
AGILE PROJECT SCHEDULING IN
SOFTWARE DEVELOPMENT

Eric Newby†

Study Group Participants
Eric Newby, Byron Jacobs†, Raymond Phillips†,
Dario Fanucchi†, Asha Tailor†, Lady Kokela†,

Jesal Kika†, Nadine Padiyachi†

Industry Representatives
Aderemi Adewumi‡, Brendon McDonald‡

Abstract

Agile project management is replacing traditional project manage-
ment in many software development projects. The bulk of the project
scheduling literature was developed to be applied within a traditional
project management framework. In this report we develop a project
scheduling procedure more appropriate to an agile project management
environment. Specifically we develop a stochastic, proactive, preemptive
project scheduling procedure. The structure of the procedure is such
that a reactive component can be added to the procedure, if required.
The scheduling procedure presented here is a modification of an existing
stochastic, proactive scheduling procedure due to Van de Vonder et al.
(2008). The modification allows activities to be preempted.

1 Introduction

Project scheduling is the problem of finding the optimal way to schedule a
number of different activities which have durations, resource requirements and

†School of Computational and Applied Mathematics, University of the Witwatersrand,
Wits 2050, South Africa (Eric.Newby@students.wits.ac.za).

‡School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,
Private Bag X01, Scottsville, Pietermaritzburg 3209 (Brendclyde@gmail.com).

21



22 Agile Project Scheduling in Software Development

are subject to given precedence relations [5]. Project scheduling is one compo-
nent of the multidisciplinary field of project management. Project managers
try to ensure that projects are completed on time and within the project bud-
get through careful planning, scheduling and control of project activities [5].
In the last decade a new project management philosophy has been developed;
agile project management. Agile project management is based on a number
of principles, the full details of which are not necessary for this report. The
interested reader is referred to [6, 7] and the references therein. For this re-
port it suffices to know that agile project management is more flexible and
adaptable than traditional project management and that incremental releases
of products are sometimes required [6]. Many software development companies
are starting to adopt an agile approach to project management. The study
group was asked to develop a project scheduling procedure that could be used
in an agile project management environment in software development.

More specifically the study group was asked to develop a a stochastic,
proactive/reactive, preemptive scheduling procedure. Stochastic project schedul-
ing involves the use of stochastic rather than deterministic values for the
project activity durations, this allows us to take into account the uncertain-
ty in the estimation of activity durations which is almost always present in
real world situations. Preemptive project scheduling allows activities to be
interrupted before they are completed and then finished at a later time during
the project execution. Proactive scheduling involves the creation of a project
schedule which is protected against variations in the activity durations by
the insertion of time buffers after certain activities in the schedule. Reactive
scheduling involves the development of a procedure to be used during project
execution to adjust the schedule if it is disrupted by delays in the completion
time of some of the activities. In addition it was required that the procedure
should be applicable in the case where limited resources are available; this is
known as resource constrained project scheduling. Extensive further informa-
tion on these concepts as well as a good general overview of project scheduling
can be found in Demeulemeester and Herroelen [5].

A scheduling procedure with the required properties is developed by adapt-
ing an existing stochastic, proactive scheduling procedure [11] in such a way
that the modified approach can handle preemption. A specific reactive pro-
cedure has not been developed, rather the proposed method is developed in
such a way that a reactive component can easily be added to the scheduling
procedure. Specifically, our procedure generates a predicted project schedule
which can be used to determine when the disruptions in the schedule have
become large enough for the reactive procedure to be applied.

The rest of this report is organised as follows. In Section 2 we discuss
project scheduling procedures that take stochastic activity durations into ac-
count. In Section 3 we discuss the inclusion of preemption into a stochastic
project scheduling procedure. In Section 4 we discuss the validity of some of



Eric Newby 23

the assumptions made in the report as well as possible ways of making our
procedure more agile. Concluding remarks are made in Section 5.

