
MOBILE DEVICE DETECTION BASED ON USER

AGENT STRINGS

G.C. Hocking∗

Study Group participants

Colin Please, Ludovic Tangpi, Asha Tailor, Dario Fanucchi,

Byron Jacobs, Shaun Kimmelman and Graeme Hocking

Industry representatives

Rumbidzai Mukungunugwa and Ismail Dhorat

Abstract

The study group was asked to consider methods by which the identification sig-
nal from a mobile device, called a user-agent string, is recognized and processed
and to determine if this could be done faster. Two approaches were taken. In
the first a search of string matching techniques in the existing literature was
conducted to identify any improvements and secondly some code was written
and some simple preprocessing of the database was conducted. Both strands
promised to yield some significant improvements in search time.

1 Introduction

When any computer or mobile device contacts a server to request a web page, the
request includes what is known as a “user agent” string, which identifies the device
and the type of browser being used, for example, manufacturer, device type and
screen size. Typical examples of such strings are:

∗School of Chemical and Mathematical Sciences, Murdoch University, Perth, Western Australia.

email: G Hocking@nurdoch.edu.au

1

2 Mobile device detection based on user agent strings

Mozilla/5.0 (iPod; U; CPU iPhone OS 3 1 1 like Mac OS X; en-us)

AppleWebKit/528.18 (KHTML, like Gecko) Mobile/7C145,

or

BlackBerry7100i/4.1.0 Profile/MIDP-2.0 Configuration/CLDC-1.1 VendorID/103.

In particular, as the number of mobile devices and versions of browsers increases
it is becoming increasingly difficult to rapidly detect the type and particular features
of the device in a time that is satisfactory to the user. One of the options to rapidly
identify the device is to compare the “User Agent” strings (UAS) to a list on the
WURFL (Wireless Universal Resource File). This list is continuously updated as new
devices and browsers hit the market. It currently has around 13,000 entries and is
growing rapidly.

However, to complicate things further, “User Agent” strings (UAS) are not

standardised, and can in fact be changed (either deliberately or inadvertantly) by the
user. Strings are in no particular format, length or order and often there is no perfect
match - user agent strings may be in a different order, use different abbreviations or
even be wrong. Currently, a Levenshtein search algorithm [7], string reduction and
heuristics are used to match strings and the whole database is searched.

The challenge put to the MISG was to detect mobile devices and their relevant
properties in an optimal manner based on the UAS, either by optimizing the existing
algorithms or introducing a hybrid of newer faster algorithms.

The group decided to take two parallel approaches to the problem. Firstly,
rather than try to develop new techniques, it was felt a thorough literature search
of string matching algorithms would be an effective way to find an improvement on
the existing method if one existed. Secondly, code to mimic the current process was
written so that the group could “play” with any new ideas such as subdivision of
the database, buffering or ordering, and finally some attempt to implement any new
algorithms. Some possible work for the future was identified.

2 Literature

A search of the literature revealed two types of string matching algorithms. One
involves exact matching, while the other requires only some degree of similarity or
“inexact” matching. It is clear that “exact” matching of the full incoming UAS
is inappropriate in this situation, but some of the proposed re-ordering methods
involve searching for exact substrings within either the database or the incoming
string, and consequently we must consider both.

G.C. Hocking 3

Figure 1: Example of exact string matching. S is the incoming string and T is the
list of characters.

2.1 Exact String Matching

So-called “exact” string matching involves alignment and matching of the exact
string, so that the two strings are moved backwards and forwards until there is an
alignment of characters (if possible) as shown in Figure ??.

Current algorithms in this category include;

• Brute Force - Easy to implement as the string is simply moved along the list
until a match is made. This is effective, but slow with a worst case of O(m×n)
operations, where m is the number of characters in the string, S, and n is the
number of characters in the string being searched, T .

• Knuth-Morris-Pratt (KMP) - This algorithm [2, 6] searches along the string
looking for a match with the first character. If a match is found, then it pro-
ceeds to the next character to check it. This continues until a complete match
is found or a mismatch occurs. While the matching sequence is underway the
algorithm also checks for the occurrence of the first character, so that if a
mismatch occurs it returns to the next occurence of that character rather than
to the beginning. The improvement on the above method is significant if the
first character doesn’t occur very often!

