Management of Harvesting of Rhinos

Study Group Report

University of Witwatersrand Johannesburg, South Africa

Outline

Introduction

Key Points

- Currently there are about 2000 black rhinos in South Africa.
- The goal is to maximise the growth rate of the rhino population.

Aims

Primary Objectives

- Develop a 2 population harvesting model.
- Try to determine the optimal amount of rhinos to be harvested.

Assumptions

We make the following assumptions

- Disregard gender, infectious diseases, poaching etc.
- A constant carrying capacity.

A Single Population Framework

$$
\begin{equation*}
\frac{d P}{d t}=R P(t)\left(1-\frac{P(t)}{K}\right), \quad P(0)=P_{0} \tag{1}
\end{equation*}
$$

Figure : Logistic Model

A Single Population Framework

$$
\begin{equation*}
\frac{d P}{d t}=R P(t)\left(1-\frac{P(t)}{K}\right)\left(\frac{P(t)}{\mu}-1\right), \quad P(0)=P_{0} . \tag{2}
\end{equation*}
$$

A Single Population Framework

Age Structure

Figure: Single Population Model

A Single Population Framework

Age Structure

$$
\begin{gather*}
\frac{d x_{1}}{d t}=A x_{4}-x_{1}\left(a_{1}+\mu_{1}\right) \tag{3}\\
\frac{d x_{2}}{d t}=a_{1} x_{1}-x_{2}\left(a_{2}+\mu_{2}\right) \tag{4}\\
\frac{d x_{3}}{d t}=a_{2} x_{2}-x_{3}\left(a_{3}+\mu_{3}+h_{3}\right) \tag{5}\\
\frac{d x_{4}}{d t} \tag{6}
\end{gather*}=a_{3} x_{3}-\left(\mu_{4}+h_{4}\right) x_{4} .
$$

Interaction Between 2 Population with Harvesting

Assumptions

- Consider only two populations
- No naturally occuring direct interaction
- Constant carrying capacity and recruitment rate
- Harvesting only to relocate rhino to other population

Interaction Between 2 Population with Harvesting

Variables and Parameters

- P_{1} and P_{2} are the rhino populations in area 1 and 2 , respectively;
- μ_{1} and μ_{2} are recruitment rate for rhino populations in area 1 and 2, respectively;
- K is the carrying capacity in P_{1}, and β is the carryng capacity for P_{2} dependent on P_{1}
- h is the harvesting rate and α is the portion of harvested rhino succesfully entering population P_{2}.

Interaction Between 2 Population with Harvesting
 Mathematical Model

Dynamical Equations

$$
\begin{align*}
\frac{d P_{1}}{d t} & =\mu_{1} P_{1}\left(1-\frac{P_{1}}{K}\right)-h P_{1} \tag{7}\\
\frac{d P_{2}}{d t} & =\mu_{2} P_{2}\left(1-\frac{P_{2}}{\beta K}\right)+\alpha h P_{1} . \tag{8}
\end{align*}
$$

Interaction Between 2 Population with Harvesting

Nondimensinal equations

Nondimensional equations

$$
\begin{align*}
\frac{d x}{d \tau} & =x(1-x)-\sigma x \tag{9}\\
\frac{d y}{d \tau} & =\mu_{0} y\left(1-\frac{y}{\beta}\right)+\alpha \sigma x \tag{10}
\end{align*}
$$

with

and

$$
\begin{aligned}
x & =\frac{P_{1}}{K} \\
y & =\frac{P_{2}}{K} \\
\tau & =\mu_{1} t
\end{aligned}
$$

$$
\begin{aligned}
\mu_{0} & =\frac{\mu_{2}}{\mu_{1}} \\
\sigma & =\frac{K}{\mu_{1}}
\end{aligned}
$$

Interaction Between 2 Population with Harvesting

Equilibrium points

$$
E_{0}=(0,0)
$$

Interaction Between 2 Population with Harvesting

 Equilibrium points
Equilibrium points

$$
E_{0}=(0,0), \quad E_{1}=\left(0, K_{2}\right)
$$

Interaction Between 2 Population with Harvesting

Equilibrium points

Equilibrium points

$$
\begin{aligned}
E_{0}= & (0,0), \quad E_{1}=\left(0, K_{2}\right) \\
E_{2}= & \left(\frac{K_{1}\left(\mu_{1}-h\right)}{\mu_{1}},\right. \\
& \left.1 / 2 \frac{\left(\mu_{2} K_{2}+\sqrt{\frac{\mu_{2} K_{2}\left(\mu_{2} K_{2} \mu_{1}+4 h \alpha K_{1} \mu_{1}-4 h^{2} \alpha K_{1}\right)}{\mu_{1}}}\right)}{\mu_{2}}\right)
\end{aligned}
$$