2 Stochastic Proactive Project Scheduling

We represent our project network G(N,A) as an activity-on-node graph with
dummy start and end activities. N is the set of nodes, the nodes represent
the different activities in the project. A is the set of edges and represents the
precedence relations between the activities. We assume that project activity i
has a known stochastic duration distribution di. Each activity requires a fixed
amount of one or more finite renewable resources during each time period
of its duration. Since we are scheduling with stochastic durations and re-
source constraints this is known as the stochastic resource constrained project
scheduling problem (SRCPSP). We want to solve the SRCPSP by finding a
proactive schedule in such a way that we leave room for a reactive procedure
to be added to our method. Now most of the work that has been done on
solving the SRCPSP involves minimising the expected project makespan. In-
stead of determining a deterministic schedule the SRCPSP is solved by finding
a scheduling policy. The scheduling policy is used during the execution of the
project which is now treated as a multi-stage decision process. At each deci-
sion point during project execution the scheduling policy is used to determine
which activities should be started next [9, 10]. The main problem with this
solution method, in the context of the problem considered in this report, is
that it does not allow the creation of a predictive baseline schedule. This will
make it very difficult to add a reactive component to the model as we will not
be able to determine when enough has gone wrong during project execution
for the application of the reactive procedure to become necessary.

Recently a new approach to solving the SRCPSP has been developed by
Van de Vonder et al. [11] and Deblaere et al. [4]. Instead of minimising the
expected makespan they minimise a stability objective function given by∑

i

wiE (|si − si|) , (1)

where wi is a weight assigned to the ith activity, si is the predicted starting
time of the ith activity and si is the realised starting time of activity i. The
weights wi are a measure of the cost of a delay in the completion time of
the ith activity. Suggested methods for assigning these weights are given in
section 4. In addition to the usual precedence and resource constraints (1)
is also subject to a due date constraint which forces sn to be less than or
equal to some deterministic due date δn. This due date is generally set to 1.3
times the minimum makespan of the the deterministic version of the project.
The deterministic version of the project is the scheduling problem obtained



24 Agile Project Scheduling in Software Development

by taking the means of di as deterministic durations. Hopefully, minimising
(1) creates a project schedule which is unlikely to deviate from its predicted
completion time and in which individual activities which would be expensive
to delay are also unlikely to deviate from their predicted starting times.

The methods described in Deblaere et al. [4] and Van de Vonder et al.
[11] minimise (1) by producing both a scheduling policy and a proactive pre-
dicted baseline schedule. The fact that a predicted baseline schedule can be
generated makes it possible to add a reactive component to the procedure.
We recommend using the STC (starting time criticality) algorithm described
in Van de Vonder et al. [11] to solve the problem. A brief summary of this
algorithm, all the details of which are taken from Van de Vonder et al. [11],
is now given. The algorithm involves two separate stages; in the first stage an
initial resource feasible schedule is found by solving the deterministic version
of the project. One of the most efficient methods currently available for solv-
ing this problem is the combined crossover algorithm developed by Debels and
Vanhoucke[3]. In the second stage of the procedure buffers are inserted into
the schedule while keeping it resource feasible and ensuring that it satisfies
the due date constraint. When inserting the buffers two factors are taken into
account. Firstly, the standard deviation of an activity as well as the standard
deviation of all activities preceding that activity in the schedule. Secondly,
the weight of an activity as well as the weights of all activities preceding and
succeeding that activity in the schedule. The reasons for considering these
factors during buffer insertion should be obvious. Some measure is needed to
quantify these two factors; the measure used in this algorithm is the starting
time criticality (STC). The STC of activity i is defined as

STCi = wiP (si > si) , (2)

where P (si > si) denotes the probability that activity i cannot be started at
its scheduled starting time. Now before implementing the algorithm a resource
flow network G′(N,R) on the initial deterministic schedule needs to be deter-
mined. The resource flow network is a graph with the same nodes N as the
project network G(N,A) but in which the edges represent possible resource
flow rather than precedence relations. The resource flow network is not unique
and the network used in this case is the one found using the algorithm given in
Artigues et al. [1]. The STC algorithm inserts buffers into the initial schedule
using the resource flow network to ensure that the buffered schedule remains
resource feasible. Details of the STC algorithm are given in Algorithm 1.

