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Abstract

Both radiative heating from flames and convective heat transfer by the
combustion gases significantly effect the melting rate of the batch of raw
materials introduced into the oil or gas fired glass furnace. Radiative
exchanges within the melting batch greatly enhance the heat transfer
within the melting zone and simple Rosseland and other approxima-
tions (based on the strongly contrasting conductivities of the batch be-
fore and after melting) are used to obtain an accurate explicit analytic
expression for the front speed as a function of the effective radiative
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2 Mathematical simulation of a glass furnace

input from the flame and the temperature of the combustion gases in
contact with the surface of the batch. Also explicit results for the ap-
proximate temperature profile through the batch are obtained. These
results are in accord with numerical simulations in the literature but are
analytic and simple and thus may be more easily used for furnace de-
sign. Some preliminary observations concerning the removal of bubbles
from the melted batch are made.

1 Introduction

PFG is a South African glass making company that supplies high quality plate
glass for the local building industry and glass products for automobile indus-
tries. The company also exports products internationally. To avoid catas-
trophic glass solidification, the furnace and Pilkington float processes that
produce plate glass need to operate nonstop over the lifetime of the factory,
a period of fifteen years, so continuous and careful control is essential. The
overriding objective is to control the quality of the final product although oth-
er efficiency and environmental issues are also important. Controlling, and
perhaps improving, the operation of the furnace and its product requires a
better understanding of the complex chemical and physical processes occur-
ring within the furnace and beyond. PFG asked the MISG to examine the
relevant processes. In the present article we mainly confine our attention to
the furnace operation.

Flaws (usually bubbles) are ‘always’ present in plate glass and if the bubbles
are sufficiently large they can effect the optical properties of the glass. Sheets
containing unacceptable flaws are recycled, an expensive process. These bub-
bles have their origin in the furnace so that understanding their formation,
movement and growth within the furnace and beyond is important. We will
briefly describe such bubble creation and removal issues but our primary con-
cern here will be with batch melting.

The main component of the glasses of interest is silica SiO2, which under
natural conditions occurs in a crystalline form commonly referred to as sand.
The silica structure consists of SiO4 tetrahedra joined together by means of
—Si—O—Si— bridges. The oxygen atoms are shared between adjoining tetra-
hedra, these being strong valency bonds. When a fluxing (i.e. network mod-
ifier) material such as Na2O is added to the crystalline material it breaks up
the —Si—O—Si— bridges leading to a weaker residual valence type of inter-
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action between the two silicon atoms. Thus the network is modified resulting
in the amorphous transparent substance we recognise as glass. The reaction is
endothermic and can only occur at high temperatures, so a furnace is required.

1.1 Furnace operation

A batch, typically consisting of ground up silica (70%), soda ash (14%) and
limestone (10%) of depth 2 to 4 cms, is fed at a speed of about 1m/sec into the
furnace of typical length 40m, width 10m and depth 4m containing about 1000
tons of molten glass. Being less dense the batch floats on top of already molten
glass (depth about 2m) within the furnace, see Figure 1. The batch feeding
process is not uniform in that it is facilitated by a barrier that moves forwards
(carrying the batch into the furnace) and upwards and backwards to access the
batch before moving forwards again; the input batch thus enters as mounds
of material. After entry the floating layer typically splits into two separate
mounds attached to the side walls of the furnace. Radiation from flames (oil
or gas firing is used) melts the batch producing liquid glass which then feeds
into the previously melted bath of molten glass. The floating layers of the input
batch extend approximately 19m into the furnace before completely melting.
Typical temperatures in the molten glass bath are 1500◦C and the residence
time of particles within the bath is about 10 to 15 hours. The excess glass in
the furnace overflows into a second chamber through a neck at the top of the
chamber, and in this second chamber temperature levels are reduced to levels
(about 1400◦C) appropriate for the next stage of the processing which uses the
Pilkington process now described. The glass leaving the furnace is fed onto a
tin tray of depth about 0.5m (width 7m) containing molten tin of depth a few
cms. The liquid glass entering the tray spreads out over the melted tin forming
a sheet of uniform thickness (typically 7 to 10 mm). This molten glass sheet
gradually solidifies as it travels down the length of the tin bath (typically
30m) and a solid glass sheets rolls out from the end of the chamber and is
cut into appropriate lengths and removed from the moving production line.
As indicated earlier the whole process is continuous. For more details of the
furnace see Auchet et al (2008) or Tooley (1961). An excellent mathematical
analysis of the Pilkington process can be found in Howell (1994).
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radiationbatch

molten glass

30m

Figure 1: A glass furnace. Radiative heating from ceiling flames to-
gether with direct heating from combustion gases melt the floating
batch.

1.2 The chemistry

The sodium carbonate, silicon dioxide reaction

nSiO2 + Na2CO3 ⇔ Na2O− nSiO2 + CO2 ⇑ ∆Hchem, (1)

(with n=3) typically occurs if the reaction follows the ‘silica route’, although
other routes are possible, see Kuhn (2002). An energy input ∆Hchem (cor-
responding to 550 KJ/kg) is required to induce this reaction. The actual
‘melting’ process involves dehydration, chemical dissociation and decomposi-
tion, as well as phase transformations (crystalline solid to glassy liquid and
gas), so it is preferable to formulate a global batch reaction model:

(1 + α) kg glass batch→ 1 + α kg gas + energy per 1 kg glass melt,

which takes into account the variety of processes involved, together with their
energy requirements. The energy requirements are typically 7 GJ/ton and
daily production levels of 100’s of tons of plate glass are typical.

