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Abstract

Falling rock from the roof of a mine cavity can cause shock waves to
propagate in tunnels connected to the cavity. Two models for the for-
mation and propagation of a shock wave in an adjoining tunnel are
presented, namely the Piston model and the Laval nozzle model. A
simple model is used to estimate an effective piston speed at the en-
trance to the tunnel. In the Laval nozzle model an equation for the
critical sectional area of the tunnel for the formation of a shock is de-
rived. An equation for the shock strength is also obtained. Suggestions
to mitigate the damaging effects of the air blast in the tunnel are made.

1 Introduction

Air blasts in mines are the result of falling rock from the roof of a mine cavity
into a large air space. The falling rock has a piston-like effect on the air in the
cavity. It compresses the air, forcing it to move through the adjoining tunnels,
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shafts, ore-passes, underground roadways and also through the gaps between
the falling rocks.

The effects of air blasts in mines may be disastrous. The force of the air
blast has been known to damage mining equipment and block access to the
shafts and passageways. Air blasts also pose a serious safety hazard to mine
workers.

The aim of this report is to determine the strengths and speeds of the
shocks that occur in adjoining tunnels of the mining cavity where the roof
collapse occurs.

This report considers two models; a piston model in Section 2 and a Laval
Nozzle model in Section 3. Possible procedures for reducing the shock strength
are described in Section 4 and conclusions are drawn in Section 5.

2 The Piston model

2.1 Shocks

Shocks, shock fronts or shock waves are “discontinuous” changes (jumps) in
physical properties, such as pressure, density and velocity, which are propa-
gated at speeds in excess of the “communication speed” of the medium; the
“speed of sound” in the case of gases, the “shallow water speed” in the case
of hydraulic jumps, or the “signal speed” in the case of continuous models of
traffic flow. Shocks arise for a number of different reasons. Perhaps the most
familiar shock is the bow shock wave generated by the supersonic “motion”
of an aircraft. The “cause” is the supersonic motion of the aircraft and the
“effect” is a shock wave which heats, compresses and turns the flow round the
aircraft.

There is also the infamous shock wave associated with the explosion of a
“bomb”. In this case the “cause” is the sudden release of large amounts of
energy in a small space. The “effect” is a blast wave which propagates out
from the explosion region at highly supersonic speeds. Supernova blast waves
are also of this type and it is possible to find a similarity solution, which is
spherically symmetric, (the well known Sedov solution) which describes the

shock speed (Ṙ(t) ∝ t
2
5 ) and the flow of the shocked material behind the blast.

Also in astrophysics there is the phenomena of stellar winds. Our own sun gen-
erates such a supersonic “solar wind” outflow which eventually must adjust to
the ambient interstellar medium. This it does through a “termination shock”.
The Voyager spacecraft have recently reported crossing this heliospheric ter-
mination shock at a distance of about 80 A.U. (1 A.U. is the distance between
the sun and the earth ∼ 220 R0 ∼ 1.5 x 108 km). It is interesting to note
that such “termination” shocks associated with supersonic stellar wind flows
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find an analogy with the flow of the water over a sink from the discharge from
an open tap above. It will be observed when the water from the tap strikes
the sink there is a fast, smooth, flowing inner region followed by a “hydraulic”
jump (shock) which raises the water height and slows down the flow into a
sub-critical, turbulent flow. In fact from a formal viewpoint this shallow water
flow is entirely analogous to a gas dynamic one in which γ (the ratio of specific
heats) = 2 since the force per unit width of the water (integral of the pressure)
varies as the square of the height which assumes the role of the density.

Since the “flow equation” for stellar winds applies equally well to inflows
(negative flow speeds) there is also a critical solution which takes the gas at
“rest” far from the gravitating star through a smooth subsonic-supersonic flow.
This accretion flow may also be ”terminated” by an accretion shock situated
above the star which slows and compresses the in-falling material.

In some sense stellar wind flows are similar to those in a de Laval nozzle,
in which the presence of a throat together with the property that the gas mass
flux per unit area maximises at the speed of sound conspire to yield subsonic-
supersonic flows, provided that the exit pressure is sufficiently larger than the
reservoir pressure. At the exit of the nozzle a shock can be formed.

Perhaps the greatest shock ever generated on earth was the one caused by a
meteor which crashed into the earth about 65 million years ago, near Chicxulub
in the Yucatan Peninsula, and lead to the extinction of the Dinosaurs.

