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Abstract

The brief was to design a 50kW wind turbine for an eco-village in the KZN
coastal region north of Durban with a rated wind speed of 13.5m/sec and where
wind speeds vary from 3.5 m/sec to 18 m/sec. Of particular interest was the axis
orientation (horizontal or vertical), the number size and shape of blades, and
turbine height. Whilst detailed engineering design involves issues well beyond
those that could be sensibly addressed by the study group, we did attempt
to set down the aerodynamic design principles for such an undertaking. The
available information indicates that close to the theoretically available power
output 16

27 ( 1
2ρU

3
w)A (the Betz limit) can be realized using either two or three

blades of standard design, where Uw the wind speed (assumed fixed here), ρ is
the density of the air, and A the rotor area.

1 Introduction

The largest turbine in the world currently is the ENERCON E126 and is located at
Emden, Germany. It produces 7+ MWatts of energy, it’s height is 135m and the
blades are of diameter 126m. The turbine of interest here is a much more moderate
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22 Wind turbine design

design and is classified as being of medium scale. The turbine is to be designed to
service an eco-village of 200 households on the north coast of Durban and produce
50 kwatts. Such turbines have a typical rotor drum diameter of 12.5m.

Figure 1: Turbine types

There are two types of wind turbines: vertical axis wind turbines (VAWT) often
referred to as egg beaters because of their shape, and the conventional horizontal axis
turbines (HAWT), see Figure 1. In general terms HAWTs are much more efficient (by
a factor of about 7) than VAWTs in steady winds because they utilize lift forces as
opposed to drag forces on the airfoils. However the HAWTs are omnidirectional and
need to be continuously turned (using a passive vane or active mechanical/electrical
controller) to face into the wind and are more expensive than VAWTs which are
ground mounted. The VAWTs are thought to be more suitable under highly variable
wind conditions. It was felt that steady sea breezes off Durban would make the
HAWT design more suitable. In any case we worked on that assumption. After a
brief description of the aerodynamic features of the turbine components, see Section
2, we will describe the known results in Section 3 and indicate how this knowledge
may be used to design the turbine. Much of the work described here is based on
results described in David Spera’s (1994) excellent book ‘Wind Turbine Technology’,
see especially Chapter 5.
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Figure 2: Left: Lift and drag forces on an airfoil. Right: Airfoil shape factors.

Figure 3: Stall: If the angle of attack exceeds αcrit the foil stalls.

2 Turbine Aerodynamic Components

The working core of the turbine are the blades which act as airfoils. In the presence of
a wind, high lift forces (acting at right angles to the airfoil) are generated with little
drag, providing the angle of attack α is less than a critical angle αcrit of about 10◦.
The angle of attack is the angle between the relative velocity of the wind to the cord
direction which is very different to the wind direction in the turbine case because
of the relatively high speed of rotation of the rotor, see Figure 2 Left; the tip speed
ratio (defined to be the rotor tip speed divided by the wind speed) is typically 5 or
6. For angles of attack less than critical the lift force increases in proportion to the
angle of attack. For angles of attack greater than critical, separation occurs at the
leading edge of the airfoil so that the drag increases dramatically and the lift drops
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to almost zero, a condition referred to as stall, see Figure 3. Stall may be avoided
by choosing the pitch angle of the blades; variable pitch blades are sometimes used.
The shape and roughness of the front edge of the airfoil dramatically effects the stall
characteristics and the back edge needs to be sharp. Much work has been done on
appropriately shaping the front edge especially but also designing the sectional shape
to achieve required lift and drag characteristics especially in the aircraft industry,
but also in the turbine context, see Spera (1994). Standard designs are available off
the shelf.

The blades are tapered and twisted and the blade tips may be kinked. The reason
for these design features is primarily aerodynamic but also mechanical. Vortices shed
from the tip of the blades represent a significant loss of useful energy which can be
reduced by shaping. (Tip loss factors can be applied to quantify the loss, see Spera
p236.) Additionally less torque is required to set a tapered blade in motion.

