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Abstract

The question posed at the study group, by a South African premiership team
based in Johannesburg, was basically, ‘Can we choose a match ball that will
disadvantage opponents?’

In this report we answer the question through focussing on the motion of a
football through the air (which is where the difference in the ball’s behaviour due
to altitude is greatest). The forces affecting a ball’s motion are described and we
show how this translates into a mathematical problem consisting of a system of
coupled nonlinear differential equations. Numerical and approximate analytical
solutions are presented and compared. We then show how the mathematical
results may be used to guide the choice of ball.

1 Introduction

The problem posed at the study group was a simple one: given the different atmo-
spheric conditions between Johannesburg and most other South African cities, can
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we choose a match ball that will give an advantage to the home team? The choice of
ball was in fact limited between balls supplied by the sponsor Nike, the T90, Tracer
and Omni. The main obvious difference between the balls is that the T90 has a
dimpled surface, making it relatively rough, whereas the Tracer and Omni have a
shiny surface.

At the meeting we focussed on the motion of the ball in the air and in particular
from a free kick or corner. One reason for this is that these are relatively controlled
situations and there is much data on a ball’s motion through the air. A second
reason is that free kicks are an important factor in scoring: in the 1998 world cup
42 of the 171 goals scored came from set-plays, with 50% of these from free kicks
[1]. Consequently understanding the ball motion through the air from a free kick or
corner could provide important information concerning the best ball choice. Anoth-
er reason is that Johannesburg is located high above sea level (at around 2000m).
The air density is approximately 20% below that at sea level [5] and so we expect
that the greatest difference in ball motion between Johannesburg and cities at lower
altitude will be when it moves through the air.

As a football moves through the air it is subject to two main forces, gravity and
air resistance or drag. The magnitude of the drag is (approximately) proportional
to the square of the velocity and so the main effect of drag is to reduce the forward
motion. However, it is also drag that causes the swerve. For example, if we give a
ball top-spin then the top of the ball moves forward (in the direction of the ball’s
motion) whilst the bottom moves backwards. The top therefore has a higher for-
ward velocity than the bottom. The higher velocity results in higher drag at the top
than at the bottom (it also leads to a thinner boundary layer and earlier separation)
with the result that the pressure due to drag is greater at the top than the bottom.
This pressure difference then causes the ball to move downwards. Side spin will
likewise lead to sideways swerve, towards the side with a lower velocity. The spin
induced swerve is termed the Magnus effect. It is discussed in greater detail in [4].
Note, typically a ball is kicked at around 25m/s resulting in a relatively predictable
swerve. However, at low speeds, around 10-15m/s, there is a transition in the air
flow around the ball which may lead to the “reverse Magnus” effect. The transition
speed depends crucially on the ball and is affected by factors such as surface rough-
ness, pattern and stitching.

Given that the main focus of this report is on the effect of spin and its role in
choice of ball we note that there is no qualitative difference between top spin and side
spin. That is, if we study only side spin the conclusions will be equally valid for top
spin. This observation allows us to confine our attention solely to two-dimensional
motion.
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2 Mathematical Model
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Figure 1: Trajectory of a soccer ball.

Consider a ball initially at the origin, r(0) = 0, which is kicked primarily in the
y direction. The ball follows a trajectory denoted by r(t), as shown in Figure 1.
For simplicity we assume that the spin only occurs about an axis contained in the
x-z plane. Note we could easily generalise this, following the equations given in [3],
however, with the aim of simply finding how a given ball swerves it is sufficient to
analyse the simpler model with swerve in a single plane.

If we distinguish between the forward drag and Magnus (lift) effect, using the
subscript notation d and l for the drag and lift, then the total force F acting on the
ball is

F = mg + Fd + Fl , (1)

where

Fd = −
1

2
ρA|v|2Cd v̂ , Fl =

1

2
ρA|v|2Cl σ̂ × v̂ . (2)

Here m is the mass of the ball, A is its cross-sectional area, ρ is the density of air,

|v̂| =
√

(ẋ2 + ẏ2 + ż2) , (3)

is the magnitude of the velocity vector, Cd and Cl are the experimentally determined
drag and lift coefficients (which depend on the ball design). The unit vector v̂ defines
the direction of v

v̂ = cosψ sin θi+ cosψ cos θj+ sinψk . (4)