Air bubbles (nitrogen and oxygen) are carried into the chamber with the
batch and additionally various gases are produced both during batch melting
(for example CO2 and SiO2 in (1)) and within the melt. Also fining agents
are added to the batch to increase gas production, see later. Some of the
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gas produced is immediately expelled from the batch which starts to fizz and
the remainder is carried into the molten glass bath and bubbles are formed.
Carbon dioxide and nitrogen are relatively insoluble in liquid glass and so
form bubbles whereas the silicon dioxide produced is soluble and thus mainly
remains in the melt. The bubbles may either rise to the surface forming a foam
or remain within the moving melt eventually being carried out of the chamber
into the next chamber, and some will be carried into the tin float chamber
and will end up frozen in the glass sheet. Such bubbles are always present in
the final glass sheet but only become problematic if they are large enough to
significantly effect light transmission. In order to shield the second chamber
from the foam a barrier (inserted from the roof) is introduced. The barrier
is water cooled; lower temperature levels are required for the tin float process
and also for bubble collapse, see later. Additionally bubbles are introduced
into the furnace below the barrier to both sweep up small bubbles within the
bath and also to increase the average glass particle residence time, thus further
enabling gas bubbles to escape. Fining agents introduced into the batch also
produce (large) bubbles which serve to sweep up small bubbles.

Our primary aim in Section 2 is to determine how the length of the un-
melted batch within the furnace is determined by the furnace parameters. The
batch blanket shape and length greatly influence heat transfer processes with-
in the furnace and thus the fining and refining processes occurring within the
melt. In Section 3 we will briefly discuss the issues associated with bubble
formation and movement; there was insufficient time to undertake a serious
study. Finally in Section 4 we draw conclusions and make recommendations.

2 The batch melt problem

Figure 1 diagrammatically represents the batch melting process. A batch of
thickness h moving with velocity U is fed into the furnace and floats on top of
previously melted glass within the furnace. Radiation from the flames (at an
effective temperature of TR) increases the temperature of the batch and melting
will commence at the surface when its temperature reaches the melting point
of the batch Tm. A melting front described by z = s(t) will then travel down
through the batch. The temperature of the melted flowing glass under the
batch Tb exceeds the melting temperature of Tm of the batch mixture so that
there will be also a melting front travelling upwards through the batch. The
batch is totally consumed after the two fronts meet. Depending on surface
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morphology and surface tension characteristics of the freshly formed melted
glass this recently formed molten glass will either remain on the surface or may
drain over or through the batch.

TR

T

Figure 2: The melting of an element of the batch: Initially the batch
occupies the region 0 < z < h. Later the batch starts melting and
we identify various regions. In the ‘batch region’ 1, z < s(t), the
batch is still intact. Melting commences if the temperature of the
batch exceeds the melting temperature Tm; this occurs at z = s(t).
In the melt region 2, h > z > s(t), melting is either complete
or underway; this zone contains both solid and melted particles.
The flame radiates at an effective temperature of TR and the upper
surface of the batch is bathed in gas at temperature Tg. The lower
surface of the batch is in contact with already completely melted
glass within the ‘bath’ at temperature Tb > Tm. The heat flux into
the front from the batch is q1s < 0, and from the front into the melt
is q2s < 0. The heat flux from the upper surface z = h is q2h.

Calculations suggest and we will assume that the melted glass within the
batch matrix will remain in place so that a batch element will remain effectively
intact until the element is completely melted.

The process is essentially a steady state process, so we can equivalently
follow an element of the pile as it moves along the surface and melts, see
Figure 2; the replacement t = x/U can be used to recover the steady state
solution.
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2.1 Radiation and melting complications

A portion (about 80% ) of the emitted radiation at an effective temperature
TR intercepts the batch and is absorbed; the rest is reflected or lost to the
environment. At a particular location z within the melting batch this incom-
ing radiation will intercept intact sand particles which will partially reflect
and absorb the incoming radiation; no radiation is transmitted through the
sand surfaces. The absorbed radiation will cause melting. The already melted
glassy component of the batch at z will be (semi)transparent to incoming radi-
ation and so the incident radiation will pass through this layer to be absorbed
and reflected at lower levels. Secondary reflections from lower levels will in-
tercept sand particles and tertiary reflections and absorptions and associated
meltings will result. Additionally the sand particles and the heated glass will
re-radiate in all directions and conduction will transfer heat between layers.
Bubbles produced within the melting batch will also act as scatterers of radi-
ation especially within the glassy upper layers. The net effect of the multiple
internal reflections, absorptions, meltings will be to redistribute heat within
the melt. There will be a layer of pure glass (completely converted batch) at
the top with fractional conversion occurring down to the melting front at s(t).
The field equations (the semi transparent batch model) for the temperatures
in the two regions (T1(z, t), T2(z, t)) are presented in Wu and Viskanta (1986)
and are given by

ρ1c1
∂T1

∂t
=

∂

∂z

(
k1(T )

∂T1

∂z

)
, z < s(t),

ρ2c2

[
∂T2

∂t
+ (1− ρ1

ρ2

)
ds

dt

∂T2

∂z

]
=

∂

∂z

(
k2(T )

∂T2

∂z

)
− ∂F

∂z
+H2, z > s(t),

where F (z, t) is the total radiative flux, and H2(z, t) is the (local) enthalpy
change due to melting; we have a distributed heat sink. The bracketed term {·}
on the left hand side of the second equation takes into account the volumetric
change associated with the moving melting front. Boundary conditions need to
be applied at the bottom and top of the batch z = 0, h and Stefan conditions
need to be applied at the moving front s(t), see later.

The densities, specific heats and conductivities within the batch regions are
(ρi, ci, ki). The specific heats ci are temperature invariant within the zones but
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different in the two zones, and the density within the melt varies depending on
the degree of conversion. This density change accompaning melting will affect
the location of the upper surface of the melt relative to a fixed frame but will
not determine the front speed and so will be ignored here; the determination
of this upper surface is of no direct importance. More significantly the con-
ductivities vary strongly with temperature in both zones. The conductivity of
sand increases exponentially by a factor of about 2 over the (room to melting
temperature) range of interest, see Figure 3 and is conveniently represented in
the form

k1(T ) = k0
1 exp(γ(T/T0 − 1)); (2)

where k0
1 = 0.3116 is the conductivity at the input (room) temperature T0,

taken as T0 = 300K, and γ = 0.275 is the exponential growth factor, see
Shibata et al (2005), Wu and Viskanta (1986).

The normal thermal conductivity of melted glass is about k2 = 0.7 W/(m
K) and doesn’t vary much with temperature, however the radiative heat ex-
change effects that occur in our situation require special attention.