Almost universally modern turbines have two or three blades; these being aero-
dynamically optimal, see later. The tip speed ratio is tuned so that the power output
from the turbine is maximized in either case. Both are (almost) equally aerodynam-
ically efficient (two bladed turbines capture about 5 % less energy) but two bladed
turbines require higher tip speed ratios to yield the same energy output as three
bladed turbines. This is a disadvantage both with regard to noise and visual intru-
sion. Furthermore two bladed turbines are subject to significant gyroscopic forces,
require a hinged (teetering hub) rotor, and the higher shaft rotation speeds increase
gearbox and transmission costs. Most modern turbines are three-bladed. Solidity
has to be taken into account when deciding on the number of blades to use. Solidity
is the ratio of the total blade area to the swept area. A low solidity results in higher
speeds and low torque, whereas a high solidity results in lower speeds and higher
torque.

To ensure the wind turbine is producing the maximal amount of electric energy at
all times, a yaw drive is used to keep the rotor at right angles to the wind. Medium
size turbines usually have an active yaw system; an anemometer on the nacelle
tells the controller which way the wind is blowing. Increasingly sophisticated field
wind detection systems are being employed to enable (larger) turbines to adjust to
changing wind directions.

Blades made out of wood are inexpensive, strong and lightweight. Metal blades
such as aluminium and steel blades are expensive and are subject to metal fatigue.
Most turbine blades are constructed using fiberglass. Fiberglass is lightweight,
strong, inexpensive and has good fatigue characteristics.
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3 A Dimensional Analysis of the Problem

The maximum available power from the wind per unit area is

Pw =
1

2
ρU3

w :

where Uw the velocity of the wind (assumed fixed here) and ρ is the density of the
air. In order to extract this power one would need an energy extraction device that
would reduce the wind’s velocity to zero without changing the temperature. No such
ideal device exists, however this expression provides us with appropriate standard
for measuring the efficiency of real turbines. Explicitly if PT is the power output of
a turbine with rotor area A then the aerodynamic efficiency is defined to be

ET =
PT /A

Pw
= fn(λ, α, dimensionless blade shape factors, B,Re, · · · ); (3.1)

in the literature this is referred to as the rotor power coefficient (CP ). The effi-
ciency as defined is dimensionless, and in the horizontal axis turbine of interest will
depend on the choice of the various design parameters which are best expressed in
dimensionless form. In (3.1) these dimensionless parameters are listed in order of
importance. We have:

1. λ = (ΩD/2)/Uw is the tip speed ratio, where Ω is the angular velocity of the
rotor and D is the rotor diam,

2. α is the pitch angle or angle of attack, see Figure 2 Left.

3. S is the ‘solidity’ defined to be the ratio of the projected area of blades to the
rotor areaA

4. B is the blade number

5. Dimensionless blade shape factors refer to length to width ratio, taper and
twist angles, tip shape etc.

6. Dimensionless blade section shape factors refer to the various aerodynamically
significant features of the blade section (blade thickness to chord ratio, leading
edge shape factors etc.), see Figure 2 Right.

7. Other fluid dynamic parameters such as the Reynolds number (Re) of the flow.

A complete knowledge of the functional dependence expressed in (3.1) would
enable one to immediately determine the performance of any turbine. Our un-
derstanding of the physics is not sufficiently complete to determine this function,
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however a variety of theoretical and computational models have been developed
to shed light on the important aspects of the problem and, when combined with
experimental results, provide sufficient information to effectively determine ET .

Now for any tip speed ratio there is an optimal choice for α which we will denote
by αopt(λ). You will recall that the lift and drag forces on the airfoils vary strongly
with α, and in particular α should be chosen to maximize lift while avoiding stall.
If we assume this sensible choice is made then the functional dependence can be
simplified to the form

ET = fn(λ, S,B,Re, · · · );
the actual function will of course differ from the earlier expression.

The Betz Limit

The major performance limitation to the HAWT is caused by retardation. The rotor
(in operation) necessarily obstructs the flow. The air pressure immediately upstream
of the rotor is higher than that downstream and surrounding the rotor, so that the air
stream is partially diverted away from the rotor, as shown in Figure 4. This means
that the flux of air through the rotor is somewhat less than one might anticipate,
and the area ratio A1/A2 as seen in Figure 4 provides a measure for the associated
reduced efficiency. In order to determine the area ratio A1/A2 and the associated
efficiency one would need to solve for the flow around the particular turbine, however
Rankine-Froude Theory (or actuator theory) shows that there exists an upper limit
for this ratio given by the celebrated Betz Limit (A1/A2 = 2/3 with ET = 16/27).
The theory replaces the rotor by an ‘actuator disc’ that mimics the pressure drop
without relating it to the rotor aerodynamic features. In spite of this limitation this
is undoubtedly the most important theoretical result in turbine theory. Since there
is no possibility of improvement beyond this limit it makes sense to accept the Betz
limit as a new ‘gold standard’ and to rewrite,

ET =
16

27
fn(λ, S,B, t/b,Re, · · · ) (3.2)

where of course the upper bound on fn(.) is unity. Whilst we cannot do better than
ET = 16

27 ≈ 0.59 it is a remarkable fact that one can get very close to the Betz limit
and this fact greatly effects our approach to design.