Note, we define angles according to the convention of [1, 7] (which is essentially
opposite to normal convention). The angle θ is measured from the y axis to the
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projection of the velocity vector onto the x-y plane. The angle ψ is the angle of
inclination in the z direction measured from the x-y plane. From the definition of v̂
we may express the angles in terms of the Cartesian velocity components

cosψ sin θ =
ẋ

|v|
, cosψ cos θ =

ẏ

|v|
, sinψ =

ż

|v|
. (5)

The spin axis is
σ = cos γi− sin γk , (6)

where γ is the angle between the negative x axis and the z axis. In keeping with
previous studies we assume that the orientation of the spin axis and spin rate are
constant. In fact the spin rate will decrease very slowly, see [5], but this will not
affect the conclusions of our model.

The differential equation for the flight is, therefore

r̈ = g − kd|v|
2
v̂ + kl|v|

2
σ × v̂ , (7)

where kd = ρACd/2m and kl = ρACl/2m. In component form this is

ẍ = −|v|
{

kdẋ− kl sin γẏ
}

(8)

ÿ = −|v|
{

kdẏ + kl[cos γż + sin γẋ]
}

(9)

z̈ = −g − |v|
{

kdż − kl cos γẏ
}

. (10)

This is the basic set of equations governing the motion of a football. The appear-
ance of |v| means that they are nonlinear and difficult to solve analytically. Bray
& Kerwin [1] note that they have no closed form solution and so must be solved
numerically.

Given that our focus is on the effect of spin, it is sufficient to deal with only a
two-dimensional model. Any conclusions concerning ball choice in two-dimensions
will hold in three-dimensions. Hence in the following sections we will study the
simpler model defined by

ẍ = −|v|
{

kdẋ− kl sin γẏ
}

(11)

ÿ = −|v|
{

kdẏ + kl sin γẋ
}

, (12)

where now |v| =
√

(ẋ2 + ẏ2). This means that we are restricting the ball motion to
move primarily in the direction of the kick, the y direction, and any swerve is caused
by side-spin (and so we must choose γ ≈ π/2 to ensure there is a significant spin
component). To highlight the effect of spin further we impose the following initial
conditions

x(0) = y(0) = 0 , ẋ(0) = 0 , ẏ(0) = v . (13)
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That is, the ball is initially placed at the origin of the system and kicked purely in
the y direction. There is no initial x velocity and so any motion in this direction
must come from the spin of the ball.

In the following section we will reduce this system using a simple dominant
balance argument, which then allows us to find an analytical solution. Subsequently
we will formalise the reduction, via non-dimensionalisation, and then find a more ac-
curate perturbation solution. This approach is easily extended to three-dimensions,
hence, although the comment of Bray & Kerwin [1] that there is no closed form
solution is correct, it is possible to find an accurate approximation to the system
and so remove the need for a numerical solution.

3 Approximate solution method

Even the two-dimensional equations (11,12) contain a number of terms that make
the system difficult to treat analytically. However, it is apparent that some will have
a greater effect than others. For example, since the initial kick is predominantly in
the y direction then clearly ẏ ≫ ẋ and so v ≈ ẏ. The coefficients Cd, Cl = O(0.3)
and so kd, kl ≈ 0.01. Then if we consider the x equation, provided the spin axis is
such that γ is not close to zero, it follows that kdẋ ≪ kl sin γẏ. In the y direction
obviously the drag is much greater than the lift implying that kdẏ ≫ kl sin γẋ.
Consequently the governing equations must be well approximated by the system

ẍ = kl sin γ ẏ
2 , ÿ = −kd ẏ

2 . (14)

This system can be solved analytically. Before writing down the solution we first
note that the x equation may be expressed as

ẍ = −
kl
kd

sin γ ÿ . (15)

Denoting the initial conditions as (x, y) = 0, (ẋ, ẏ) = (0, v) at t = 0 then we first
integrate the y equation to find

y =
1

kd
ln(1 + kdvt) . (16)

Substituting this into the x equation gives

x = −
kl
kd

sin γ(y − vt) . (17)

This solution highlights the dominant factors that determine the position of the ball,
that is, from the y equation it is clear that only the drag, kd, and initial velocity
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determine the position with respect to time. From the x equation we may conclude
that the amount of swerve depends on v, kd, kl and also the spin angle. Equations
(16,17) provide a first approximation to the solution of the system and indicate that
while the y motion is relatively simple, the swerve (in the x direction) depends on
more parameters. We will now look into a more formal method to approximate the
ball motion and so improve on the above equations.

