie-Pilgrim’s Rest reef pyrite, should reflect the \(\delta^{34}\)S range of the reef fluid (as discussed by Ohimoto and Rye, 1979). With this \(\delta^{34}\)S range for the fluid, the sulphur may have been derived from interactions with metavolcanic rocks at depth, which is unlikely in the Sabie-Pilgrim’s Rest Goldfield, and/or from magmatic sources (Ohimoto and Rye, 1979; Ohimoto, 1986).
Figure 11: Composite log f_O_2 vs pH diagram for Sabie-Pilgrim's Rest conditions. Calculated using SUPCRT92; Johnson et al. (1992). Shaded area represents an approximation of activities of reef forming fluids, based on average gas analytical results.
The stability field of graphite, ubiquitously developed along reef margins, was calculated (using SUPCRT92; Johnson et al., 1992), using the pure species equilibrium:

\[C_{\text{Graphite}} + O_{2,g} \rightleftharpoons CO_{2,g} \quad \log K = -34.890 \]

and,

\[C_{\text{Graphite}} + 2H_{2}O \rightleftharpoons CH_{4,g} + O_{2} \quad \log K = -30.900 \]

From bulk gas analysis data (Table 1) it is found that the ore fluids, in some instances, straddle the CO\(_2\)-graphite boundary, with the log \(aCO_2\) ranging between 0.034 and -0.201 (Fig. 10). As discussed by Holloway (1984), fluid compositions coexisting with graphite at \(T < 400^\circ\text{C}\) are essentially two binary systems: CO\(_2\)-H\(_2\)O and CH\(_4\)-H\(_2\)O. However, the low abundance of carbonic species in the Sabie-Pilgrim’s Rest fluids suggests that the latter fluids mixed to form a single, homogeneous, supercritical fluid (Holloway, 1984). The range in \(\delta^{13}C\) values for the Sabie-Pilgrim’s Rest Goldfield carbonates, is consistent with the presence of small amounts of CH\(_4\) in the fluids, due to the large \(\Delta_{\text{CH}_4-\text{CO}_2}\) fractionation factor (Bottinga, 1969).

Gold solubility and depositional mechanisms

The results of this study enable the authors to summarize the following characteristics of the mineralizing fluids which formed the Sabie-Pilgrim’s Rest deposits: A temperature of approximately 320\(^\circ\text{C}\) and a pressure range of 2.2 to 2.5 kb is suggested. The \(X_{\text{Carbonic}}\) species in the fluids is about 0.05 as determined by the QMS gas analyses. The fluid salinities are intermediate, ranging from 5.5 to 23.5 wt\% eNaCl (average salinity \(\approx 10\) wt\% eNaCl) as indicated by \(T_{\text{min}}\) measurements. The pH was slightly acidic at 3.7 to 4.2. The \(fO_2\) was around \(10^{-32.5}\) and the \(fH_2S_g\) was between 3 and 10 bars (calculated from \(X_{\text{H}_2S}\) in the QMS data), which corresponds to \(aH_2S_{aq}\) of between \(10^{-2.5}\) to \(10^{-2.8}\).