• Boyer-Moore Algorithm (BMA) - This algorithm [1] is the current industry
standard exact-text searching algorithm. It involves jumping ahead m charac-
ters (the length of the incoming string) and searching backwards. If the last
character doesn’t match, then we can move on. If the last character doesn’t
appear in the string at all, then can jump forward another m places. Thus the
method is potentially very quick for longer strings - in fact faster the longer is
the string.

4 Mobile device detection based on user agent strings

Figure 2: An example of inexact matching. S is the incoming string and T is the
list characters.

In the current problem, however, the uncertainty in the User Agent String being
sent by the mobile device means that exact matching is unlikely to be successful if
an attempt is made to match the full string. Therefore, the more difficult case of
“inexact” matching must be used instead.

2.2 Inexact String Matching

In this type of algorithm, we try to find the best fit between two strings, see Figure
2. In order to do this we need to effectively define the “distance” between the two
strings, that is, come up with a definition of the difference between the two strings,
so that the “closest” can be chosen. Ideally, the distance between two identical
strings will be zero only if they are identical, and become larger as they differ more.

In mathematical terms these would be described as a metric. Some existing
algorithms in the literature include;

• Hamming Distance, [5] - Number of positions at which aligned symbols are
different in strings of the same length or the number of substitutions required
to make the two strings identical. This only applies to strings of the same
length, however, which limits its application here.

• Edit Distance (Levenshtein) which first appeared in English in [7] - This metric
is defined by the smallest number of edits to change string S into string T .
Allowable edits are substitution, deletion, or insertion of a single character.
The insertion of a character allows the strings to be of different lengths, unlike
the Hamming distance.

• Damerau - Levenshtein distance - This method [3] is the same as the Leven-
shtein edit distance with the allowance of transposition of one character with
that adjacent. This allows for a simple mis-spelling for example.

G.C. Hocking 5

concatenate
intricate
catalyst
together
recreational
delicate
ecosystems
consequence
catatonic

placatecater

concatenate
intricate
catalyst
together
recreational
delicate
ecosystems
consequence
catatonic

placate
cater

concatenate
intricate
catalyst
together
recreational
delicate
ecosystems
consequence
catatonic

placate

cater

concatenate
intricate
catalyst
together
recreational
delicate
ecosystems
consequence
catatonic

placate

cater

cater

 .

T =

intricate
catalyst
together
recreational
delicate
ecosystems
consequence
catatonic

concatenate

caterer
placate

caterercaterer

Levenshtein CLOSE

Hamming distance
over substring − CLOSE

Levenshtein CLOSE

over substring − MATCH
Hamming distance

caterer

Levenshtein NOT CLOSE

over substring − NOT CLOSE
Hamming distance

caterer

caterer

Levenshtein NOT CLOSE

over substring − CLOSE
Hamming distance

Hamming distance
over substring − CLOSE

Levenshtein NOT CLOSE

(many deletes)

intricate
catalyst
together
recreational
delicate
ecosystems
consequence
catatonic

placate

concatenate

S= cater

Figure 3: Comparison of Hamming distance on a substring vs. the Levenshtein
algorithm over the full string - Hamming distance “appears” closer more often, so
perhaps does not give such a clear differentiation.

6 Mobile device detection based on user agent strings

• Longest Common Subsequence - Longest subsequence in both strings. For
example, diff in Unix, see [4].

• Longest Common Substring - Longest common substring between the two
strings. This should not be confused with the previous algorithm. A substring
must be consecutive characters but a subsequence need not be - see [4]. This
algorithm can be designed to be very fast by employing suffix trees (see later).

Fast dynamic programming search methods exist for each of these algorithms. Fig-
ure 3 gives a comparison of Hamming Distance verses Levenshtein edits where the
Hamming distance has been restricted to look for a matching string first and then
compute, that is, Hamming distance on a substring. One can see that the Hamming
distance gives a closer match more often, which may not be a good thing because it
provides less differentiation between cases.

