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Abstract

The old closed mines in the Witwatersrand are flooding and there is
concern that the water may seep into stable faults in the neighbourhood
and thus destabilise them. The simple models described here suggest
that the time span for water transport into such faults is likely to be
relatively short (months) and that, for deep mines (2000m-3000m) the
hydrostatic pressure buildup within the filled cracks is likely to signifi-
cantly increase the risk of fault slip. The effective coefficient of friction
is predicted to reduce by 20− 30% due to fault flooding in such circum-
stances. Furthermore slip is predicted to occur along faults not previ-
ously prone to slip because of their ‘unfavoured’ orientation. Seismic
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2 Riseing water table and seismicity

events are also more likely to cause slip because of lubrication effects.
Under such circumstances, and in the absence of remedial action (say
through improved sealing of the tunnels or pumping), Johannesburg
could experience an increase in small seismic events.

1 Introduction

Gold mines consist of a network of vertical shafts with various connected tun-
nels, drives and crosscuts introduced to access the gold reef and remove prod-
ucts. The removal of rock effects the loading on faults and thus leads to
increased seismic activity (hundreds of small seismic events per year are ex-
perienced as a direct result), see Gibowicz and Lasocki (2000), and Fowkes,
Mason and Napier (2004). Of more direct concern here is the increased crack-
ing in the general mining area and especially the localised fracturing adjacent
to the excavations (within a distance of 1 or 2 meters) which can help facilitate
water transport into adjacent faults.

Before mining is undertaken water deposited on the land through rainfall
is carried to the oceans either over the land or in aquifers that in context are
typically 300m in depth (but can be 1000m or greater in sedimentary zones).
Below this zone the rock is dry. In mined areas water can accumulate in the
shafts and is pumped out to facilitate the operations, but once the mining
activity has ceased the water accumulates within the shafts and the fractured
surrounds, see Figure 1. The depth of water in such abandoned tunnels (2
to 5m wide and 3.5m high) can typically increase at about 1 to 2 metres per
day under wet conditions. The concern is that the water may then enter into
faults that are hydrologically connected to the mining network thus lubricating
them1. The nature of the hydraulic connection would not be normally known
and may vary in time. The faults themselves can vary in width from fractions of
millimetres up to a few millimetres or greater and often have offsets (perhaps 10
metres spacing) so there is much uncertainty about the hydraulic conductivity
along these faults. Also there may be faults that intersect the wet surface
layer; these faults would normally be water logged. Can the presence of this
water in abandoned shafts lead to an increased incidence of seismic events
subsequently? Evidently the problem separates out into two subproblems:
the water transport problem treated in Section 2, and the fault-slip problem
treated in Section 3. In Section 4 there is a brief discussion of the effect of

1assuming the rock is wettable
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water on the behaviour of faults under external seismic loading. Conclusions
are drawn in Section 5.

Figure 1: Water movement through mines and into faults

2 Water Flow in Faults

As indicated above there is a great deal of uncertainty about the hydrological
conductivity of the fault so that the models developed here are necessarily
speculative and would need to be calibrated to take into account local fault
and field conditions. What is reasonably well known on site is the hydraulic
head driving the flow2. The fault angle can also be readily determined using
seismic measurements. The (geometry of) the hydraulic linkage between the
tunnel network and the fault will vary depending on circumstances and this
will strongly affect water transport. We will examine a few possible situations
and then make general comments. Two simple models were developed, a thick
fault model and a thin fault model.

2.1 A thick fault

For thick faults (thickness greater than 0.5cm say) the hydraulic conductivity
is determined primarily by the permeability of the crushed material (created
by seismic activity) filling the fault. In this case we can model water flow in

2It would appear that the water level in the various tunnels/shafts etc is the same which
one would expect given the size of the excavations.
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the crack as a porous medium flow between impermeable rock faces, see Figure
2. For simplicity we assume the shaft continues to fill from above in such a
way that the height of water in the shaft remains fixed.