Using these fluid characteristics, speculation on the gold speciation and precipitation mechanism is possible. Experimental data on the Au bisulphide complexes (Hayashi and Ohmoto, 1991; Shenberger and Barnes, 1989; Seward, 1973) for the conditions outlined above indicate solubilities between 1 and 10 ppb. Solubility calculations of Au as chloride complexes, using the data of Henley (1973) yields solubilities that are an order of magnitude less than the Au bisulphide complexes (Fig. 11). Precipitation mechanisms pertinent to a fluid transporting gold as a bisulphide complex include: a decrease in \(T\) at constant pH; oxidation of the complex; pH reduction; and reduction in sulphur activity in the fluid by sulphide precipitation. Several of these possibilities are exemplified in the reaction \(\text{Au}_s + 2H_2S_{aq} \rightleftharpoons \text{Au(HS)}_2 + \frac{1}{2}H_2O + H^+\) (Hayashi and Ohmoto, 1991). Given the association of gold with various sulphides noted at many mines in the Sabie-Pilgrim’s Rest Goldfield (Harley and Charlesworth, 1992; Meyer et al., 1986), the role of sulphide precipitation may be critical to gold precipitation. Variations in \(CO_2/CH_4\) ratios noted in fluid inclusions from the Pamour Mine in the Timmins district in Canada, have been suggested as direct evidence of the influence of changing oxidation states on gold precipitation (Walsh et al., 1988). However, the authors have no similar evidence from the QMS gas analyses for the Sabie-Pilgrim’s Rest deposits. Furthermore, there is also no direct evidence that Au is transported as a bisulphide complex, although the calculated solubility of Au bisulphide complexes is an
order of magnitude higher compared to that of Au chloride complexes. Textural evidence pertinent to sulphide gold relationships (e.g. Harley and Charlesworth, 1992) indicates that gold could possibly have been precipitated onto sulphide surfaces by adsorption and subsequent reduction processes (Knipe et al., 1992; Schoonen et al., 1992; Bancroft and Hyland, 1990). Furthermore, Knipe et al. (1992) noted that the adsorption of Au is spatially related to arsenic-depleted micro-zones within pyrite. The fact that arsenic zonation is common within the Sabie-Pilgrim's Rest pyrite (Boer, 1993; Harley, 1993), makes this mechanism of gold precipitation feasible.

A GENETIC MODEL FOR THE SABIE- PILGRIM'S REST GOLDFIELD

Characteristic geological and geochemical features of the Sabie-Pilgrim’s Rest Goldfield are similar to those displayed within the spectrum of mesothermal gold deposits. The observed characteristics contrast with those of epithermal gold deposits where temperatures of formation are similar, but inferred pressures of formation and δ¹⁸O values are lower (Heald et al., 1987), and the environment of ore deposition is markedly different. The Sabie-Pilgrim’s Rest deposits are comparable in terms of mineralogy and physico-chemical conditions of mineralisation to the deposits of the Mother Lode of California (Weir and Kerrich, 1987), Archaean lode gold deposits (Kerrich, 1987), and gold deposits of the Canadian Cordillera (Goldfarb et al., 1988). The recognised ore shoot structure is highly characteristic of mesothermal gold deposits (Colvine et al., 1984; Peters, 1993). Studies by Cairnes (1937) and Walton (1987) showed that these structures are the result of brittle deformation following the main stage of vein formation and the subsequent influx of late-stage, gold-bearing fluids. High Au/Ag ratios, a general lack of isotopic and elemental zoning within the reefs, fluid inclusion petrographic properties, a temperature of formation around 320°C, a pressure of reef formation in the 2.2 to 2.5 kb range, amongst other factors, confirm the mesothermal nature the Sabie-Pilgrim’s Rest Goldfield.

Evidence for widespread meteoric convection within the dolomites and shales of the Sabie-Pilgrim’s Rest Goldfield is lacking. Stable isotope data clearly indicate that meteoric water was not a significant component within the ore fluids of the Goldfield. The consistent δ¹⁸O values of the mineralizing fluids are also typical of those found in mesothermal systems of Archaean and Phanerozoic age, and contrast sharply with the relatively inhomogeneous data for epithermal gold systems (Kyser and Kerrich, 1990; Field and Fifarek, 1985). In part this represents a more uniform temperature of mineralization for mesothermal veins (Kerrich, 1987), as corroborated by microthermometric data presented above. In addition, the consistent data support a high fluid/rock ratio at the site of vein precipitation, so that the mesothermal vein-forming fluids are not appreciably modified by exchange with wall rocks. However, fluid inclusion gas analyses suggest limited contributions of carbonic fluid species to the hydrothermal fluid, probably due to dissolution of dolomitic wall rock. The uniformity of the stable isotopic values, the consistent CO₂/CH₄ ratios and fluid inclusion petrography, amongst other data, offers scant support for any model based on fluid mixing as the dominant mechanism for gold deposition in the Sabie-Pilgrim’s Rest Goldfield (e.g. Anderson et al., 1992).

Instead, the authors propose a hypothesis involving a saline fluid exsolving from a deep-seated granitic melt during crystallisation, probably associated with the granitic phase
of the Bushveld Complex. Experimental work by Bodnar (1992) has described high salinity fluids which exsolve from silicic magmas during the early stages of crystallization at 2 kb pressure. It is suggested that the high salinity fluid inclusions trapped within the vertical reef environment are representatives of a fluid of this nature. Vertically oriented structures represent suitable pathways to tap and focus the high-pressure fluids released at depth.