In this report we will first consider the simplest case of all, namely the
shock produced in a shock tube by a piston moving uniformly into it. In this
case a shock is “immediately” formed and propagated into the undisturbed gas
with a supersonic speed determined by the piston speed as well as the speed of
sound of the undisturbed gas. We shall adopt this picture as providing a crude
and zeroth order approximation to air blasts in mines caused by a rockfall from
a great height in an adjoining wide shaft.

2.2 Piston generated shock in a shock tube and jump
relations

The shock generated by the uniform motion of a piston in a tube is, perhaps,
the simplest of all shock problems. It is assumed that a shock is “immediately”
generated and moves forward into the undisturbed gas with speed vs. The
shock speed is readily calculated in terms of the piston speed vp and the speed
of sound c0 of the undisturbed gas by using Prandtl’s relation for plane shocks,
namely:

v0v1 = c2∗ = µ2v20 + (1− µ2)c20 ≡ µ2v21 + (1− µ2)c21, (1)
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where

µ2 =
(γ − 1)

(γ + 1)
=

1

6

and γ =
7

5
for air. Here vi are the relative velocities given by

vi = ui − vs, (2)

where i = 0 (ahead of the shock) and i = 1 (behind the shock). The speeds ui
are the gas speeds in region i. In region 0, the gas is at rest (u0 = 0) whilst in
region 1 the gas moves with the piston (u1 = vp). Equation (1) is a quadratic
equation for vs yielding the shock speed,

vs =
vp

2(1− µ2)
+

√
c20 +

v2p
4(1− µ2)2

. (3)

Figure 1: The shock Mach number (Ms) as a function of the piston
Mach number (Mp), for different values of γ (γ = 1.4 in air).

Figure 1 depicts equation (3) expressed in terms of the shock Mach number

Ms

(
=
vs
c0

)
as a function of the piston Mach number Mp

(
=
vp
c0

)
for various

γ. Note that Ms is always > 1 and that in the case Mp � 1 the shock speed is
20 % greater than the piston speed. The question here is how do we determine
the effective piston speed for the situation of an air blast generated by a roof
collapse.
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However before doing so we note the well known relations for the pressure(
p1
p0

)
, density

(
ρ1
ρ0

)
ratios which follow from the Rankine-Hugoniot condi-

tions across the shock which conserve mass, momentum and energy. In the
shock frame (that is, one in which it appears stationary) these are:

p1
p0

=
(
1 + µ2

)
M2

0 − µ2 , (4)

ρ1
ρ0

=
M2

0

1− µ2 + µ2M2
0

, (5)

T1
T0

=
p1/p0
ρ1/ρ0

, (6)

M2
1 =

(1− µ2) + µ2M2
0

(1 + µ2)M2
0 − µ2

, (7)

S1

S0

= ln

[
(p1/p0)

(ρ1/ρ0 , )
γ

]
, (8)

in which
T1
T0

is the temperature ratio, M1 is the Mach number behind the shock

and
S1

S0

is the ratio of the entropies/unit volume. These relations are shown

in Figure 2 as functions of the Mach number M0 ahead. As we have already
indicated, this will be given by equation (3) once we have determined a model
for the piston speed (or Mach number). Note for moderate to strong shocks,
M0 � 1, the pressure, density and temperature ratios approximate to

p1
p0
∼ 7

6
M2

0 ,
ρ1
ρ0
→ 6 , (9)

T1
T0
∼ 7

36
M2

0 , M1 → 0.38 . (10)

The entropy is a secondary variable and plays no dynamical role what-
soever. That it increases through the shock is automatically guaranteed if
M0 > 1. It is also worth noting that the amount of dissipation (entropy gen-
eration) across the shock is completely independent of the dissipation mech-
anism(s), but is in fact determined by the boundary conditions through the
upstream Mach number M0.
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Figure 2: The pressure(p), density(ρ), temperature(T), entropy(S)
and the Mach number(M1) behind a shock as a function of the
Mach number(M0) ahead.

2.3 Estimation of piston speeds

Crude, zeroth order estimate of piston speed

In the absence of a full numerical gas-dynamic model of the roof collapse and
the subsequent air blast in the tunnel, we will assume that the air under the
collapsing roof is compressed adiabatically. This is used to estimate an effective
piston speed vp at the entrance of the tunnel of height h and depth D between
the uncollapsed roof and the tunnel.