2.3 Suffix Tree Example

Suffix trees [8, 9, 10] are a method for increasing the speed of the search algorithm
for substrings. The idea is to pre-process the string to make the comparison search
much more efficient. The tree is created by considering all of the characters in the
full string. If the character occurs on multiple occasions then it is used as a branch
from the root. If it only occurs on one occasion then the unique substring beginning
with this character forms a branch. Thus the tree looks like Figure 4. The search
then consists of following a branch in the tree, which will always be unique. If the
end of the branch is reached without a match then there is no match.

In the given example, the letters in the word are i,s and p and all have multiple
occurences and so each has a branch. The numbers in the squares at the terminus
of each branch indicate the number of the letter at which that particular branch
began. Note that it is unique for each. An incoming string can be compared against
this tree and searches only need to be conducted along individual branches, greatly
reducing the search time.

This method can be used either for exact or inexact (longest common substring)
searches and after preprocessing of the string being searched it can be performed in
O(m) time if programmed efficiently.

2.4 Multiple Strings

The methods of searching a single string in this application must be extended to
multiple strings, since the database consists of a list. In that case, the time of the
search can in general be written as O (k × C(n,m)) where C(n,m) is the cost of a
particular string-matching algorithm and k is the number of items on the list.

G.C. Hocking 7

i
s

si
pi

i

i ppi ssi

ppi

ppissippi

ssippi

mississippi

p

ssippi

ppi

10 9

3

4

8

111

7 6

2
5

Figure 4: Example of suffix tree for “Mississippi”.

The literature contains methods of both exact and inexact matching that can be
implemented either with or without preprocessing of either the list or the incoming
string. If these algorithms are combined with suffix string pre-processing of the
WURFL database, then C(m,n) can be reduced to O(m), so that total search time is
of order O(k ×m).

3 Implementation

The second strand of the work by the study group was to implement the exist-
ing algorithms and see if some simple improvements could be made by judicious
searching. Using data provided by the industry representatives, the algorithms were
implemented in Python, and then some testing was done to see if making a few basic
changes led to a significant improvement. Tests were performed on a sample of the
database of only 40 listings, so times are representative only. However, there is no
reason to think that the speed up should not scale up to the full set or even improve
search times further.

3.1 Existing method

In this algorithm, a full search is made of the entire WURFL database looking for
the best match using the Levenshtein algorithm [7], that is, compare everything, for

8 Mobile device detection based on user agent strings

example as shown below, programmed in Python;

for i in xrange(len(database)):

a = lev2(database[i], user)

if a <= b:

b = a

j = i

return database[j]

The routine lev2 performs the Levenshtein algorithm on the strings in the list.
Several runs with trial data through the WURFL database gave average search
times of 0.316 seconds and a worst case of 0.42 seconds. This method searches the
unprocessed database to exhaustion.

3.2 “Simple” improvements

Several very simple suggested improvements were made to the above code. Again
using the Levenshtein algorithm, a threshold minimum value (or proximity) was
defined and rather than search through the whole database, the search stopped as
soon as this threshold value was reached. Tuning this threshold parameter to get
an adequate match would be required in practice. This simply means adding a line
of code to that above which dictates an end if b is less than the threshold value. In
that case,

• Running time in the “worst” case: 0.419.

• Running time in the “best” case: 0.128,

giving a 21

2
times speed up. This of course depends on how far down the list one

must go before a suitable match is found, and also on how accurate the user wishes
to be, or how large the threshold value is allowed to be. These results indicate a
significant improvement with just this simple modification. The database was not
pre-processed in any way.