An outline of the derivation of the Betz limit for the power coefficient is given
in Appendix A.

Rotation in the Wake: λ, S, B, · · · effects

The rotor induces air rotation in it’s wake. In fact the flow in the wake rotates in the
opposite direction to the rotor because the wind turbine extracts energy from the
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Figure 4: Retardation: The Betz limit

flow, see Spera (1994), and Manwell (2002). Any such rotation represents an energy
loss from the system. The actual amount will depend on all the design parameters in
a complicated way however, as one might expect, it is the tip speed ratio that is the
primary determinant. A refinement of actuator disc theory taking into account rotor
and wake rotation was first introduced by Joukowski (1918) and lead to Optimum
Actuator Disk, or Glauert Theory (1935), which produces a still better estimate
than the Betz limit of the upper efficiency of a rotor as a function of λ, see Figure 5.
It should be noted that the Betz limit is realized at λ→∞ limit, although this limit
cannot be practically realized. However note that for λ ≈ 5 the efficiency realized
is within 5% of the Betz limit. This theory again does not model individual blades
(correctly) and so cannot be used for detailed design. In particular Glauert theory
does not account for the circulation introduced around the individual airfoils (and
thus the lift) and the vorticity shed from their trailing edges.

The choice for λ is a primary design feature since it greatly effects the energy
extraction rate from the rotor. The rotor applies torque to a shaft connected by
gears to a dynamo which generates electricity. In the zero torque case the rotor
rotates rapidly (so λ is large) but there is no energy extraction; the rotor is simply
spinning freely and churning up the air. Of course the energy extraction rate when
λ = 0 is also zero, so one would expect there an optimal to be reached at some
intermediate λ value, and this is seen in Figure 5 which plots the power efficiency
for a variety of blade numbers B and a variety of drag to lift ratios (D/L). This
ratio is generally less than 0.02 for well designed turbines so the D/L = 0 curves
are most relevant. The theoretical underpinning for these results and studies on
rotor aerodynamics is ‘Blade–Element (or momentum, or Strip) Theory’, which
goes back to Froude in 1878; see Spera (1994) p233. Essentially the theory adds up
the lift and drag forces acting on individual strips (treated as small sections of 2D
airfoils) of blades at specified radial distances from the centre of the rotor, assuming
no interaction between adjacent strips and more remote blades. This theory does
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Figure 5: Glauert Theory and Blade Element Theory results: The effect of the tip
speed ratio, the number of blades and the drag to lift ratio D/L on rotor perfor-
mance.

produce explicit analytic results which approximately determine the effect of blade
number and shape etc. on performance but various corrections have to be made to
account for tip losses, the aerodynamic interaction between blades etc., so that in
the end designers rely on empirical results based on strip theory analysis but with
fitted coefficients. An empirical result often used is

CF =
16

27

[
λB0.67

1.48 + (B0.67 − 0.04)λ+ 0.0025λ2
− (

1.92λ2B

1 + 2λB
)
D

L

]
, (3.3)

which is plotted in Figure 5, where the Betz limits and Glauert ideals are also
plotted. Note especially that the efficiency results achieved by practical turbines
are within 15%’ of the Betz limit, which provides justification for the simple design
strategy to be adopted, see later. Also note that the efficiency curves reach a peak
(or at least flatten out) for values of λ ≈ 5 for all blade numbers. Since higher speeds
are mechanically less desirable, λ ≈ 5 represents sensible design. The effect of blade
number on aerodynamic performance is again seen to be marginal for B ranging
from 1 to 3, however mechanical vibration issues favor turbines with 3 blades as
mentioned earlier.

Recall that the solidity is the ratio of the plan form area of the blades to the rotor
area and is typically less than 0.1 for modern wind turbines. A change in solidity
changes many aerodynamic factors and the effects of solidity and blade number
cannot be easily separated out, however typically the range S = 0.03 to 0.04 is used
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for B = 2 and S = 0.08 to 0.09 for B = 3, and, providing one remains within this
range, the efficiency level seems to be relatively unaffected.