A method to calculate the probabilities P (si > si) is still required. The
probabilities cannot be calculated directly so some approximation is required.
Define k(i, j) as the event that activity j disturbs the starting time of activity
i. The probability of k(i, j) occurring is given by

P (k(i, j)) = P (sj + dj + LPL(i, j) > si), (3)



Eric Newby 25

Algorithm 1 The STC algorithm
stop = 0
while stop = 0 do

Calculate all STCi

Obj =
∑

i STCi

Sort activities by decreasing STCi

while no improved schedule found do
Take the next activity j from the sorted list
if STCj = 0 then

stop = 1
else

Increase the starting time of activity j by one unit
Increase the starting time of the direct and transitive successors

of activity j in G and G′ by one time unit
Calculate the new values of STCi

ObjNew =
∑

i STCi

if (ObjNew < Obj) and (sn ≤ δn) then
Improved schedule found

else
Restore the previous schedule

end if
end if

end while
end while



26 Agile Project Scheduling in Software Development

where LPL(i, j) is the sum of the expected durations of all the activities on
the longest path between activity j and activity i in the graph G (N,A

∪
R).

P (si > si) is now given by

P (si > si) = P

 ∪
i∈T (A

∪
R)

k(i, j)

 , (4)

where T (A
∪
R) is defined as the set of all direct and transitive predecessors

of activity i in G and G′. Two assumptions are made that allow P (si > si) to
be approximated. Firstly, it is assumed that activity j starts at its predicted
starting time when we calculate P (k(i, j)). It is also assumed that only one
activity at a time delays the starting time of activity i. The second assumption
allows (4) to be rewritten as follows

P (si > si) =
∑

i∈T (A
∪

R)

P (k(i, j)) , (5)

substituting in (3) gives

P (si > si) =
∑

i∈T (A
∪

R)

P (sj + dj + LPL(i, j) > si). (6)

From the first assumption it is clear that sj = sj so the following approximation
for P (si > si) is obtained

P (si > si) =
∑

i∈T (A
∪

R)

P (dj > si − sj − LPL(i, j)). (7)

The values of si, sj, LPL(i, j) and the distribution of dj are all known or easily
calculated so (7) can be used to calculate the value of STCi for every activity
i.

This completes the description of the STC algorithm; further details, com-
putational results and a number of alternative algorithms can be found in
Deblaere et al. [4] and Van de Vonder et al.[11].

3 Preemption in a Stochastic Environment

Allowing preemption in a deterministic environment can be done in a trivial
way by splitting each node into d separate nodes with duration 1 where d is
the duration of the original node. This results in a new project network with
the same form as the original network so the methods developed to solve non-
preemptive RCPSP can be applied to the new preemptive network. We want
to find a method to modify a stochastic project graph in such a way that it



Eric Newby 27

allows preemption in the project while still retaining the same general form.
We will then be able to apply the STC algorithm described in section 2 to our
modified network.

In this report we shall only consider the case where each activity can be
interrupted at most once. Hopefully the ideas developed here can be gener-
alised to allow an arbitrary number of preemptions. To achieve this we need
some procedure that can be used to split one node with a known duration dis-
tribution into two separate nodes which each have their own known duration
distributions. Let the original node represent activity j and let its stochastic
duration be given by dj. Label the two new nodes θ and ϕ for the first and
second nodes respectively and let their stochastic durations be given by dθ and
dϕ. Clearly we must have dj = dθ + dϕ. Now let Pj(t) be the probability that
activity j is completed at time t, let Pθ(t) be the probability that activity θ
is completed at time t and let Pϕ(t) be the probability that activity ϕ is com-
pleted at time t. We need to calculate Pθ(t) and Pϕ(t). It is difficult to find
these quantities in a meaningful way using only the information given above.
Accordingly, we add additional structure to the problem by defining the in-
terruption probability PI(t) as the probability that activity j is interrupted at
time t.