The devil truly is in the detail here. The radiative term involves incident,
emission and absorption integrals with respect to wavelength and over the
partially converted melt depth, and both the radiative and enthalpy terms
depend on the fraction of the melt fb that is unconverted at (z, t). It is possible
to avoid the detailed determination of fb(z, t) by making the assumption that
one can identify a temperature range ∆Tm over which melting occurs and
associate a ‘fractional’ melting temperature Tf with each fb; explicitly

fb = fb0 + (1− fb0)(Tf − Tm)/∆Tm,

with ∆Tm about 250K. Even with this simplification the analysis is daunting.
Necessarily numerics are required to determine the solution to the above

system, see Wu and Viskanta (1986) and it is not easy to usefully interpret
the results obtained. Furthermore the uncertainty associated with radiation
parameters suggests that detailed results are perhaps inappropriate. With this
in mind we will greatly simplify the system, whilst preserving the important
features.

2.1.1 Rosseland approximations

It should be noted that the effect of multiple reflections and absorptions in
the reacting batch layer is to greatly increase the heat transfer through this
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layer (by an order of magnitude), so the radiation ‘details’ needs to be ad-
dressed. Because of the complexity of radiation simulations Rosseland type
approximations are often used to simplify the analysis. It can be shown, see
Rosseland (1936) and Siegel and Howell (2001), that in zones that are optically
thick1 (in our case within the melt) that the net effect of multiple reflections
is to increase the (molecular) thermal conductivity from k2 by a temperature
dependent (radiation) term to give an effective conductivity given by

k2eff = k2 + k2radn � k2, where k2radn =
16n2

3

γT 3

aR
;

here n is the refractive index, and aR is an absorption coefficient calculated
from the spectral absorption of the glass melt and σ is the Stefan-Boltzman
constant, see Rosseland (1936) and Siegel and Howell (2001).

Using numerical semi-transparent model simulations (for h = 2cm) Wu and
Viskanta (1986) fitted a Rosseland type diffusion description to simulations to
obtain the result

k2eff = 5.39− 0.0217× T + 0.0000206× T 2(W/m K), (3)

which we write in the form

k2eff = k2m

[
(1− α(T − Tm) + β(T − Tm)2

]
, (4)

where k2m ≈ 7 is identified as the conductivity of the just melted batch. This
is plotted in Figure 3 over the temperature range of interest, from melting
temperature Tm(1123 K) to the gas temperature Tg(1850 K). For later purposes
note that the effective conductivity greatly exceeds the ordinary conductivity
and that the rate of increase is almost linear over the temperature range of
interest.

Both the above models assume the scattering surfaces (solid material, bub-
bles etc.) are uniform and uniformly distributed through the melt which is
not true in the present case, but one would expect and we will show that the
results obtained are reasonably insensitive to such details.

1i.e. zones in which the length scale associated with temperature variations is much
larger than the mean distance of penetration of photons.
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Figure 3: Batch conductivity: Upper: Conductivity k1(T1) of sand.
Lower: Effective conductivity k2eff(T2) of molten glass (a Rosseland
approximation).
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2.2 Important parameter combinations

Firstly it is useful to estimate some of the key parameter combinations. We
will use the following parameters taken primarily from Wu and Viskanta (1986)
and Khun (2002).

Unreacted Batch Parameters

c1 = 1− 1.1× 103 Ws/kg K

ρ1 = 1.4× 103 kg/m3

k1 = 0.3116 exp(0.275(T/300− 1))W/m K

ε1 = 0.7

T0 = 300 K

Melt Parameters

c2 = 1.42× 103 Ws/kg K

ρ2 = 1.4− 2.32× 103 kg/m3

k2eff = 5.39− 0.0217× T + 0.0000206× T 2 W/m K

State Change Parameters

σ = 5.7× 10−8 (Stefan-Boltzmann constant)

Tm = 1123 K

TR = 1800− 2300 K

Tg = 1850 K

∆hm = 5.65− 7.5× 105 Ws/kg (Kuhn 7.5)

Tb = 1500 K

µ = 50 W/m2K.

2.3 Observations and estimations

In order to determine the important features of the problem we will estimate
the processes involved; later approximations will be based on these observa-
tions. The batch is fed into the furnace in loose piles which subsequently
compact and settle out. In accordance with Wu and Viskanta (1986) we will
assume a batch layer thickness varies from about 2 to 4 cms. Furnace simula-
tions by Wu and Viskanta suggest overall melting time of a 2 cm depth batch
to be about 130 secs and 350 secs for a 4 cm layer, which are consistent with
observations.
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2.3.1 The Stefan number

Of major importance for the melting process is the ratio of the heat required
to raise the temperature of the batch from its initial value (T0 = 300 K (say))
to the melting temperature Tm = 1123 K, to the latent heat required to melt
the batch, a ratio referred to as the Stefan number. Using the parameters
above (and ignoring the heat required to dry the batch) we obtain

S =
SensibleHeat/kg

Reaction Heat/kg
=
c1(Tm − T0)

∆hm
≈ 1.6, (5)

which indicates that the sensible and latent heat requirements for the melting
process are of the same order. Evidently preheating the batch could signifi-
cantly effect the melting time in the furnace, see later.

2.3.2 The time to reach melting point

Sand is a poor conductor so one would expect the time required to raise the
surface of the batch to the melting point of the sand to be relatively small; we
will estimate this time. The surface temperature rise of a semi-infinite body of
conductivity k1 due to a constant heat flux q into the surface from time t = 0
is given by

Th =
q√

πρ1c1k1

√
t,

see Carslaw and Jaeger (1959). If in our case we take the heat input as being
due (only) to flame radiation, then q = εσT 4

R and this gives a pre-melting
time scale of 8.6 secs (if one uses k1 = 0.31W/m K) to 18.4 secs (if one uses
k1 = 0.66W/m K). These values are very much less than the observed melting
time of the batch in the furnace (typically 130 to 350 secs).

The bottom of the batch layer is in direct contact with the molten glass
in the furnace at temperature Tb ≈ 1500 K so the melting will be immediately
initiated on the underside of the batch.