Computationally intensive 3D steady models based on vortex theory have been
developed, see Gohard (1978). Such sledge hammer approaches attempt to model
the aerodynamic interaction between the individual blades and with the global en-
vironment, but are perhaps heavy handed for turbine design. Such studies may be
useful for blade design.

4 A Simple Design Procedure

Figure 6: A typical wind profile

Based on the above observations it makes sense to use the Betz limit, see (3.2) for
first order design, which indicates that the power output for a turbine is expected
to be given by

PT = A
16

27
(
1

2
ρU2

w), A = π(D/2)2, (4.1)

see (3.1), where D is the rotor diameter. An additional 20% design margin would
be prudent, to take into account the aerodynamic inefficiencies as seen in Figure 5.
Also electrical/mechanical inefficiencies should be correctly accounted for.

Note especially that the power output varies in proportion to U3
wD

2, and so is
very sensitive to (assumed steady) wind speed. This is of course why wind turbines
are placed on high towers and if possible on the top of hills and on cleared regions. As
a rule of thumb the wind speed increases by approximately 20% for every additional
10m height H due to wind shear in the ground boundary layer, which corresponds
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to a 34% increase in power output; very significant! Power law (or log layer) models
of the form

Uw(z) = UR(z/zR)α

are normally used to describe the wind profile, where UR is the wind speed at a
reference elevation zR, and α needs to be fitted to local data and depends on tree
cover etc., see Figure 6; a boundary layer thickness of 15m is typical.

Evidently for a given power output (50kwatts in our case) U3
w(H)D2 is fixed so

that the choice needs to be between a larger rotor diameter turbine based on a small
tower or a smaller diameter rotor on a tall tower. The choice needs to be based on
the associated cost function C(H,D); where both building and ongoing costs need
to be assessed. As indicated earlier the other design features have a marginal effect
on performance but evidently should be based on best practice (eg B = 2 or 3 with
S = 0.03, or 0.07 etc.) with associated costs in mind.

Another major design and siting consideration is wind variability both over a
day and annually, see Chapter 8 in Spera (1994). A variety of empirical models
have been developed to describe the local wind speed variability in a useful way
so that an assessment can be made of the turbine performance over a year, the
most popular of which is the Weibull model, see Spera (1994). Such models fit
parameters using statistical data collected locally. Evidently dependability, energy
storage and capacity credit issues arise and the design of hybrid systems depends
on such information.

In conclusion we re-iterate that the aerodynamic design issues addressed here
are but a small part of the overall design problem and that our understanding in
this area is very good. It goes without saying that a detailed understanding of the
local wind conditions is absolutely necessary if success is to be assured.
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Appendix A.1: The Betz Limit

The Betz limit is derived using the actuator disk model which is based on linear
momentum theory. The rotor is modelled as a uniform disk (Spera 1994, Manwell .
et al. 2002).

The derivation uses a control volume which is bounded by the surface of the
stream tube and the downstream and upstream cross-sections of the stream tube as
shown in Figure A.1. The only flow of air is across the ends A1 and A4 of the stream€ 

1

2 3

4

Stream tube boundary

Actuator disk

U1

p1

U2

p2

U3(= U2)

p3

U4

p4 = p1

A = A1 A = A2, A3 A = A4

Figure A.1: Actuator disk model showing regions (1, 2, 3) in the stream
tube, adapted from J.F. Manwell et al. (2002). In the Betz lim-
it (with maximum power coefficient CP ) the working conditions are
A1 = 2

3 A2, A4 = 2A2, with U2 = U3 = 2
3 U1 and U4 = 1

3 U1, and
with p2 = p1 + 5

18ρU
2
1 and p3 = p1 − 1

6ρU
2
1 .
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tube. The actuator disk of area A2 creates a discontinuity in the pressure, p3 − p2,
in the stream tube of air flowing through it.

It is assumed that the fluid is incompressible, that the flow is steady and that
there is no rotation in the wake. The pressure far upstream of the rotor, p1, and
far downstream of the rotor, p4, are assumed to be equal to the undisturbed static
pressure and therefore p4 = p1. It is also assumed that the force of the wind on
the disk is uniform and that the velocity across the disk remains the same so that
U3 = U2.