Using this information the duration distributions of activities θ and ϕ can
be found using probability diagrams. The duration distribution for activity θ
is given by

Pθ(t) =
(
P̃j(t) + P̃I(t)− P̃I(t)P̃j(t)

)
Ξ(t),

where P̃j(t), P̃I(t) and Ξ(t) are defined as follows

P̃j(t) =
Pj(t)∑n

m=t Pj(m)
,

P̃I(t) =
PI(t)

1−
∑t−1

m=1 PI(m)
,

Ξ(t) =
t−1∏
m=0

[(
1− P̃j(m)

)(
1− P̃I(m)

)]
,

where n is the number of time periods over which the distributions are defined.
The duration distribution for activity ϕ is given by

Pϕ(t) =



n∑
k=1

P̃j(k)Ξ(k), t = 0,

n−t∑
k=1

{
Ξ(k)

(
1− P̃j(k)

)
P̃I(k)Υ(k, t)P̃j(k + t)

}
, t > 0,



28 Agile Project Scheduling in Software Development

where Υ(k, t) is defined as

Υ(k, t) =
t−1∏
r=0

[
1− P̃j(r + k)

]
.

Using the distributions, Pθ and Pϕ, we can modify our original graph in such
a way that it allows pre-emption while retaining the same form as the original
graph. Combining this with the stochastic, proactive procedure described in
Section 2 we obtain a stochastic, proactive, preemptive project scheduling
procedure, as required.

4 Comments on Assumptions and Agility

It has been assumed that the project managers have access to the following
quantities:

1. The duration distributions of the activities.

2. The weights wi used to define (1).

3. The interruption probability.

We now give a brief discussion of possible scheduling procedures that can be
applied if this information is not available. Firstly, to perform any project
scheduling we must have some information about the durations of the activ-
ities. If duration distributions are not available we must either have access
to fuzzy durations or deterministic durations. Project scheduling using deter-
ministic durations is well developed and extensive further information can be
found in Demeulemeester and Herroelen [5]. Projects with fuzzy durations can
be solved by using a fuzzy variant of the critical path method [8, 13] or by
using heuristics to minimise the fuzzy makespan of the project [2, 12].

The activity weights wi may be difficult to assign. One possibility is to
make the weights proportional to the real world cost of delaying the activities;
for example delaying the start of an activity might require storage space for
materials to be rented for a longer period. The activities on the critical path of
the deterministic version of the project might also be assigned a higher weight
than the other activities. The dummy end activity is generally assigned a value
of ⌊10wavg⌋, where wavg is the average weight of the non-dummy activities [11].
If the weights cannot be assigned the problem can be solved by generating a
scheduling policy [9, 10]. However, as noted in Section 2, this will make the
addition of a reactive component to the procedure much more difficult.

There are currently no methods in the literature for including preemption
in a project with stochastic activity durations. Accordingly, if the interruption



Eric Newby 29

probability is not available there are three options available to the project man-
ager. Firstly, preemption can be ignored and a stochastic, proactive schedule
can be found using the method in Section 2. Secondly, the stochastic nature
of the activity durations could be ignored, allowing the deterministic preemp-
tive methods described in [5] to be applied. Another option is to develop a
new method of including preemption in a stochastic environment. However, it
might be difficult to achieve this without changing the structure of the project
network.