Hence an effective piston speed vp at the entrance to the tunnel will be of
order

vp ≈
√
pe − p0
ρe − ρ0

, (11)

in which pe and ρe are the adiabatically compressed pressures and densities at
the tunnel height, respectively. In a simple free fall model

ρe
ρ0

=
D

h
. (12)
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Therefore (12) gives the piston Mach number as

Mp =
vp
c0

=
1
√
γ

[(
D
h

)γ − 1(
D
h

)
− 1

]1

2
. (13)
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Figure 3: The piston Mach number (Mp) as a function of
D

h
.

A plot of Mp versus
D

h
is shown in Figure 3 which displays the rather weak

increase of Mp with
D

h
varying from about 2, for

D

h
= 100, to 4, for

D

h
= 1000,

as a result of the
1

5
power dependence. The corresponding shock Mach number

Ms (Figure 1) then varies between 2.5 and 5, thus indicating a moderate to
strong shock. The shock is associated with pressure and density ratios ranging
from 10 to 28 and 4 to 5 respectively, with corresponding temperature ratios
ranging from 4 to 5.

3 Laval nozzle model

3.1 Previous work and the problem at hand

A collapsing roof in a mining cavern can cause shock waves to propagate in
tunnels leading away from the cavern. Such shock waves can be of sufficient
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Figure 4: Roof collapse in a cavern. The cavern lies under an open
pit with the roof of the cavern consisting of compacted boulders
(30 m deep). The floor is covered with fallen rocks (20 m deep).
One tunnel is at floor level the other close to the roof.

magnitude to overturn vehicles and cause loss of life as well as massive damage
within the tunnels. This air blast problem has been addressed in two earlier
MISG’s and was prescribed in terms of a particular event that occurred in
November 1999 in an Australian mine. The calculations made in the two
previous MISGs were based on this specific situation and this report will also
focus on this event. The cavern geometry was as shown in Figure 4. The cavern
was about 30 m square and about 200 m total depth. The ‘roof’ consisted of
about a 30 m layer of solid rock boulders temporarily stored in the upper
portion of the cavern of height 100 m with rubble of depth 60 m on the floor
of the cavern. The boulders in the roof were being removed gradually, but
evidently key rock support components were accidentally dislodged leading to
a complete roof collapse and consequent shock propagation in tunnels leading
out of the cavern.

In the first MISG report (2005) [1] a number of models were produced that
aimed at prescribing the pressure development within the cavern due to the
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roof collapse (impervious piston models, a rock rain model, and a porous flow
model). The simplest model results are relevant here and will be briefly de-
scribed. Now understandably there was no detailed information about the col-
lapse sequence and the pressure development within the cavern would strongly
depend on this sequence. If for example the roof fell ‘boulder by boulder’ then
there would be little net air displacement caused by such individual events and
no resultant shock. In the other extreme the roof could have collapsed ‘as a
unit’, in which case the air below the roof would be trapped and high pressures
would have developed. Given the damage caused this second scenario seems
closer to what happened, see later. The simplest model assumed uniform con-
ditions within the ‘sealed’ collapsing cavern and in this case if the air volume
in the cavern under the roof at time t is Vc(t) and pc(t), Tc(t) the associated
gas pressure and temperature then, assuming no venting, and adiabatic perfect
gas law conditions, we obtain

ρc(t)

ρ0
=

V0
Vc(t)

, with
pc(t)

P0

= (
V0
Vc(t)

)γ and
Tc(t)

T0
=
pc(t)

P0

ρ0
ρc(t)

, (14)

where V0 is the initial volume occupied by the air in the cavern (including voids
in the floor rubble), and where P0 is atmospheric pressure and γ ≈ 1.4. The
above model gives cavern pressures of the order of 1.3 P0 when the rock fall
passes by a tunnel 20 m from the roof of the cavern and 16.8 P0 for a tunnel
near the floor of the cavern, assuming the roof collapses onto the solid rubble
floor with void fraction 1/3. These are of course overestimates for the cavern
pressures generated since air escapes through tunnels and more importantly
through gaps between the falling rocks1, but the model indicates that the air
blasts generated in tunnels high up in the cavern will be weak, but major
blasts may occur in tunnels close to the cavern floor if the falling rock remains
relatively consolidated. Other relevant features of the problem are:

• Rocks take a time of order of 6 secs to reach the floor.