Another approach tried was to subdivide the database into various categories.
In other words, do some pre-processing of the WURFL database to create lists of
particular common substrings, for example manufacturer, and then only search the
relevant category. In other words, check the incoming string for a keyword and
then only search the relevant section of the re-ordered database. For example, the
database may be divided into S = [’Nokia’, ’Samsung’, ’Ludovic’, ’Acer’, ...]. If the
incoming string contains one of these key strings, then the search is greatly reduced.
Results of a trial of this idea gave

G.C. Hocking 9

Algorithm Time Range Comment

Basic Brute Force 0.316-0.419 No Pre-processing

Threshold 0.128-0.419 No Pre-processing

Subdivision with threshold 0.074-0.286 Pre-Process into e.g. manufacturers

Caching - Extra coding - inadequate data

Order by Popularity - Promising - inadequate data

Suffix Trees - Huge potential - longer pre-processing

Table 1: Table summarizing methods considered by the group.

• Running time in the “worst” case: 0.286,

• Running time in the “best” case: 0.074,

a further reduction of 50% in search time. The idea of pre-processing the WURFL
database appears to provide hope for great improvements in search time by restrict-
ing the number of strings that need to be compared, especially as the list grows.

A similar proposal is to order the WURFL database in frequency of request for
each record over some recent time period. Those strings that appear most often
would be placed near the top of the list so that they are reached first in the search.
Using the threshold value idea suggested above this method should provide signif-
icant reduction in search time for the most common devices. However, the MISG
group was not able to implement this scheme due to a lack of appropriate data. In a
similar vein, the idea of buffering the most recent “hits” was discussed. This buffer
could then be searched before the database was tested. As the database grows, older
and obsolete machines will drop to the bottom of the pre-processed list. They will
therefore have the longest search times, but it is also to be expected that they would
have a smaller number of users.

3.3 Summary

Table 1 provides a summary of the simple implementations of modified search algo-
rithms tried during the MISG. Some of the suggested improvements were not tested
because we did not have suitable data.

The act of preprocessing the list into manufacturers and then ordering by recent
frequency, combined with introducing the threshold value for Levenshtein distance
has lead to a speed up of almost 5 times in the simple trials here. Only real testing
can determine if these speed-ups are achievable.

10 Mobile device detection based on user agent strings

4 Final Remarks

The study group performed a full search of the existing literature and discovered
some new approaches that may prove beneficial (such as suffix strings) in the imple-
mentation of the string comparison itself. The current scheme was implemented and
several suggested improvements were programmed and tested with positive results.
Further suggestions were not tested because there was inadequate data available,
but hold great promise for significant speed up in the service delivery. It seems the
most likely approach for rapid speed up is to pre-process the WURFL database each
time that it is uploaded to better organize the search. While this may take some
time, it needs to be done only once to give very good reductions in search times.

References

[1] Boyer, R.S and Moore, J.S. ”A fast string searching algorithm”. Comm. ACM

20 (1977), 762772. doi:10.1145/359842.359859.

[2] Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. Introduction to Algo-

rithms 2nd ed., MIT Press and McGraw-Hill, (2001) ISBN 978-0-262-03293-3,
923931.

[3] Damerau, F.J. “A technique for computer detection and correction of spelling
errors”, Comm. ACM 7 (1964), 171-176.

[4] Gusfield, D. Algorithms on Strings, Trees and Sequences: Computer Science

and Computational Biology USA, Cambridge University Press (1999). ISBN
0-521-58519-8.

[5] Hamming. R.W. “Error detecting and error correcting codes”, Bell System

Technical J. 29 (2) (1950), 147160, MR0035935.

[6] Knuth D, Morris, D.J. Jr and Pratt, V. “Fast pattern matching in strings”.
SIAM J. Computing 6 (2) (1977), 323350. doi:10.1137/0206024.

[7] Levenshtein, V.I. “Binary codes capable of correcting deletions, insertions, and
reversals” Soviet Physics Doklady 10 (1966), 70710.

[8] McCreight, E.M. “A Space-Economical Suffix Tree Construction Algorithm”.
J. ACM 23 (2) (1976), 262272. doi:10.1145/321941.321946.

[9] Ukkonen, E. “On-line construction of suffix trees”. Algorithmica 14 (3) (1995),
249260. doi:10.1007/BF01206331

G.C. Hocking 11

[10] Weiner, P. “Linear pattern matching algorithm”. 14th Annual IEEE
Symposium on Switching and Automata Theory. (1973), pp. 111.
doi:10.1109/SWAT.1973.13