2.3.3 Conduction time scales

In the absence of melting the time required for heat to conduct through an
unmelted batch layer of thickness h is approximately

t1 = h2/κ1, where κ1 = k1/(ρ1c1). (6)
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The conductivity of sand increases from 0.35 to 0.66 W/m K over the tem-
perature range (room temperature to melting temperature), see Figure 3 Left,
giving a conduction time of order t1 = 15.5 − 29 mins for a 2 cm layer, and
four times this for a 4 cm layer. As indicated earlier the entering batch con-
sists of overlapping piles of different depth; 1 hour seems a sensible (under)
estimate. This is much longer than the observed time for melting (130-350
secs), so conduction through sand is not the ‘controlling factor’ for the overall
melting process.

In the absence of radiative input the conductivity of molten silica glass
ranges from 0.6−1.2 W/(mK), see Shibata et al (2005) and Schick et al (2012)
with little variation with temperature. However, as indicated earlier, the effect
of radiative exchanges within the melt is to increase the effective conductivity
of molten glass by a factor of about 5 (35.7/7) over the temperature range
Tm = 1123 K to Tg = 1850 K of interest, see Figure 3. Taking the higher
temperature as being most appropriate for time estimates this gives a time
scale of

t2 = h2/κ2 where κ2 = k2eff/(ρ2c2); (7)

which gives 36 secs for a 2 cms layer (43 secs if use Kuhn), and four times this
for a 4 cm layer. This value is less than 1/3 of the observed furnace melting
time and suggests that the molten batch behaves as a good conductor because
of radiative exchanges.

2.3.4 Radiative input melting time

If radiation alone provided the latent heat to melt the batch then the time
required would be

tR =
ρ1∆hmh

εσ(T 4
R − T 4

m)
, (8)

where we have taken into account re-radiation from the front at the melting
temperature Tm. The range usually quoted for TR is 1800 K to 2100 K, and
the quoted ∆hm range is 5.6 − 7.5 · 105 Ws/kg, and if we take ε = 0.5, we
obtain a melting time of tR of 30 secs to 50 secs for a 2 cm batch layer, and
twice this for a 4 cm layer. There is considerable uncertainty about the net
radiative input, but the time required is of the same order but somewhat less
than the observed furnace melting time. Of course the radiative input needs
to also supply sensible heat, so this underestimate is to be expected.

It can be seen from the above that the effect of multiple reflections within
the melting batch is to greatly increase the conductivity (by a factor of about
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30) of the melt and thus greatly reduce the expected melting time from about
1 hour down to about 2 minutes. One would expect the actual front speed ṡ1

to be much greater than the solid batch conduction speed t2 but somewhat
greater than the radiative melting speed tR.

2.3.5 Radiation versus convection

Both the radiative input from the flames and convection/conductive heat trans-
fer from the gas in contact with the batch serve to melt the batch; the gas
temperature Tg is larger than the melting temperature Tm. The ratio

K = k2eff(Tg − Tm)/
[
εσ(T 4

R − T 4
m)h)

]
(9)

provides a useful comparison of these two inputs. For a 4 cm batch layer using
upper and lower values for k2eff gives a K in the range 0.2 − 1.1. It is clear
from this that both processes play a role in the conversion.

The estimates above are in accord with observations, and suggest that the
melting front speed is very much greater than the (solid) batch conduction
‘speed’ but somewhat less than the melt conduction ‘speed’.

2.4 A simplified model

As indicated above the radiant heat is absorbed throughout the melt and s(t)
is identified as being the location where melting first occurs. There will be a
zone above this location which consists of partially melted batch, however, as a
simplification, we will assume that the absorption and melting all occur at the
location given by s(t), with melted glass above this location, and unconverted
batch below. Under such circumstances the appropriate condition to impose
at the front is the Stefan condition

εσ(T 4
R − T 4

m) + q1s − q2s = −ρ1∆hm
ds

dt
, (10)

where ∆hm is the latent heat per unit mass to convert sand into molten glass,
q2s = −k2eff(Tm)∂T2

∂z
is the heat flux from the front into the molten batch, and

q1s = −k1(Tm)∂T1
∂z

is the heat flux from the unconverted batch into the front,
see Figure 2 (both are negative). Also the front is at the melting temperature
Tm which requires

T1(z, t) = T2(z, t) = Tm at z = s(t). (11)
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With the Rosseland approximation in place, and local latent heat terms
relegated to the melting front, the heat equation in the melt becomes

ρ2c2

[
∂T2

∂t
+ (1− ρ1

ρ2

)
ds

dt

∂T2

∂z

]
=

∂

∂z

(
k2eff(T )

∂T2

∂z

)
in z > s(t). (12)

The heat equation in the batch remains

ρ1c1
∂T1

∂t
=

∂

∂z

(
k1(T )

∂T1

∂z

)
, z < s(t). (13)

At the top surface we assume the heat exchange between the melt and the
gas at temperature Tg to be adequately described by a Robin condition

q2h = −k2eff(Th(t))
∂T2(h)

∂z
= µ(Th(t)− Tg), (14)

where (ignoring the density changes) Th(t) = T2(h, t) is identified as the sur-
face temperature of the melt, q2h the heat flux through the surface of the melt
and where µ is the heat transfer coefficient. In practice the gas temperature Tg
is determined by the geometry and global furnace heat conservation considera-
tions, and may be modelled, however for present purposes we will assume that
Tg is prescribed and can be adjusted by suitable modifications to the furnace,
for example by altering the gap between the molten glass and the flame.

2.5 Analysis of the melt (Zone 2)

Based on our previous observations we anticipate a quasi-steady solution for
the temperature within the melt with a slowly moving front. In this zone it
is appropriate to use Tm as a datum and to use (Tg − Tm) as the temperature
scale; we use the scaling

z = hz′, s = hs′(t′), t = tRt
′, T2 = Tm + ∆T2 T

′
2, ∆T2 = (Tg − Tm), (15)

q2h = [µ ∆T2] q′2h, and k2eff(T2) = k2mk
′
2(T ′2), where k2m ≡ k2eff(Tm) (16)

is the effective conductivity of liquid glass at the melting point. Note that we
have used the radiation time scale tR identified earlier, see (8).