The flow of a liquid through a porous medium can be studied by defining
the piezometric head

Φ =
p

ρwg
+ z, (1)

where z is elevation above a datum here taken as the bottom of the shaft
as in Figure 2; p is the pressure, ρw is water density and g is gravitational
acceleration. The usual model assumes the flow is dictated by Darcy’s Law,
see Harr (1962), Bear (1972), which states that the D’Arcy velocity (average
volume flux) u is given by

u = −κ∇Φ, (2)

where the hydraulic conductivity κ = ρwgk/µ, where k is the coefficient of
permeability of the material and µ is the dynamic viscosity of the fluid. The
pressure at the bottom of the shaft is ρwgHw, so the total potential of a
particle at the bottom of the shaft is given by Φ(0) = Hw. If z = h(t)
is the height of the column of water in the fault above the shaft base, see
Figure 2, then the total potential of a particle on the surface of this column
is Φ(h) = h(t), so the driving potential in the fault is (Hw − h(t)) and the
vertical flux w = κ(Hw − h(t))/h(t), see (2). Now w = h′(t) so that

dh

dt
=
κ(Hw − h)

h
, (3)

and if we assume the crack is initially dry then h(0) = 0. The solution can be
written in the form

t = −1

κ

[
h+Hw ln

(
Hw − h
Hw

)]
, (4)

giving the time t for the water to reach height h. We can estimate the time for
the crack to fill to 90% of the water depth in the shaft by letting h = 0.9Hw,
giving

t90 = −Hw

κ
[0.9 + ln(0.1)] ≈ 1.5

Hw

κ
(5)

The coefficient of permeability takes typical values of κ ≈ 1 cm/s for gravel
and κ ≈ 10−3 cm/s for fine sand, see Harr (1962). Assuming the crack is
filled with crushed matter approximating fine sand this gives an estimate time
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of t90 ≈ Hw/κ ≈ 104/10−3 ≈ 107 sec. for Hw ≈ 300m, that is, around 500
days. The fastest fill time would be of the order of days if the crack contained
material with gravel-like properties, but this seems unlikely given the pressures
at these depths.

These results suggest that in a relatively fast time significant portions of
the fracture could be filled with water, but that the variation could be huge
depending on the properties of the debris in the crack. Even if the filling
takes a year, however, if there is no remedial action it will eventually fill and
lubrication of the fractures will become an issue. Some pumping out of the
original shaft may delay this problem.

2.2 A thin fault

Hw

s

θ

s = l(t)

h(t)

y

Figure 2: Water flow up a fault of width w from a shaft.

If the fault is thin then we have channel flow between two walls separated
by a distance of w say, fed by water in the mining shaft. The simplest possible
(2D) geometry is as shown in Figure 2; we have flow up a fixed width planar
fault at an angle θ to horizontal intersecting a vertical shaft containing water.
As before we will assume that the water level in the shaft measured from the
intersection with the fault remains fixed at Hw, and that initially the height
of water in the fault is given by h(0) = 0, where h(t) height in the fault at
time t measured from the junction. Evidently the water level in the fault
will eventually reach Hw and our aim is to determine the characteristic time
required for this to happen.
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The flow up the fault is quasi-steady and viscosity dominated and the ge-
ometry is thin, so that the Navier-Stokes equations reduce to a single equation
describing flow along the fault given by

∂p

∂s
= µ

d2u

dy2
− ρwg sin θ with p = p(s, t), and v = u(y, t)ŝ, (6)

where s is the distance along the fault measured from the junction, ŝ is a unit
vector in the direction of the flow along the fault, and y measures distance
from the lower fault face as in Figure 2.

Choosing atmospheric pressure as the datum the appropriate boundary
conditions are given by

p = ρwgHw at s = 0, with p = 0 at s = l(t) = h(t)/ sin θ,

see Figure 2. Subject to these conditions and using separation of variables the
solution to (6) is given by

p(s, t) = ρwgHw

[
1− s

l(t)

]
, with u = − 1

2µ

[
ρwg sin θ +

∂p

∂s

]
y(w − y), (7)

or equivalently

u =
ρwg

2µ

[
Hw − h(t)

l(t)

]
y(w − y), (8)

using (7). The net volume flux up the fault (per unit fault depth) is thus given
by ∫ w

0

u(y, t)dy =
ρwgw

3

12µ

[
Hw − h(t)

l(t)

]
.