Since the flow is steady and there is no flow of mass through the curved boundary
of the stream tube, the rate of flow of mass across the cross-sections A1, A2 and A4

is conserved. Hence

ρA1 U1 = ρA2 U2 = ρA4 U4 . (A.1)

Denote by T the thrust force of the wind on the disk. Then

T = A2(p2 − p3) . (A.2)

But the net force on the total volume enclosing the whole of the stream tube bounded
by A1 and A2 is equal and opposite to T . Applying conservation of linear momentum
to this control volume gives

−T = (ρA4 U4)U4 − (ρA1 U1)U1 , (A.3)

which may be rewritten, with the aid of (A.1), as

T = ρA2 U2(U1 − U4) . (A.4)

Since T > 0, it follows that U4 < U1.

Now, no work is done on the upstream or downstream side of the rotor. Thus
Bernoulli’s theorem can be applied to the stream tube on either side of the disk:

upstream p1 +
1

2
ρU2

1 = p2 +
1

2
ρU2

2 , (A.5)

downstream p3 +
1

2
ρU2

3 = p4 +
1

2
ρU2

4 . (A.6)

But we have assumed that p4 = p1 and that there is no velocity change across the
disk so that U2 = U3. Thus (A.6) becomes

p3 +
1

2
ρU2

2 = p1 +
1

2
ρU2

4 . (A.7)

Equations (A.2), (A.4), (A.5) and (A.7) form the basis of the derivation.
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We first rewrite (A.2) for T . From (A.5) and (A.7),

p2 − p3 =
1

2
ρ(U2

1 − U2
4 ) (A.8)

and therefore (A.2) becomes

T =
1

2
ρA2(U

2
1 − U2

4 ) . (A.9))

Equation (A.4) and (A.9) gives

U2 =
1

2
(U1 + U4) . (A.10)

Thus the wind speed at the actuator disk is the average of the upstream and down-
stream wind speeds.

The axial induction factor, a, is defined as

a =
U1 − U2

U1
. (A.11)

It is the fractional decrease in the wind speed between the downstream free stream
and the plane of the disk. We can now express U2 and U4 in terms of a and U1 using
(A.10) and (A.11):

U2 = (1− a)U1 , (A.12)

U4 = (1− 2a)U1 , (A.13)

The axial induction factor is a measure of the affect of the turbine on the wind. As
a increases from zero, the wind speed in the far wake, U4, steadily decreases. The
minimum value of U4 is zero and therefore the maximum value of a is 0.5. The
model is not valid for a > 0.5.

The power output, P , is the rate of working of the thrust T and is the product
of T and the wind velocity at the disk, U2:

P = T U2 =
1

2
ρU3

! A2 4a(1− a)2 . (A.14)

The power coefficient, CP , is defined by

CP =
rotor power

power in the wind
=

P
1
2 ρU

2
1 A2

(A.15)

and therefore
CP = 4a(1− a)2 . (A.16)
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The maximum value CP (a) occurs at a = 1
3 and takes the value

CP,max =
16

27
= 0.598 . (A.17)

Equation (A.17) is the Betz limit. It is the maximum theoretical value for the power
coefficient CP .

When a = 1
3 , it follows from (A.12) and (A.13) that

U2 =
2

3
U1 , U4 =

1

3
U1 (A.18)

and from (A.1), (A.5) and (A.7) that

A1 =
U2

U1
A2 =

2

3
A2 , A4 =

U2

U4
A2 = 2A2 , (A.19)

p2 = p1 +
5

18
ρU2

1 , p3 = p1 −
1

6
ρU2

1 . (A.20)

When the power coefficient has a maximum value the stream tube for flow through
the disk has an upstream cross-sectional area of 2

3 the disk area and its cross-sectional
area grows to twice the disk area in the downstream wake. The pressure drop across
the disk is

p2 − p3 =
4

9
ρU2

1 . (A.21)

The model is not valid for axial induction factors, a, greater than 0.5. The
dependence of the physical parameters on a is illustrated in Figure A.2. The pressure
p3 on the downstream side of the disk takes its minimum value when a = 1

3 . This is
the value of a for which CP attains its maximum value.
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Figure A.2: Physical parameters in the Betz model. The pressures
(medium thickness curves) and velocities (thin curves) are presented at
the three locations (1, 2, 3) (see Figure A.1) as a function of the induction
factor a. The power coefficient CP (thick curve) is also plotted. The
Betz model is not valid for a > 0.5.