16 Mathematical simulation of a glass furnace

Assuming a quasi-steady profile and ignoring volumetric changes, the heat
equation (12) reduces to its dimensionless form

− ∂

∂z′

[
k′2(T ′2)

∂T ′2
∂z′

]
= 0,

so integrating with respect to z′ and applying the surface condition (14) we
obtain (after scaling):

−k′2(T ′2)
∂T ′2
∂z′

= q′2h, with q′2h = q′2s = (T ′h − 1).2 (17)

We have a fixed heat flux q′2h through the zone determined by the heat transfer
rate through the surface of the melt. The surface temperature T ′2h is not yet
explicitly determined. Integrating again, and noting that T ′2 → 0 at the melting
front s′(t′) we obtain∫ T ′

2

0

k′2(T ′2)dT ′2 = q′2h(s
′(t′)− z′) = (T ′h − 1)(s′(t′)− z′).

This equation implicitly determines the temperature field T ′2(z) through the
melt. We require T ′2(1) = T ′h, which gives the consistency result∫ T ′

h

0

k′2(T ′2)dT ′2 = (T ′h − 1)(s′(t′)− 1), (18)

which can be solved for T ′h for any prescribed k′2(T ′2). The left hand side is
the temperature averaged conductivity of the melt. As noted earlier, and see
Figure 3, the variation of the conductivity over the (scaled) temperature range
0 to 1 is almost linear, so with little error we can write

k′2(T ′2) = 1 + T ′2(k′2g − 1),

see (16), where k′2g = k′2(1), is the (effective, scaled) conductivity of the melt
at the gas temperature. This approximation greatly simplifies the analysis.
The consistency result (18) then gives

T ′h + (k′2g − 1)(T ′h)
2/2 = (T ′h − 1)(s′(t′)− 1),

2Note that Th = Tm + ∆T2T
′
h.
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which determines the surface temperature and associated heat flux as

T ′h =
1

(k′2g − 1)

[√
1 + (1− s′)

[
2k′2g + (1− s′)

]
− (2− s′)

]
, q′2h = (T ′h − 1),

(19)
see (17). Figure 4 displays the scaled surface temperature T ′h as a function of
the location of the front position s′; the data described earlier is used here.
Note that the temperature of the surface is initially at the melting temperature
corresponding to s′ = 1, and it gradually increases to reach values close to the
scaled gas temperature T ′2 = 1 as melting proceeds and s′ → 0.

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

s′

T ′h

Figure 4: The scaled surface temperature of the melt as a function
of the (scaled) location s′(t). The gas temperature (1850 K in this
case) is scaled to unity and the melt temperature (1123 K) is scaled
to 0 and batch depth (4 cm) is scaled to unity.

In dimensional terms the conductive heat flux through the melted batch is
given by

q2s = q2h = [µ∆T2] (T ′h − 1); (20)

again note that q2h < 0 so that heat from the combustion gases assists batch
melting.
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2.6 Batch analysis (Zone 1)

In this zone it is appropriate to use the room temperature T0 as a datum and
use (Tm − T0) to scale the temperature rise. Explicitly we use the scales

z = hz′, s = hs′(t′), t = tRt
′, T = T0 + ∆T1 T

′
1, with ∆T1 = (Tm − T0), (21)

and k1(T1) = [k10]k′1, k
′
1 = eγ0T

′
1 , with γ0 = γ(Tm/T0 − 1), (22)

and q1 =

[
k10∆T1

h

]
q′1, with q′1 = −k′1(T ′1)

∂T ′1
∂z′

, (23)

see (22), where k10 is the conductivity of the batch at room temperature T0,
and q′1 the scaled flux from the unconverted batch into the front, see Figure 2.

We anticipate a travelling wave solution of the scaled form

T ′1 = T ′1(ζ ′) where ζ ′ = s′(t′)− z′, with T ′1(0) = 1, and T ′1(∞) = 0, (24)

where the wave speed ṡ′ is assumed to be constant in accordance with our
quasi-steady approximation and where we have anticipated that the thickness
of the front is small compared with the thickness of the batch. Substituting
into the heat equation (13) we obtain (after scaling)

λṡ′1
∂T ′1
∂ζ ′

=
∂

∂ζ ′

(
k′1(T ′1)

∂T ′1
∂ζ ′

)
, where λ =

h2ρ1c1

k10tR
≡ tc
tR
� 1 , (25)

see (6, 22). This integrates to give

λṡ′1T
′
1 = k′1(T ′1)

∂T ′1
∂ζ ′

, (26)

after requiring that T ′1 → 0 as ζ ′ → ∞, see (24). Evaluating this at the front
ζ ′ = 0 where T ′1 = 1 gives

λṡ′ = k1T
′
1(0)

∂T ′1
∂ζ ′

(0) = −q′1(0) ≡ −q′1s, (27)

so the unscaled heat input from the front into the unconverted batch is given
by

−q1s = −
[
k10∆T1

h

]
λṡ′ ≡ −

[
hρ1c1∆T1

tR

]
ṡ′, (28)
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using (25), which simply states that the sensible heat input (−q1s) required to
raise the temperature of sand to the melting temperature needs to be supplied
by conduction from the front.

Equation (26) integrates to give

−λṡ′1ζ ′ = Ei(γ0T
′
1)− Ei(γ0),

where Ei is the exponential integral function. For T ′1 small we obtain
T ′1 ≈ e−λṡ

′
1ζ

′
, so heat from the travelling front penetrates a scaled distance

of order 1/λ � 1 into the unreacted batch. In dimensional terms this gives
a distance of order k0

1/(ρ1c1ṡ). Using the values presented earlier we obtain a
penetration distance of 1 mm and 2 mm for batch depths of 2 cm and 4 cm re-
spectively; as anticipated the penetration distance is relatively small compared
with the batch thickness.
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ζ ′/(λṡ′1)

γ0 = 4

γ0 = 0.75

T1

Figure 5: The scaled temperature variation T1(ζ ′) through the
upper melting front for γ0 = 0.75 and γ0 = 4.