For later purposes note that it is the ‘modified’ pressure difference ρwg(Hw −
h(t)) acting over the length l(t) that drives the channel flow3

The average velocity determines the front speed giving

< u >=
1

w

∫ w

0

u(y, t)dy =
dl

dt
=
ρwgw

2

12µ

[
Hw − h(t)

l(t)

]
,

3The flux through a horizontal channel of width w due to an applied pressure gradient
px is ρwgpxw

3/(12µ).
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Figure 3: The (scaled) hydraulically driven water movement h′(t′) from
a shaft into a fault.

so that eliminating l(t) in favour of h(t) gives

dh(t)

dt
=

[
ρwgw

2 sin2 θ

12µ

]
(
Hw − h(t)

h(t)
);

an ordinary differential equation for the moving front. Scaling the equation
thus:

h(t) = Hwh
′(t′), with t = Tt′, where T =

12µHw

ρwgw2 sin2 θ
, (9)

we obtain the equation
dh′

dt′
=

1− h′(t′)
h′(t′)

,

with the implicit solution given by

t′ = − ln |1− h′(t′)| − h′(t′)

after applying the initial condition h′(0) = 0; this corresponds to (4) obtained
for the thick fault. During the initial filling stages the fault fills rapidly (like√

2t′) and the level approaches that of the water within the shaft like 1− h′ =
exp(−t′), see Figure 3. Effective equilibrium is thus reached when 1−h′ ≈ 0.06
that is when t′ ≈ 5 which gives a characteristic fault filling time of

tf =
60µHw

ρwgw2 sin2 θ
.

The filling time increases very rapidly with decreasing fault thickness (like
1/w2) and varies in proportion to 1/ sin θ, because of the increased length of
the water column in the faults. With µ = 8.910−4Pa.sec, ρw = 103kg/m3, g =
9.8m/sec2, and w = 0.1mm we obtain 17 days to 50 days as the fault angle
decreases from 60◦ to 30◦. For w = 1mm we obtain hours rather than days.
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2.3 Leakage models

The above simple models provide a time scale ranging from hours to weeks for
equilibrium to be reached under ‘ideal model’ conditions. The results for the
characteristic times for the thin and thick fault models are comparable basically
because it is the size of the gaps between the solid surfaces that determines
the seepage time; recall the thick fault is filled with crushed material. The
time scales vary somewhat depending on the fault structure but in the mining
context all of the above time scales are short. Thus, within a year after water
pumping ceases one can expect water to seep into and ‘fill’ neighbouring faults.
The models are of course very simple and assume there are no ‘major’ blockages
to flow. Note however that under significant hydraulic head (as in our case)
water will ‘seek out’ conducting paths of ‘least resistance’, so that flow rates
of the same order as above would be expected with smaller flow rates through
many low conductivity paths over a compensating larger region; primarily it
is the head that determines the flow. The statement stands; the time scale is
expected to be ‘relatively short’.

There is however a major limitation to the applicability of the above mod-
els. In both the above models the hydraulic systems are hydraulically closed so
that eventually such systems will equilibrate with water levels in all portions
of the hydraulic network matching. In practice there is likely to be leakage
from the system which means that the extent of seepage will be determined
by a balance between water flow into the system and leakage from the system.
Thus, whilst the above results do provide useful seepage time scale estimates,
they cannot really provide a practical estimate for the extent of water incursion
into the fault zone. What really is required is a practical way of assessing this
in terms of measurable quantities. Probably the only available measurable in-
formation is water depth as a function of time in shafts in the mining area. As
shown in the above models there is a significant slow down in the seepage rate
into faults close to equilibrium which would be accompanied by a correspond-
ing slow down in the water level changes in the feeding shafts. It may be that
simple leakage models can be usefully used to obtain quantitive information.
It will be recalled that the effective driving pressure is the modified pressure.
Using this it should be possible to estimate the extent of seepage in various
directions.
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3 Fault slip

3.1 Slip in the absence of water

In regions excluding tunnels and faults the equations of static equilibrium and
the compatibility equation for the Earth’s stresses are given by

τxx,x + τxy,y = 0, (10)

τyy,y + τxy,x = −ρrg, (11)

52(τxx + τyy) = 0, (12)

where the x axis is horizontal, the y axis vertically upwards measured from
the Earth’s surface; ρr is the rock density. Assuming an initial relaxed stress
state (that is, with no unresolved shear) we have

τxx,x = 0, τyy = −ρrgy, τxy = 0.