Restricted mixing with cooler pore fluids in the wall rocks and fluid-mineral reactions involving host lithologies are supported by inclusion gas and stable isotope chemistries. As reported above, most H₂O-CO₂ inclusions (Type 1) have variable CO₂ contents along individual fractures. This variation of the CO₂ content can be explained either by mixed entrapment of aqueous and CO₂-rich fluids or by fluid unmixing during healing of the fracture. However, in a few samples there are healed fractures containing H₂O-CO₂ inclusions with constant phase ratios. The fact that in different samples these inclusions all contain approximately the same amount of CO₂ (Table 1), precludes the possibility that they might represent mixed entrapment of two immiscible fluids and suggests instead that these fluid inclusions might represent the parent homogeneous fluid from which the aqueous and CO₂-rich fluids were locally derived. The presence of such inclusions also indicates that, at least for short periods of time during the fracturing of the reef minerals, the P-T conditions were such that the fluid was above the two-phase region and that the parent homogeneous fluid was trapped. Experimental data and thermodynamic calculations on the system H₂O-CO₂-NaCl indicate that the addition of NaCl to the system extends the two-phase field to higher temperatures (Bowers and Helgeson, 1983). The coexistence of a moderately saline aqueous fluid containing small amounts of CO₂ with a very low salinity CO₂-rich fluid containing small amounts of H₂O in the reefs, can thus be explained by unmixing (immiscibility) of a low salinity H₂O-CO₂ fluid. Bowers and Helgeson (1983) have shown that a high salinity H₂O-rich fluid can be produced by unmixing of a relatively low salinity H₂O-CO₂ fluid, because all the salt will fractionate into the H₂O-rich liquid phase rather than in the CO₂-rich vapour phase. It is important to realize that such unmixing can be produced by progressive cooling of the fluid or by a pressure decrease. Other mechanisms can account for the variable proportions of CO₂ within type 1 inclusions. Reaction with wall rocks can explain the occurrence of some inclusions which have both high carbonic species contents as well as slightly higher salinities than other type 1 inclusions.

The exact source of gold remains uncertain. It is probable that the bulk of the gold was derived from the same magmatic source as the fluids. The limited amount of interaction with the host rocks seems to preclude leaching of gold from the fluid pathway as a dominant source of gold. Under the relatively low fO₂ conditions characterizing the Sabie-Pilgrim’s Rest ore fluids, gold transport is calculated to have been almost exclusively by reduced sulphur complexes. Hence a source of aqueous sulphur was important to the transport of gold. Sulphur isotope ratios of sulphide minerals deviate from the inferred host rock values to such an extent that sulphur introduced from a distal source is necessarily indicated. This supports the suggestion that gold was derived mainly from a magmatic, rather than a remobilised sedimentary source.

The precipitation mechanisms that account for gold deposition within the Sabie-Pilgrim’s Rest Goldfield deposits are elusive. In some deposits gold occurs primarily as fracture fills within sulphides (e.g. Elandshoogte, Clewer West, Malieveld) whilst in other
deposits gold is predominantly present as round inclusions within sulphides (Olfantsgeraamte, Vaalhoek). In some deposits both situations are common (e.g. Frankfort, Nestor) whereas in other deposits gold occurs mainly as free grains within quartz (e.g. Morgenzon). It is clear from the variations in mode of occurrence of gold within the various reefs that several mechanisms of precipitation were active and may have become locally dominant in some cases. Gold in quartz is probably best explained as a result of fluid immiscibility arising from pressure variations accompanying fracturing. Gold inclusions within sulphides may be a result of adsorption/reduction during sulphide growth (Knipe et al., 1992) or may be a result of decreasing \(aH_2S \text{_{aq}} \) accompanying sulphide precipitation (Neall, 1987). Gold in fractured sulphides similarly may be a consequence of changes in fluid chemistry as a result of fluid unmixing or a consequence of adsorption/reduction reactions, or both. All of these processes may have been active within any one reef unit. Prediction of the sitting of gold with respect to the reef components is therefore not possible at the scale of the Goldfield and no single mechanism of gold precipitation can be given preference. Similarly, in other mesothermal deposits differences in gold sitting and depositional control are equally unclear as a consequence of multiple mechanisms of deposition.