The temperature variation through the melting front is displayed in
Figure 5. The profile shape is strongly dependent on the value of γ0, see
(22), which provides a measure for the effect of the input temperature of the
batch T0 on the front structure. The listed values for T0 and Tm give γ0 = 0.75
and for comparison the results for γ0 = 4 are also presented. Note that the
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front is significantly flatter and thicker if T0 is smaller; preheating can strongly
affect the heating history of a batch particle.

2.7 The Stefan condition

The various components of heat transfer into and out of the front have now
been determined and when substituted into the Stefan condition (5) give

[µ∆T2] (T ′h − 1)−
[
hρ1c1∆T1

tR

]
ṡ′ =

[
εσ(T 4

R − T 4
m)
]

+

[
ρ1∆hmh

tR

]
ṡ′, (29)

see (20, 28). That is

ṡ′
([

hρ1c1∆T1

tR

]
+

[
ρ1∆hmh

tR

])
= −

[
εσ(T 4

R − T 4
m)
]

+ [µ∆T2] (T ′h − 1).

Rearranging and recalling that the time scale tR was chosen so that the net
radiative input and latent heat requirements are in balance, we obtain

ṡ′ (1 + S) = −1 +K(T ′h(s
′)− 1); (30)

an ordinary differential equation determining the movement of the front.
The important dimensionless groups are the already identified Stefan number
S (see (5)) and the convective heat transfer parameter K (see (9)), which deter-
mines the relative proportion of heat input into the front from the combustion
gas compared to direct radiative input. As seen earlier the Stefan number is
approximately 1.6 for the prescribed conditions. Evidently it is appropriate to
rescale time using the ‘melting’ time scale

tm = tR(1 + S), and with t′′ = tmt
′, (31)

see (8, 5), which takes into account that both sensible and latent heat need
to be supplied to the batch for conversion. The melting time is thus about
(1 + 1.6)tR ≈ 130 − 260secs for 2cms and 4cms respectively. This matches
up with the numerical simulations of Wu and Viskanta (1986). The rescaling
gives

ds′

dt′′
= −1 +K(T ′h(s

′)− 1),
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Figure 6: Scaled front speed for K = 0, 0.5, 1.0 (dashed, thin, thick):
|ṡ′(t′′)|; Upper: The front speed ds′

dt′′
(s′) as a function of location.

Lower: The front location as a function of scaled time, s′(t′′), as in
(31).
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an exactly solvable separable ODE for s′(t′′). Previous estimates give a K range
going from 0.12 to about 1.1, depending on the combustion gas and effective
radiation temperatures. A plot of ṡ′(s′) and s′(t′′) for a range of values of
K is shown in Figure 6. In the K = 0 case (the dashed curves), there is no
heat transfer from the combustion gases, and in this case the front travels
with constant speed and the melting time is tm = tR. Increasing values of K
correspond to increasing additional convective transfer from the combustion
gases (thin and thick curves) the melting rate increases by up to a factor
of about 2. The implication is that reducing the depth of the furnace can
significantly influence the melting time.

Note that the front speed marginally decreases as melting proceeds due to
the changed effective conductivity of the melt. A useful approximation can be
obtained by simply averaging the right hand side of (30) to give the constant
front speed of

|ṡ′| =
1 +KF(k′2g)

(1 + S)
(32)

where

F(k′2g) = 1 +
1

2(k′2g − 1)

(√
2 + 2k′2g +

√
1 + 2k′2g − 3

)
.

Interpreting this one can see that the effect of combustion gas on front speed
is to increase it by the factor (1 + K)F(k′2g) which primarily depends on the
abrupt change in conductivity across the front but also depends on the relative
change in effective conductivity across the melt.

2.8 The lower melting front

The lower melting surface of the batch is in contact with melted glass at a
temperature greater than the melting point with the cooled glass being re-
freshed continuously. The temperature variations under the batch as it moves
into the furnace are relatively small (250 K verses Tmelt ≈ 1200 K) so that the
heat transfer driving the lower front will remain almost constant and the front
speed will remain at a constant value given by

ṡb = µ1
(Tb − Tm)

ρ2∆hm
,

where µ1 is the heat transfer coefficient. This front speed is relatively small
compared with the radiation driven upper front ṡ and would be best measured
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or inferred from observations. The temperature profile near this front is the
same as that obtained for the upper front; importantly the thickness of the
front is small and so the two fronts act independently until they begin to
overlap.

2.9 Summary and conclusions

The quantitative results obtained in this work mirror the simulations already
obtained by Wu and Viscanta (1986) but the results here are analytic and
as such provide a better understanding of the processes involved. The front
speed has been found to be inversely proportional to the Stefan number and
directly proportional to K′ so that for example the effect of preheating (or
the effect of moisture in the batch) is simply to reduce the melting time in
the obvious way. The effect of increasing the combustion gas temperature, by
for example reducing the spacing between the flames and the batch, is again
simply described. The temperature profile is linear within the melt with a
boundary layer transition through the unmelted batch.

The above results may be used to determine the thermal history of batch
particles and thus the propensity of the batch to shed bubbles of various sizes
into the bath. Also global heat transfer estimates within the furnace can be
made based on the above results and may be used to assist with the design of
the furnace.

3 Development and movement of bubbles in

the furnace

There was insufficient time at the MISG to work on this problem but the
summary below and some preliminary ideas concerning model development
may provide a useful starting point for further work.

3.1 Flow in the furnace

Cold floating materials are added at one end of the furnace which is heated
by flames from above. The effect of the floating batch is to partially shield
the molten glass in the bath from incoming radiation so that a hot spot is
produced just ahead of the batch and two convection cells are generated; a
primary cell with glass sinking down the entry wall and a secondary cell with
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glass sinking down the exit wall, see Figure 1. The size and strength of these
two cells is effected by the length of the floating batch, the nonuniform flame
heating from above, entry and exit flow conditions, and the presence of barriers
and bubblers inserted into the top and bottom of the chamber. The two
cells play different roles. The primary cell homogenises and purifies the batch
by removing defects (bubbles, seeds and unresolved material). Fining agents
(antimony and arsenic oxides) added to the batch assist in the bubble removal
process by releasing large amounts of gases (nitrogen oxide and oxygen) that
sweep up small bubbles while travelling to the surface; higher temperatures are
required for this fining process within the primary cell. The secondary cell is
at a lower temperature. The objective here is to shrink the remaining bubbles
with the gas being absorbed.