The driving force in the vertical direction is of course gravity, so the vertical
normal stress is hydrostatic. Note however the horizontal variation in stress
τxx is undetermined under equilibrium conditions until one specifies bound-
ary conditions at x → ±∞; one must specify how the geological structure is
supported. Of course the support mechanism is very dependent on the forma-
tion and subsequent history of the geological structure, and sedimentary rock
formations and volcanic rock formations are likely to be supported in very
different ways. There is also considerable uncertainty as far as any formation
is concerned, and very little available structural data to work with. Further-
more there are normally cracks throughout the structure so that the effective
elastic properties are not those of a simple solid and will change with time.
Any geological structure will in fact continuously creep. Heim has suggested
that under such conditions the stress distribution will tend towards hydrostat-
ic, a situation referred to as lithostatic. Under such hydrostatic circumstances
τxx = τyy = −ρrgy. This result is referred to as Heim’s rule; the system be-
haves like a fluid contained in a solid containment vessel. If, on the other hand,
the structure is unconstrained horizontally so that it is entirely self supporting
then τxx = 0. The region of interest may be either compressed or stretched
by its containing vessel and the rock is normally fractured in most geological
conditions, so that it is weak under tension. Thus only compression seems



10 Riseing water table and seismicity

sustainable4. In order to model a range of practical circumstances we will use
a ‘k’ model given by

τxx = −kρrgy, with 0 ≤ k ≤ 2; (13)

one would expect stresses to scale up ‘hydrostatically’. One would expect k ≈ 1
for sedimentary formations with k smaller or larger under external loading.

Mining will of course affect the stress distribution locally and more impor-
tantly will affect the loading on faults. In regions close to excavations the fault
will be unloaded, and so more likely to slip. Such considerations are important
in the present context and such issues have been addressed in a previous MISG
in a different context, see Fowkes, Mason and Napier (2004), however here we
will only consider the simpler k models.

3.2 Fault slip under k loading

X

Y

N
S

x

y

A

B

C

θ

Figure 4: Stresses acting on a wedge of rock ABC in contact with a fault
plane BC at angle θ to the horizontal.

If (X, Y ) are the stresses acting on the vertical and horizontal faces of wedge
of rock ABC in contact with a fault/slip plane at angle θ to the horizontal,
and (N,S) are the normal and shear stresses acting on the wedge across the

4Under tension the material would crack thus releasing the tension.
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fault face as in Figure 4, then (with the adopted sign convention) horizontal
and vertical static equilibrium conditions for the wedge require

N sin θ + S cos θ = X sin θ,

N cos θ − S sin θ = Y cos θ,

in the limit as the wedge size goes to zero. Solving for (N,S) we obtain

N = X sin2 θ + Y cos2 θ, S = (X − Y ) sin θ cos θ.

Now X ≡ −τxx and Y ≡ −τyy, with X = kρrgH, Y = ρrgH for the ‘k’ model,
so the normal and shear forces acting across the fault face are given by

N/(ρrgH) = k sin2 θ + cos2 θ, S/(ρrgH) = (k − 1) sin θ cos θ, (14)

plotted in Figure 5 for 0 < k < 2 over the wedge angle range 0 ≤ θ ≤ π/2.
The wedge will slip if |S| > µ0N where µ0 is the frictional coefficient, that is,
if µ0 < µcrit where the ‘slip function’

µcrit(k, θ)) =
|(1− k)| sin θ cos θ

cos2 θ + k sin2 θ
, (15)

defines the critical slip condition. Note, see Figure 5:

• S > 0 if k > 1, and (under such vessel compression circumstances) the
wedge will slip up the fault plane for sufficiently small µ0.

• S < 0 if k < 1, and the wedge will slip (gravitationally fall) down the
fault plane for sufficiently small µ0.

• Under lithostatic conditions k = 1 so S = 0; the wedge will not slip
irrespective of wedge angle and µ0. Under such circumstances the force
transmitted across the fault is always normal to the fault face.

• The normal stress N acting on the wedge increases as the wedge angle
θ increases in the k > 1 (that is, higher than lithostatic compression)
case, and decreases in the case in which the region is under less than
lithostatic compression. In the lithostatic (k = 1) case N remains fixed
as the wedge angle varies.
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Figure 5: The normal and shear forces acting on a fault at angle 0 <
θ < π/2, for k = 0.05, 0.95, 1.05, 1.95: Left: N(k, θ)/(ρrgH). Right:
S(k, θ)/(ρrgH).

By plotting the slip function µcrit(θ) one can identify the fault angle range
(θmin(µ0) < θ < θmax(µ0)) corresponding to a prescribed µ0. In Figure 6 the
slip function is plotted out as a function of wedge angle for a small k case and
a large k case. For decreasing µ0 in the k � 1 (large compression) case slip
first occurs (up the plane) for small fault angles, whereas in the k � 1 (gravity
driven) case slip first occurs (down the plane) for large fault angles. In almost
lithostatic (k ≈ 1) cases faults at an angle of π/4 first slip.
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Figure 6: The slip function: Left: A small k case (k = 0.05). The slip
fault angle range corresponding to µ0 = 1.5 is shaded. Right: A large
k case (k = 10). The slip fault angle range corresponding to µ0 = 1 is
shaded.
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Figure 7: Contact between rock surfaces: asperities.