• Typical maximum gas velocities of the order of 60 m/sec (the rock speed
at floor impact) may be expected within the cavern; we have subsonic
flow within the cavern.

• In the tunnels one might expect maximum flow velocities of the order
of (60 × 25) m/sec where the factor 25 corresponds to the tunnel area
to cavern area ratio. This give approximately 5a0 where a0 is the sonic
speed; supersonic flow can occur within the tunnels.

1The models developed in MISGSA (2005) indicate much lower cavern pressures may
occur.
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It is a simple matter to take into account the loss of air through the tunnel
(by adjusting V0), but determining the break up of the falling rock is probably
a practical impossibility so the best one can do is to work with a worst case
scenario; the above represents such a scenario. In the following we will assume
the cavern conditions (ρc(t), pc(t), Tc(t)) are prescribed by any suitable model,
see MISG report (2005) [1].

In the second MISG report (2006) [2] a Fanno model was developed to
describe the boundary layer dissipation of mechanical energy from the shock
as it passes down a straight tunnel. It should be noted that there is little
mechanical energy loss across the shock so that the primary losses occur as a
result of viscous dissipation in the tunnel boundary layers.

The task for this MISG was to explore methods for either reducing the
strength of the shock wave generated from roof collapse or increase its dissi-
pation within a tunnel or the tunnel complex. A suggestion was made that
the introduction of tunnel loops may be useful in this regard. In Section 3.2.2
we estimate the shock strength and speed and in Section 4 we will describe
possible attenuation procedures.

3.2 Shock generation in the tunnel

The work to follow is slightly adapted standard knowledge as presented in
Liepmann and Roskho [6], (see especially Chapters 2 and 5), Courant and
Friedrichs [4], and Whitham [5]).

The falling rock in the cavern produces a rapid rise in pressure in the
cavern, followed by an abrupt recovery to normal. This abrupt rise in pressure
at the tunnel entrance will drive flow into the tunnel until the rock ‘curtain’
passes by the entrance. The assumption/assertion made here is that cavern
plus tunnel acts as a Laval nozzle (Liepmann and Roshko [6]) of rather unusual
shape, with the cavern identified with the reservoir and with the throat being
identified with the tunnel entrance, see later.

Of major importance for Laval nozzle flows is whether reservoir pressures
and temperatures are sufficiently large to cause sonic flow conditions at the
throat, thus ‘choking’ the flow. In context, choked flow conditions will occur
if cavern pressures are high enough. If cavern pressure levels are too small to
cause choking then we have subcritical (subsonic) flow, the resultant pressure
rise in the tunnel will be relatively ‘local’, and the pressure variations with
distance along the tunnel will also be relatively mild. In such circumstances
one would expect just local damage. Under supercritical conditions, there will
be a transition from subsonic to supersonic flow ‘across’ the entrance, with
a return to subsonic flow across an ‘impulsive’ shock which will propagate
down the tunnel with little reduction in strength as it travels. Under such
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circumstances the damage will be more major and spread well beyond the
cavern.

It would appear therefore that the best way to limit air blast damage is to
ensure (if possible) that the maximum cavern pressure pc(t) and the tunnel area
At conditions are such that the flow remains subsonic; equivalently subcritical
at the tunnel entrance. We have seen that the cavern pressure pc(t) is strongly
dependent on the permeability of the falling rock ‘slab’, which in turn depends
on the compactness of the collapsing roof before (and more importantly after)
collapse; perhaps this can be managed. Also by increasing the tunnel sectional
area one might avoid criticality.

3.2.1 The critical tunnel area

We consider a flow tube running from the top of the cavern of sectional area
Ac to the (single) tunnel entrance of area At, which we identify as the throat of
our Laval nozzle. Under (steady state) isentropic conditions the conservation
and state conditions yield explicit results for flow variables as a function of
flow tube area A, and if one chooses sonic conditions as a datum then one
obtains

(
A

A?t
)2 =

1

M2

[
2

γ + 1

(
1 +

γ − 1

2
M2

)](γ+1)/(γ−1)

where M =
u

a

is the Mach number of the flow at the location corresponding area A, see
Liepmann and Roshko [6] p126 (eqn (5.2)). Here, following Liepmann and
Roshko, we have used the superscript ? to denote critical (sonic) conditions,
so criticality is obtained when A = A?, as yet unidentified.