Melted batch particles sink into the bath and are carried backwards in the
primary convection cell towards the batch entry point and then forwards to-
wards the hot spot where they rise towards the surface and either remain within
the primary cell (and thus are returned to the chamber entry point) mixing
with newly melted batch along the way or are caught up in the secondary
loop where they circulate until they exit the chamber. The residence time of
particles is typically 10-15 hours but can be as long as 60 hours. Evidently
this uncertainty in the residence time is problematic.

3.1.1 Flow details

The effect of the thermal gradient along the upper surface of the molten glass
is to cause a buoyancy driven circulatory flow with volume and heat flux (per
unit depth of the 2D furnace) levels of order κ(A/L) and ρc∆T (κ(A/L)), where
∆T is the typical temperature difference over the length L of the furnace and
A the depth of the furnace. The strength of the flow is determined primarily
by the Rayleigh number defined by

Ra =
gα∆TL3

νκ
,

where κ is the thermal diffusivity, ν the viscosity and α the thermal expan-
sivity. In the glass furnace context Ra is large (of order 104 − 106) and under
such circumstances most of the flow occurs in thin boundary layers of thick-
ness Ra−1/5L, with compensationally higher velocities κ/LRa1/5, with the flow
sinking (downwelling) at the cold left end of the furnace and rising at the hot
end with an associated surface flow from hot to cold. Typical melt velocities
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are 10−3 m/sec, see Howell and Ockendon (2007). It is not clear if the returning
flow occurs immediately below the surface flow (intrusive flow above a strong-
ly stratified flow) or occurs at the bottom of the furnace, see Chui-Webster,
Hinch and Lister (2008) and Gramberg, Howell and Ockendon (2007). Ex-
periments suggest that under linear gradient conditions intrusive flow is more
likely, however, in the glass furnace case inertia and shear instabilities are like-
ly to be generated and one would expect the return flow to occur throughout
the lower region. The actual heating arrangements are very different from the
theoretically investigated situations described above with two cells being de-
liberately forced by the firing arrangements, the presence of a barrier and the
introduction of bubbles. Simple modelling (experimental and mathematical)
followed up by numerical simulations may provide useful information about
the effectiveness of these cell generation mechanisms.

As indicated earlier the residence time for batch particles varies significantly
because particles rising near the hot spot can remain within the primary loop
or be caught up in the secondary loop and the presence of transients and
eddies in the flow will strongly effect the outcome; such flow variability issues
are likely to be harder to address.

3.2 The bubbles

A good description of the formation and growth of gas bubbles within a super
saturated liquid and the behaviour of foams formed on the surface can be found
in Weaire and Hutzler (1999). Also, in context the authors found the MISG
report by Power et al (2010) on ‘The Initiation of Guinness’ to be particularly
informative and relevant. We briefly summarise the background required in
the present context.

Gas molecules diffuse across any liquid to the gas interface. Under saturat-
ed conditions a balance is realised between the flux of gas molecules into and
out of the interface, a result that is quantified in Henry’s Law

cl = H(T )p,

where cl is concentration of the gas in the liquid, p is the partial pressure of
the gas of interest and H is Henry’s law ‘constant’ which decreases as the tem-
perature T increases. This result applies across flat interfaces and adjustments
are required for curved surfaces.

In the bubble situation (and with a single gas), the gas pressure pb inside a
bubble of radius R exceeds that in the liquid immediately outside pl according
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to Laplace’s law

pb = pl +
2γ

R
,

where γ is surface tension of the liquid in contact with the gas. The effect of
mass transfer across the surface of the bubble will be to increase or decrease
its size until equilibrium is reached with the concentrations of the gas inside
and outside in balance. This will occur when cl = Hpb ≡ cb and R = Rcrit

where

cl = H(pl +
2γ

Rcrit

) so Rcrit =
2γ

cl/H(T )− pl
; (33)

there is an equilibrium bubble (critical) radius Rcrit determined by (local) pres-
sure, temperature and concentration levels within the liquid. This equilibrium
state is however unstable and so cannot be realised. If R < Rcrit then cb > cl
and molecules diffuse out of the bubble and it shrinks further. If R > Rcrit

then cl > cb and the bubble further expands. The implications are that bub-
bles of size R < Rcrit immediately collapse, and so cannot be formed within the
(constant cl) region in the first place, and bubbles of size R > Rcrit continue
to grow. In our glass furnace case gas is emitted as a result of the chemistry
so that bubbles with size R > Rcrit will be formed within the melt itself. The
role of fining materials is to supply such bubbles. Also bubbles will be brought
into the melt from the batch. The presence of nucleation sites within the melt
can strongly influence the number of bubbles.

A primary aim of the furnace operation is the remove gases either brought
into the melt with the batch or produced by the melting process, so a signif-
icant proportion of these gases must be removed by the bubbles. Under such
circumstances one would hope for or anticipate the presence of many bubbles
and expect (really require) significant changes in concentration of gases in the
melt. If bubbles are produced in sufficient numbers then the gas concentration
in the melt will reduce and an equilibrium situation can arise in which the
bubble size asymptotically approaches an equilibrium value consistent with
the concentration of gas within the liquid; explicitly the bubbles will continue
to grow until the dissolved gas concentration reduces to

cl = H(pl + 2γ/R∞),

where R∞ is the asymptotic equilibrium radius, as required by Henry’s law.
Knowing the initial concentration of gas in the melt one can estimate (cl, R∞).
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3.3 Bubble residence time

Buoyancy forces acting on bubbles either carried into, or formed within, the
molten glass bath will cause the bubbles to rise out of the bath and burst
on the surface, and the primary issue here is to determine how the residence
time of such bubbles depends on the operating conditions within the furnace.
Complications arise because the bubbles are formed in different locations and
are initially small and so will be carried by the convection flow to different lo-
cations with different temperature, pressure and gas concentration conditions.
Under such circumstances a simple crude model is indicated. The analysis
undertaken in the guinness context will be modified to deal with the present
context.