3.3 Friction models: the dry rock case

Rough surfaces (including rock faces) make contact only at high points called
asperities (see Figure 7), so that the real contact area between the surfaces is
very much less than the apparent area under normal (engineering) conditions
(ratios of the order of 10−3 are typical), and the associated real stresses (re-
al force/real area) are correspondingly very large. The asperities in contact
compress/crush each other to the extent required to support the load and it
is classically assumed that the real normal stress remains fixed with increased
loading and is given by the yield stress σcrit

5. Thus the normal stress N acting
on the fault plane and the fractional contact area between the two faces Areal

are related thus
N = Arealσcrit; (16)

σcrit can be determined experimentally and so Areal can be inferred for pre-
scribed loading.

Also slip involves shearing of the asperities, so that slip conditions can be
related back to the shear strength τcrit of the material; we have

|Smax| = Arealτcrit, (17)

and, since in both cases the stresses act over Areal under dry contact, we have

τcrit = µσcrit.

5Experimentally one finds that there is a slow increase in real normal stress with increas-
ing loading until a plateau is reached, see Persson (2002)
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The above ‘laws’ of frictional behaviour are referred to as Amonton’s first
and second laws. These laws were first established and verified in metal con-
tact (engineering) contexts where contact areas are relatively small and e-
lastic/elastoplastic forces dominate, but were found to work in much higher
contact circumstances where adhesive forces play a role, see Persson (2006).
They are also known to work in brittle rock situations, and so are generally
assumed to work in fault slip contexts although geological pressure levels are
much larger and the contact surfaces are polished by previous movements, see
Scholz (1998).

Aside: Theoretical results have been obtained determining the real contact
area as function of real normal stress in terms of the roughness power spec-
trum and elastic/adhesive properties of the material, see Persson (2006). Such
results may be useful in the geological context. There appears to be no experi-
mental verification for these results in the geological context. For more details
see Greenwood and Williamson (1966), Greenwood and Tripp (1976), and for
a recent review of contact theories see Persson (2006).

Aside: One might wonder if rocks behave like ‘normal rocks’ at the pressures
of interest. The mine depths in South Africa are of the order of 2000− 3000m
so hydrostatic (rock) pressure levels of the order of 40 − 90MPa (using ρr =
2 to 3 103kg/m3, g = 9.8m/sec2) are expected6. The yield stress of rocks
(silicates) are of the order of 500MPa, so one would not expect ‘global plastic’
behaviour of rocks at 3000m. The yield stresses are affected by temperature
and pressure, both of which are large at the depths of interest however in
context the effects are marginal, see Scholz (2002).

3.4 Slip after water entry

Water entering a fault will fill the ‘free’ (non real rock contact) spaces. Under
equilibrium (water flow) conditions this water will be at hydrostatic pressure
ρwgHw, where Hw is the depth of water at the location of interest; at depths
of the order of 2000− 3000m this will be significant (approx 30MPa; roughly
half of the rock pressure). This water will take up part of the applied elastic
stress N normal to the fault, thus reducing the area of real contact between
the opposing faces from A0 (under dry conditions) to Aw (under hydrostatic
loading). Since the same normal force N needs to be supported as before, we

6The specific gravity of limestone is 2.3-2.7, basalt 2.8-3.0, quartzite 2.6-2.8.
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have
N = Awσcrit + (1− Aw)ρwgHw = A0σcrit,

see (16)), which determines the real area of contact under hydrostatic loading
as

Aw

A0

= 1− (
1− A0

A0

)(
Ψ

1−Ψ
), (18)

where

Ψ =
ρwgHw

σcrit
,

is the dimensionless group that determines the effect of water entry. Note that
Aw/A0 → 1 (so there is little effect in the contact area) if either A0 → 1 (no
water can enter) or Ψ→ 0 (small water depth).