CONCLUSIONS

This study of the Sabie-Pilgrim’s Rest Goldfield has indicated the following:

1. the lower age limit of gold mineralization is concurrent with the emplacement age of the mafic phase of the Bushveld Complex. Ore-bearing fluids show a predominantly magmatic character and were probably derived from a deep-seated portion of the granitic phase of the Bushveld Complex;

2. mineralization occurred at temperatures around 320°C, at pressures in the range 2.2 to 2.5 kb and at depths of 7 to 8 km;

3. oxygen isotope values of quartz from the vertical reefs yielded an average \(\delta^{18}O \) value of 14.2 \%. An average \(\delta^{18}O \) value of 16.1 \%o was obtained for the flat reefs, while the sill/dyke associated deposits showed an average \(\delta^{18}O \) value of 20.7 \%. \(^{18}O\) content progressively decreases with increasing depth and \(\delta^{18}O \) values in individual reef systems are remarkably homogeneous. \(\delta^{34}S \) values of reef pyrite range from -2.8 to +3.1 \%. \(\delta^{18}O \) and \(\delta^{13}C \) values from inclusion fluids (\(\delta^{18}O = -37 \) to -67 \%; \(\delta^{18}O = +6.5 \) to +15.4 \%; \(\delta^{13}C = -11.7 \) to -1.4 \%) coincide predominantly with values of primary magmatic water. Interaction of the ore fluid with the host rocks was of limited extent such that the magmatic isotopic, and gas chemistry signature of the fluids remains clear.

4. the pH of the ore-bearing solutions ranged from 3.7 to 4.2, oxygen fugacities were in the order of 10\(^{-32.5}\), and the activity of the \(H_2S \) species was between 10\(^{2.5}\) and 10\(^{2.8}\) with salinities ranging between 5.5 and 23.5 wt% eNaCl for the flat reefs and \(\approx 30 \) wt\% eNaCl for the vertical reefs;

5. the nature of the ore-bearing fluid was predominantly aqueous with <5 mole \% carbonic species, sulphur species and nitrogen. \(CH_4 \) and HCl concentrations were relatively high;
6. gold was probably transported as a bisulphide complex. Precipitation mechanisms for
gold appear to be variable within any one deposit. Locally, a single mechanism may be
dominant, in other cases several mechanisms are suggested to overlap in time and space; and

7. interaction of the ore fluid with the host rocks was of limited extent such that the
magmatic isotopic and gas chemistry signature of the fluids is still clear. This limited
interaction places constraints on the possible sources of gold. A magmatic, rather than a
remobilised sedimentary source is favoured.

ACKNOWLEDGEMENTS

The authors thank Rand Mines (Mining & Services) Ltd and particularly Phil Bentley
for permission to undertake this research and for assistance in the field and underground.
Conventional whole rock oxygen isotope analyses were performed at the Department of
Geological Sciences, University of Cape Town; sulphur isotopes were analyzed at the
Schonland Research Centre for Nuclear Sciences, University of the Witwatersrand;
radiogenic isotope analyses were completed at the Bernard Price Institute for Geophysical
Research, University of the Witwatersrand; and laser-based oxygen isotope analyses, as well
as light stable isotope and gas analyses of the inclusion fluids were performed at the
Department of Geological Sciences, University of Michigan. Many discussions with Michael
Harley and Phil Bentley are gratefully acknowledged. This work was partially sponsored by
the National Geosciences Programme of the South African Foundation for Research
Development and formed part of RHB’s PhD project.

REFERENCES

Aagaard, P. and Helgeson, H.C., 1983. Activity/composition relations among silicates and
aqueous solutions: II. Chemical and thermodynamic consequences of ideal mixing of
atoms on homologous sites in montmorillonites, illites and mixed-layer clays. Clays

mesothermal gold mineralisation in the Transvaal Sequence, Transvaal, South Africa.
European Jour. Mineral., v. 4, p. 933-948.

reactions of aqueous metal complexes on sulphides surfaces. Rev. Mineralogy, v. 23,
p. 511-558.

Klein, C., and Beukes, N.J., 1990. Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa Econ. Geol., v. 84, p. 1733-1774.