The bubble has a radius R(t) > Rcrit(cl) in its initial location with gas
concentration in the melted glass given by cl and so will initially grow due
to the transfer of gas from the surrounding melt. The rate of growth of the
bubble is described by

d

dt
(
4

3
πR3ρb) = k4πR2∆c (34)

where ρb is the density of gas within in the bubble, ∆c = (cb− cl) is the differ-
ence in gas concentration between gas within the bubble cb(t) and the liquid
outside the bubble cl, and k is the mass transfer coefficient. Assuming the gas
within the bubble obeys the perfect gas law its density will be determined by
its temperature Tb

ρb = pb/(RTb); (35)

R the gas constant and Tb the absolute temperature of the bubble gas. Note
that the temperature of gas within the bubble will be the same as that of the
neighbouring molten glass and the relative variation of the Tl will be small
within the bath, as will be the pressure variations (as far as the gas is con-
cerned). The pressure within the bubble will exceed that within the liquid due
to surface tension according to Laplace’s law

pb = pl +
2γ

R(t)
, (36)

where γ is the surface tension which one would not expect to vary significantly
over the temperature range within the bath. The gas density in the bubble
will thus vary according to the result

ρb = ρ0(1 +
ε

R(t)
), where ρ0 =

pl
RTb

and ε =
2γ

pl
;
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ρ0 is the density of the gas under atmospheric pressure at the temperature of
the bath (1500 K), using (36, 35). The gas density will thus be almost constant
for R > ε.

Using the above results we can determine the change in radius of the bubble
brought about by transfer across its surface as:

dR

dt

[
1 +

2

3
(
ε

R
)

]
=

k

ρ0

∆c. (37)

Note that the radius changes linearly with time in a constant concentration
environment for R� ε. However also note that the initial growth rate is small
for small radius bubbles due to the excess pressure within the bubble. The time
scale for growth due to mass transfer across the bubble surface is tb = ρlR0

k∆c0
for

R0 � ε but increases to tb(R0/ε) for small radius bubbles.
The bubble will rise due to buoyancy and this tendency to rise will be op-

posed by viscous forces. The bubbles of interest are small and move slowly so
the Reynolds number of the flow will be small and Stokes results are appro-
priate, see Batchelor (1967). The total drag D on a solid sphere of radius a
moving with speed U through a liquid of viscosity µ is 6πaµU , whereas that
of a bubble is 4πaU due to induced flow within the bubble. In practice due
to the effect of surface-active impurities the drag tends to be closer to that of
a solid sphere at least in the water bubble context. In the gas bubble/molten
glass context we will use

D = απRµU with 4 < α < 6,

to model in such effects; α would need to be determined experimentally. For
vertical motion the terminal velocity is achieved if we have a balance between
the buoyancy and the drag which gives a terminal velocity of

U =
4

3α

R2g

νg
, where ν =

η

ρg
(38)

and where ν is the kinematic viscosity of molten glass. In the temperature
range from melting to 1550◦C the dynamic viscosity varies by three orders of
magnitude (1−750 Pa sec) and is adequately described by an Arrhenius model
η = A exp(B/T ) where A and B depend on composition, see Le Bourhis (2006)
and Hrma (2006). The furnace operates at the higher end of the temperature
rage so we’ll use η = 1 Pa sec. The bubbles of interest range in radius from 3
mm down to 0.03 mm giving typical buoyancy speeds ranging from 4.5 cm/sec
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down to 4.5 × 10−4 cm/sec for the smaller bubbles. Note that typical melt
flow speeds are about 3×10−2 cm/sec which is comparable with the buoyancy
speed for 0.2 mm radius bubbles. In crude terms bubbles larger than this will
detach from the melt flow and reach the surface (say 1 m depth) in less than
1 hour and so are not of concern, and bubbles smaller than this radius will
be carried along with the flow and have a strong probability of reaching the
secondary cell.

We now outline the derivation of (38). The bubble (with effective zero
mass) moving with velocity ṙ is imbedded in a prescribed flow field V(r) so
that under quasi-steady conditions we have

(V − ṙ)απRµ+ ρ2(
4

3
πR3)gk = 0

and therefore

(ṙ−V) =
4

3α

R2g

νg
k. (39)

Equations (37, 39) determine the motion and radius R(t) of an individual
bubble, however the concentration of gas in the molten glass surrounding the
bubble will vary as the bubble moves through the melt so that a complete
description of the flow environment would be required.

Without detailed flow simulations the best one can do here is to exam-
ine typical situations. Probably, however, such detailed investigations are of
marginal interest.

Of more interest perhaps is a ‘black box model’ of the bubble production,
growth, shrinkage and transfer process. We can consider the melt region as
two regions (representing the two cells) separated by a barrier (representing
the interface between the two cells). We can then assume an average temper-
ature of T1 for the first box , gas concentration in the liquid and a bubble size
distribution under steady state conditions in the first box and use the above
physics to determine the bubble size distribution in the second box given trans-
fer rates across the barrier. When tied to experimental information this may
lead to a workable model.

3.4 Observations/speculations/suggestions

It is evident that by tuning the present apparatus one might minimise bub-
ble problems but the difficulty is one that is inherent to the apparatus; the
variability of the batch element residence times.
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It may be useful to note that rectified diffusion is successfully used to grow
bubbles in guinness and may be applicable in the glass furnace situation. In
the presence of a pulsating sound field a bubble of radius R < Rcrit will pulsate
and there will be a net diffusion of gas into the bubble over a cycle so that it
will grow providing the amplitude is greater than some threshold value. The
effect is greatest if the resonance frequency of bubbles of interest is used.

4 Conclusions

The aim of this work has been to understand difficulties associated with the
production of glass in the furnace. These difficulties are of an operational type
(how to compensate for unexpected variations in batch input or processing)
or of a quality type (as displayed in the flaw frequency). The primary focus
in this report has been on operational issues. The available heat is used to
melt and chemically convert the batch and the analysis suggests a constant
front speed dependent on radiant heat input and the convective heat input
through the upper surface. These results enable one to better estimate the
heat requirements so that the overall heat balance can be better assessed and
furnace design can be optimised. It is also hoped that a better estimate of the
temperature development through the melt may be useful for understanding
the chemistry.
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