Now if we assume conditions are such that criticality is obtained at the
tunnel entrance, so At = A? ≡ A?t , we can determine the associated conditions
within the cavern by choosing A = Ac (with associated flow variables u =
uc, a = ac), which gives

(
Ac
A?

)2 =
1

M2
c

[
2

γ + 1

(
1 +

γ − 1

2
M2

c

)](γ+1)/(γ−1)

where Mc =
uc(t)

ac(t)
;

this determines the cavity conditions required for criticality (i.e. sonic condi-
tions at the throat).

Now both the Mach number of flow in the cavern Mc, and the area ratio
A?t/Ac are small, so that the above result can be approximated by

A∗
t

Ac
= Mc

[
γ + 1

2

](γ+1)/2(γ−1)

≈ ξ1.73Mc, (15)
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using γ = 1.4, and where ξ is a correction factor.
Aside: The correction factor ξ is introduced to account for the necking of
streamlines near the sharp tunnel entrance corner; Laval nozzle theory as-
sumes a rounded throat. This engineering correction factor needs to be ob-
tained experimentally and although the correction is significant (ξ ≈ 0.6 for
the corresponding weir problem) the factor is primarily geometric so the results
obtained are found to be robust.

For later purposes note that the associated (critical) flow variables at the
tunnel entrance are given by

p?t
pc

=

(
2

γ + 1

)γ/(γ−1)

≈ 0.528, and
T ?t
Tc

=
a?2t
a2c

=
2

γ + 1
≈ 0.833, so

a?t
ac
≈ 0.91

(16)
(Liepmann and Roshko, equations (2.34-5) p 54), after again using γ = 1.4.

As indicated earlier the blast damage will likely be much less if the tunnel
area exceeds the critical value A∗

t determined by (15), so the tunnel system
may be designed to do this.

Assume we have the roof collapse situation described in Figure 4 with a 5 m
by 5 m tunnel and a cavern of dimensions 20 m by 20 m, so At/Ac ≈ 0.06. The
rock speed is given by

√
2gL where L is the drop. This gives (with L = 10m)

approximately uc = 10 m/sec past the higher tunnel and 60 m/sec past the
lower one. Taking ac = 343 m/sec (a slight underestimate) we obtain a critical
area ratio given by A?t/Ac = 0.05ξ for the upper tunnel and 0.3ξ for the lower
tunnel. Thus At/Ac is greater than the critical value for the upper tunnel and
so shocks would not be expected. For the lower tunnel At/Ac is much less than
the critical value so shocks are to be expected. Again one should recall that
ξ ≈ 0.6 and the flow velocities in the cavern are over estimates.

3.2.2 The shock strength

We will now confine our attention to circumstances in which the tunnel en-
trance (or throat) area is less than critical for the cavern conditions at time t.
Now, providing the cavern pressure continues to increase, sonic conditions will
be maintained at the throat and the results above (16) will track the changing
flow state at the throat (p?t = 0.528pc(t) etc.). Thus, for example, the pressure
at the throat will continue to increase in proportion to the changing cavern
pressure. The through-flux will also increase.

The flow beyond the throat is supersonic so that (a) conditions within the
cavern cannot be affected by flow conditions occurring within the tunnel and
(b) the only input required for tunnel flow calculations are the flow conditions
at the tunnel entrance, see (16), together with initial conditions. Given these
initial conditions the solution can be determined numerically for any prescribed
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pc(t), however simpler approximate results are more appropriate in context.
Under the increasing cavern pressure conditions the shock strength and speed
will increase. Stronger shocks travel faster than (and thus catch up to) slower
shocks so that the eventual outcome will be a single (strong) shock travelling
at the higher speed. In our situation the tunnel entry pressure reaches a
maximum when the rocks pass the entrance so that the eventual strength and
speed of the generated shock will be determined by this maximum pressure
p∗t = 0.528pcmax. After that the cavern pressure drops to zero so it makes
sense to model the pressure input as a pulse of fixed strength p∗t = 0.528pcmax
over a time interval of τ (the fall time). If one additionally assumes the initial
state is quiescent, then the classical impulsive piston solution applies over the
time interval τ (the piston speed is ut). Over this time interval we simply have
uniform conditions both behind and in front of a fixed speed shock. The shock
strength is evidently given by

z =
p?t (t)− P0

P0

≡ 0.0.528pcmax(t)− P0

P0

, (17)

see (16), and other results follow, see Whitham p174. The shock speed is given
by a∗t for a uniform tunnel, which is somewhat greater than the normal sound
speed in air because of the higher temperatures in the chamber. Using the
upper estimates for cavern pressure obtained earlier this gives shock strengths
of order z = (0.528× 16.8)− 1 = 7.8 for the lower tunnel under impermeable
falling slab conditions; this is certainly large enough to overturn vehicles in a
tunnel.