We now give a brief discussion of possible modifications that could be made
to the scheduling procedure developed in this report to make the procedure
more applicable when scheduling agile projects. Firstly, it should be possible to
allow activities to be cancelled as well as allowing for preemption. This could
be done by defining a cancellation probability analogous to the interruption
probability defined in Section 3. It might also be necessary to include stochastic
resource availabilities in the schedule. In some cases this can be done by
varying the duration distribution. If this is not the case it will be a non-
trivial matter to include stochastic resource availabilities in our model, this
is an area of future research. Agile software development often requires the
delivery of portions of the software to the client during project execution. This
could be included in our procedure by inserting a dummy node in the project
network as a direct successor to all of the activities required to make a portion
of the software available. These dummy activities could be given a relatively
high weight to ensure that the software portions are delivered close to their
predicted completion times.

5 Conclusion

We have developed a stochastic, proactive, preemptive project scheduling pro-
cedure. This procedure can be used to assist project managers in constructing
agile schedules for software development. The scheduling method is structured
in such a way that it should be easy to add a reactive procedure to the method.
In addition we suggest a number of ways in which our procedure could be mod-
ified to make it more consistent with agile scheduling principles. We also give
a number of alternative scheduling procedures that can be applied if there is
not enough information available to allow our method to be applied.

References

[1] Artigues, C., Michelon, P. and Reusser, S. Insertion techniques for static
and dynamic resource-constrained project scheduling. European Journal
of Operational Research, 149, (2003), 249-267.



30 Agile Project Scheduling in Software Development

[2] Bhaskar, T., Pal, M.N. and Pal, A.K. A heuristic method for R-CPSP
with fuzzy activity times. European Journal of Operational Research, 208,
(2011), 57-66.

[3] Debels, D. and Vanhoucke, M. Future research avenues for resource-
constrained project scheduling: search space restriction or neighbourhood
search extension. In: Proceedings of the 10th International Workshop on
Project Management and Scheduling, 2006, pp 110-113.

[4] Deblaere, F., Demeulemeester, E.L. and Herroelen, W.S. Proactive poli-
cies for the stochastic resource-constrained project scheduling problem.
European Journal of Operational Research, 214, (2011), 308-316.

[5] Demeulemeester, E.L. and Herroelen, W.S. Project Scheduling: A Re-
search Handbook. Kluwer Academic Publishers, first edition, 2002.

[6] Highsmith, J. Agile Project Management: Creating Innovative Products.
Addison-Wesley, first edition, 2004.

[7] Lee, J. and Hur, S.J. Agile approach to manage projects in ubiquitous
multi-project environment. In: Proceedings of the 5th International Con-
ference on Ubiquitous Information Technologies and Applications, 2010,
pp 1-5.

[8] Long, L.D. and Ohsato, A. Fuzzy critical chain method for project
scheduling under resource constraints and uncertainty. International Jour-
nal of Project Management, 26, (2008), 688-698.

[9] Möhring, R.H., Radermacher, F.J. and Weiss, G. Stochastic scheduling
problems I: General strategies. Zeitschrift für Operations Research, 28,
(1984), 193-260.

[10] Stork, F. Stochastic Resource-Constrained Project Scheduling. PhD the-
sis, Technical University of Berlin, School of Mathematics and Natural
Sciences, 2001.

[11] Van de Vonder, S., Demeulemeester, E.L. and Herroelen, W.S. Proactive
heuristic procedures for robust project scheduling: An experimental anal-
ysis. European Journal of Operational Research, 189, (2008), 723-733.

[12] Wang, H., Lin, D. and Li, M. A genetic algorithm for solving fuzzy
resource-constrained scheduling. In: Advances in Natural Computation,
Lecture Notes in Computer Science, Volume 3612, (2005), pp 171-180.
Editors Wang, K., Chen, K. and Ong, Y.S., Springer.

[13] Zhao, Z.-Y., You, W.-Y. and Lv, Q.-L. Applications of fuzzy critical chain
method in project scheduling. In: Fourth International Conference on
Natural Computation, Volume 6, 2008, pp 473-477.