Resistance to applied shear can only be provided by the contacting as-
perities (since water cannot provide resistance to shear under static loading),
so that the maximum externally applied shearing force that can be resisted
under hydrostatic loading will be reduced from A0τcrit to Awτcrit, and thus
the effective coefficient of friction under hydrostatic loading will be reduced in
proportion to the contact area ratio: we have

µw

µ0

=
Aw

A0

= 1− (
1− A0

A0

)(
Ψ

1−Ψ
). (19)

Assuming (as above) that (1) the contact area pressure relationship is lin-
ear, (2) that the contact area is very small at the Earth’s surface, and (3) that
when the normal stress level reaches the yield level σcrit there is complete con-
tact between the opposing fault faces, we can estimate the real area of contact
before entry as:

A0 ≈
ρrgD

σcrit
, (20)

where D is the depth at the location on the fault of interest. Using typical
values for the parameters σcrit = 500×106Pa, ρr = 3.103kg/m3 (corresponding
to granite), and choosing a depth of 3000m we obtain A0 ≈ 0.17. Substituting
this value into (19) gives

µw

µ0

≈ (1− 0.30),

which represents a 30% change in µ/µ0 at 3000m; clearly significant!
Note that the effective frictional coefficient decreases almost linearly with

water depth Hw, see (18). Keeping the depth of fault location D fixed at 3000m
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Figure 8: Proportional change in the coefficient of friction due to water
entry. The water depth Hw is in metres.
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Figure 9: Water entry effects in the k = 0.05 case with µ = 1.5 under
dry conditions (upper dashed line) and corresponding µw values for water
depths of Hw = 1000m (middle dashed line) and Hw = 3000m (lower
line). Note especially that the range of fault angles for slip is increased
significantly after water entry.
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and varying the water depth Hw over the range 1000 − 4000m we obtain the
result shown in Figure 8.

Now of course whether the particular fault slips as a result of water inflow
will depend on just how close it was to sliding in the first place, and we have
seen that this depends on the orientation θ of the fault. For illustration in
Figure 9 we examine the water entry effect in the k = 0.05 model displayed
earlier in dry conditions, with water depths of 2000m and 3000m. Note espe-
cially that not only are fault planes within the dry failure θ range more prone
to slip but significantly also new α planes of weakness become slip prone.

4 Seismic Events: Water effects

Seismic waves are long > 1km for frequencies of seismic importance (> 100
cycles/sec) so such waves are effectively vibrations over mining site distances.
Thus the seismic situation can be modelled as an induced displacement of one
face of the fault (the lower say) relative to the other face. The two faces are
effectively ‘elastically connected’ via the asperities (modelled as springs) so
the movement is partially resisted but shear stress levels will be enhanced, so
fault slip can occur as a result of the event, depending on the stress status
of the fault before the movement. The effect of water on this process can
be dramatic because of lubrication effects in the thin water channels. In this
context the incident angle of the oncoming seismic wave to the fault is of
major importance because vibrations at right angles to the faults give rise
to lubrication effects that can either promote fault separation (and thus slip)
or resist separation (and thus prevent slip). This changed response is due to
phase changes (essentially the phenomenon is a resonance situation). These
issues have been examined in the context of the effect of mud on rock blasts,
see Mureithi and Fowkes (2008). The effects can be dramatic as can be seen in
the Figures 10 below, taken from this report. The circumstances were related
so these results do raise further concerns. Further work will be necessary to
examine such important (and subtle) issues in the present context.
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Figure 10: These figures display the effect of a vibration on the separation
distance between rock faces when water fills the gap. The shaded region
corresponds to one face of the rock and the other curves correspond to the
movement of the second face under the action of a vibration. Depending
on the separation of the faces and frequency of the vibration the faces
may separate (left) or ‘remain in contact’ (right). In our present context
slip would occur if the separation distance increases as in the left figure.

5 Conclusions

These investigations suggest that water will quickly seep into neighbouring
faults and that, not only will slip prone faults be more likely to be triggered
but also faults not active under dry conditions could now be active; an unex-
pected outcome. At 2000m our estimates suggest a 20% change in the effective
frictional coefficient increasing to 30% at a depth of 3000m. The range of fault
angles is greatly increased with angles both greater than and less than those
previously ‘active’. It should be emphasized that these results are based on a
range of assumptions that need to be validated. Probably the most ‘suspec-
t’ of the assumptions made is that the real area of contact between opposite
faces of a fault increases in direct proportion to the applied normal load. This
assumption is fine under engineering conditions but needs to be investigated
under geological (high pressure, historic slip) conditions.

It also appears to be the case that external seismic events are more likely
to trigger slip in water filled faults due to lubrication effects. Such effects are
likely to be much more dramatic than expected in certain frequency ranges
because of phase change effects. Given the complexity of our present situation
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our state of understanding this must be regarded as speculative.
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