Interaction Between 2 Population with Harvesting

Equilibrium points

Equilibrium points

$$
\begin{aligned}
E_{0}= & (0,0), \quad E_{1}=\left(0, K_{2}\right) \\
E_{2}= & \left(\frac{K_{1}\left(\mu_{1}-h\right)}{\mu_{1}},\right. \\
& \left.1 / 2 \frac{\left(\mu_{2} K_{2}+\sqrt{\frac{\mu_{2} K_{2}\left(\mu_{2} K_{2} \mu_{1}+4 h \alpha K_{1} \mu_{1}-4 h^{2} \alpha K_{1}\right)}{\mu_{1}}}\right)}{\mu_{2}}\right)
\end{aligned}
$$

with

$$
G=\frac{\mu_{2} K_{2} \mu_{1}+4 h \alpha K_{1} \mu_{1}}{4 h^{2} \alpha K_{1}}>1
$$

Interaction Between 2 Population with Harvesting

Local stability

$$
J=\left[\begin{array}{cc}
\mu_{1}\left(1-\frac{x}{K_{1}}\right)-\frac{\mu_{1} x}{K_{1}}-h & 0 \tag{11}\\
h \alpha & \mu_{2}\left(1-\frac{y}{K_{2}}\right)-\frac{\mu_{2} y}{K_{2}}
\end{array}\right]
$$

Local stability

- E_{0} with eigenvalues $\left(\mu_{1}-h, \mu_{2}\right)$
- E_{1} with eigenvalues $\left(\mu_{1}-h,-\mu_{2}\right)$
- E_{2} with eigenvalues

$$
\left(\mu_{1}-h,-\frac{\sqrt{\mu_{2}^{2} K_{2}^{2}+4 K_{1} \alpha h K_{2} \mu_{2}-4 \frac{\mu_{2} K_{2} h^{2} \alpha K_{1}}{\mu_{1}}}}{K_{2}}\right)
$$

Interaction Between 2 Population with Harvesting

Local stability

$$
J=\left[\begin{array}{cc}
\mu_{1}\left(1-\frac{x}{K_{1}}\right)-\frac{\mu_{1} x}{K_{1}}-h & 0 \tag{11}\\
h \alpha & \mu_{2}\left(1-\frac{y}{K_{2}}\right)-\frac{\mu_{2} y}{K_{2}}
\end{array}\right]
$$

Local stability

- E_{0} with eigenvalues $\left(\mu_{1}-h, \mu_{2}\right)$
- E_{1} with eigenvalues $\left(\mu_{1}-h,-\mu_{2}\right)$
- E_{2} with eigenvalues

$$
\left(\mu_{1}-h,-\frac{\sqrt{\mu_{2}^{2} K_{2}^{2}+4 K_{1} \alpha h K_{2} \mu_{2}-4 \frac{\mu_{2} K_{2} h^{2} \alpha K_{1}}{\mu_{1}}}}{K_{2}}\right), G>1 .
$$

Numerical simulation

$$
G=\frac{\mu_{2} K_{2} \mu_{1}+4 h \alpha K_{1} \mu_{1}}{4 h^{2} \alpha K_{1}}
$$

Level curves of the function $G\left(\mu_{1}, \mu_{2}\right)$

Level curves of the function G[k $\left.{ }_{2} \mathrm{k}_{1}^{-1}, \mathrm{~h}\right)$

Numerical simulation

Numerical simulation

Further Work

Further Work

Is the effort to relocate 10 rhinos to P_{2} with initial population $P_{2}(0)=50, K_{2}=70$ the same as the effort to relocate them to P_{3} with initial condition $P_{3}(0)=20, K_{3}=70$?

Further Work

Further Work

Is the effort to relocate 10 rhinos to P_{2} with initial population $P_{2}(0)=50, K_{2}=70$ the same as the effort to relocate them to P_{3} with initial condition $P_{3}(0)=20, K_{3}=70$?

Proposed Equations

$$
\begin{aligned}
\frac{d P_{1}}{d t} & =\mu_{1} P_{1}\left(1-\frac{P_{1}}{K_{1}}\right)-h P_{1} \\
\frac{d Q}{d t} & =h P_{1}-\sigma Q P_{2} \\
\frac{d P_{2}}{d t} & =\mu_{2} P_{2}\left(1-\frac{P_{2}}{K_{2}}\right)+r \sigma Q P_{2}-\gamma P_{2} Q \\
\frac{d R}{d t} & =(1-r) \sigma Q P_{2}+\gamma P_{2} Q .
\end{aligned}
$$

The End