After the time interval τ an expansion fan serves to reduce the shock
strength to zero, so criticality is lost and there will be a subsonic flow re-
covery to normal. The details can be worked out but are of little interest in
context. The important results are (15), which can be used to determine if
shocks will be generated under particular scenarios, and (17), which can be
used to determine the resulting shock strengths.

4 Shock abatement

As far as mitigating effects are concerned, the aim would be to absorb a suf-
ficient amount of energy from the air blast to minimise damage to life and
property.

There is very little mechanical energy loss across a shock wave (due to
viscous dissipation), and even the entropy change across a shock is small for the
moderate strength shocks of interest, see [5], p174. Also (turbulent) boundary
layer losses for normal tunnels are small, so that long propagation distances
are required to dissipate the shock energy, see MISG report (2006) [2].



50 Predicting and mitigating the effects of air blasts in mines

The shock negotiates directional changes in the tunnel by shock/expansion
fan combinations, with a small increase in mechanical energy loss due to bound-
ary layer interaction with the shock, see Liepmann and Roshko [6] p 54, 342,
Courant and Friedricks [4] p 176, and Whitham [5] p204. There is an as-
sociated change in the pressure profile along the tunnel (which would effect
the destructiveness of the shock), however stronger shocks travel with greater
speed than weaker ones so that after negotiating a corner or wedge the shocks
that are formed later coalesce, so that the pressure profile recovers; however see
below. Head on collisions (as can occur with a loop in the tunnel) do produce
a complex arrangement of shocks and expansion fans (with associated local
changes in the pressure profile) but do not result in significant energy reduc-
tion and again the profile regenerates, see Courant and Fredrichs [4]. Eddies
can however be generated in corners resulting in mechanical energy dissipation;
these effects are however reportedly small.

It can be seen from the above discussion that shock strength reduction is
not easily achieved. Crude devices such as venting the tunnel to the surface
or dropping a barrier are evidently prohibitively expensive. If there is a con-
venient tunnel to the surface then fine, but of course the location of the event
causing the burst cannot be normally anticipated. There will be a reduction in
energy due to the tunnel network partly because of a energy splitting but also
because of the increased boundary layer dissipation and wedge effects. There
has been effective modelling in this area, see Skews [8].

There are, however, a variety of practical methods that have been suggested
for abatement in a military context but also a train tunnel context [12], and
some of these are known to be effective. These include:

• Multiple shock interactions can be produced by introducing tight U or W
shaped bends in the tunnel or by sudden tunnel area reductions. Oblique
shocks are produced by the geometry and the accumulated effect of the
many interactions is significant. Some numerical work has been done.

• A suggestion was made to construct an adjoining tunnel. It was later
thought to be of limited value, essentially because the return air flow
into the air blasted tunnel could be introduced after the main blast has
already passed through the tunnel.

• Boundary layer interactions are increased by introducing closely spaced
wall spikes. This procedure has been used for train tunnels. The effect of
the spikes is to generate eddies and thus increase the effective boundary
layer thickness.

• The introduction of particles or water droplets. The viscosity of the
resulting mixture is changed so that dissipation across the shock in-
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creases. Evaporating water droplets also extract energy from the shock,
see Schwer and Kailasanath[11]; likely a more effective procedure.

• A suggestion from the meeting was the use of an impermeable liner
around and some distance (say d = 1m) from the tunnel walls. The
liner may be either air filled of water filled. As the shock progresses
the high pressure of the shock will press the liner against the wall thus
generating flow between the wall and the liner in the process.

• A related method is the use of a foam lining, as reported by Fondaw [7].
Experiments were performed using a 20 cm layer of foam of 90% void
(0.126 g/cm3 in a 100 m, 1 m radius tunnel. A 70% reduction in the
pressure pulse over a distance of 50 m was reported; lower density foams
performed better. Pressures of roughly 2.4 atmospheres were produced
using explosives. The liner may either temporarily absorb elastic energy,
or may be sacrificial. Perforated liners have also been suggested.

• Drop down perforated barriers have been suggested. A gravity motion
detector could be placed in the roof of the stopes which would give an
early trigger and activate a slab, hinged to the roof of the tunnel, which
would be pushed down and jammed on the tunnel floor and hence absorb
a significant fraction of the blast. An adjoining cavity would suck and
contain the air blast gases. It was suggested that the slab should be made
of a strong, light-weight material which would be useful in the case of
accidental triggering.

There was insufficient time to examine such abatement procedures, the
most promising of which is the use of liners.

4.1 The effect of liners on shock strength

One would expect the primary effect of the liner would be to simply extract
a known amount of energy (the elastically stored energy) from the travelling
shock wave, but there may be more subtle effects (shock speed, strength etc),
so a detailed analysis is appropriate:

As indicated above the pressure distribution behind the travelling shock due
to the pressure pulse is uniform so one would expect the liner to be uniformly
‘flattened’ against the tunnel wall behind the travelling shock; the sectional
area of the tunnel plus liner would change from A2 ahead of the shock, to A1

behind the shock due to compression of the liner described by

(p1 − p2) = k(A2 − A1),
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where a passive (volumetric) elastic liner response is assumed. The conserva-
tion conditions across the shock become (see Liepmann and Roshko p56):

A1(ρ1u1) = A2(ρ2u2)

A1(p1 + ρ1u
2
1) = A2(p2 + ρ2u

2
2)

A1(h1 + u21/2) + (k/2)(A2 − A1)
2 = A2(h2 + u22/2),

The stored elastic energy in the liner will be a small to moderate propor-
tion of the shock energy,and A1 − A2 � A1, so approximations are possible.
If we write A2 = A1(1 + ε) then to first order the above equations can be
approximated by

ρ1u1 = ρ2u2,

p1 + ρ1u
2
1 = p2 + ρ2u

2
2,

(h1 + u21/2) + ε (k A1) = (h2 + u22/2),

Thus the ‘normal’ mass and momentum equations are essentially unal-
tered so the Prandtl Meyer relation is unchanged, and the shock speed is only
marginally modified. The pressure in the tunnel will be only marginally modi-
fied so the shock strength will be (only) marginally changed. The energy equa-
tion is of course where the interest lies; the absorbed energy per unit length
along the tunnel will be small but is likely to be larger than (and additional
to) the absorption due to normal boundary layer effects. An investigation is
under way.

5 Conclusions

The models of the falling rock in the cavern indicate that the air blasts gen-
erated in tunnels high up in the cavern will be weak but major air blasts
may occur in tunnels close to the cavern floor if the falling rock mass remains
relatively consolidated.

In the absence of a full numerical gas-dynamic model of the roof collapse
and the subsequent air blast into the working tunnel, the crude piston model
predicts that it is very likely the air blast is preceded by a moderate to strong
shock. For example, for piston Mach numbers of the order of 3 the shock Mach
number is of order 4 with concomitant pressure, density and temperature ratios
of 28, 5 and 4 respectively. See Figures 1, 2, and 3

In the Laval nozzle model an important role is played by the tunnel entrance
in the physics. Equation (15) was derived for the critical tunnel area which can
be used to determine if shocks will be generated. Equation (17) can be used
to estimate the shock strength. Using upper estimates for cavern pressure,
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calculated assuming impermeable falling slab conditions, shock strengths of
order 7.8 for the lower tunnel near the cavern floor were obtained which is
large enough to cause considerable damage such as overturning vehicles in a
tunnel.

Several suggestions were made to mitigate the effects of the blast wave.
Attempts could be made to ensure that the roof of the cavern does not collapse
as an impermeable falling slab but that there are gaps between the falling rocks.
The effective tunnel area could be increased.

In the Laval nozzle model the blast wave damage will be much less if the
tunnel area exceeds the critical value determined by equation (15). The energy
of the shock could be dissipated by introducing tight U or W shaped bends
in the tunnel. Boundary layer interactions with the shock could be increased
by putting closely spaced spikes in the tunnel wall. The eddies generated by
the spikes increase the effective thickness of the boundary layer. Impermeable
liners some distance from the tunnel wall and filled with air or water could
be used to dissipate energy. Light weight but strong drop down perforated
barriers, triggered by a gravity motion detector, could be used to mitigate the
effects of the blast wave.
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