4 Perturbation solution

We can non-dimensionalise the system by setting

x̂ =
x

L1
, ŷ =

y

L2
, t̂ =

t

τ
. (18)

The length-scale L2 is simply the distance of the free kick, that is, the distance
between the ball and goal, which we will take to be 20m. Note, another distance
can be found from the governing equations L2 = 1/kd ≈ 100m. This is the length-
scale over which drag will cause the ball to stop. Since the free kick is taken over
a much shorter distance we will take L2 = 20m. The time-scale τ then comes from
the time taken for the ball to travel the distance L2. If the initial kick velocity is v
then τ = L2/v s. For example, if v = 20m/s then τ = 1 s is approximately the time
taken for the ball to reach the goal. The length-scale L1 is, as yet, unknown.

Now consider the velocity vector |v|. In non-dimensional form

|v̂| =

√

L2
1

τ2
˙̂x2 +

L2
2

τ2
˙̂y2 =

L2

τ
˙̂y

√

1 +
L2
1

L2
2

˙̂x2

˙̂y2
. (19)

The x equation becomes

L1

τ2
¨̂x = −

L2

τ
˙̂y

√

1 +
L2
1

L2
2

˙̂x2

˙̂y2

(

kd
L1

τ
˙̂x− kl sin γ

L2

τ
˙̂y

)

. (20)

Hence

¨̂x = − ˙̂y

√

1 +
L2
1

L2
2

˙̂x2

˙̂y2

(

kdL2
˙̂x− kl sin γ

L2
2

L1

˙̂y

)

. (21)

As stated previously, the motion in the x-direction comes from the side-spin term
and this indicates the length-scale L1 = kl sin γL

2
2. If we set kd = 0.013, kl = 0.01,

γ = π/2, L2 = 20 then we see L1 = 5.2m, meaning that we expect the ball to swerve
O(5)m during the flight. We now denote ǫ = kdL2(≈ 0.3 for the given parameter
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values). Noting that L1/L2 = 5.2/20 we may set L1/L2 = aǫ. A similar analysis
reduces the y equation to

¨̂y = − ˙̂y

√

1 +
L2
1

L2
2

˙̂x2

˙̂y2

(

kdL2
˙̂y + kl sin γL1

˙̂x
)

. (22)

The final term on the right hand side kl sin γL1 ≈ 0.04. Noting that ǫ2 = 0.068 we
denote kl sin γL1 = bǫ2. Dropping the hats we may finally write our system as

ẍ = −ẏ

√

1 + a2ǫ2
ẋ2

ẏ2
(ǫẋ− ẏ) , ÿ = −ẏ

√

1 + a2ǫ2
ẋ2

ẏ2
(

ǫẏ + bǫ2ẋ
)

, (23)

x(0) = y(0) = 0 , ẋ(0) = 0 , ẏ(0) = 1 . (24)

Now we carry out a standard perturbation analysis, setting

x = x0 + ǫx1 + ǫ2x2 + ǫ2x3 + · · · , y = y0 + ǫy1 + ǫ2y2 + ǫ3y3 + · · · . (25)

Substituting these expansions into the equations in (23) leads to

y = t− ǫ
t2

2
+ ǫ2(2− b)

t3

6
− ǫ3(6 + a2 − 7b)

t4

24
+O(ǫ4) (26)

x =
t2

2
− ǫ

t3

2
+ ǫ2(11 + a2 − 2b)

t4

24
− ǫ3(50 + 15a2 − 25b)

t5

120
+O(ǫ4) . (27)

Returning to dimensional form, by setting x → x/L1 = x/(klL
2
2 sin γ), y →

y/L2, t → tv/L2, we obtain

x = kl sin γ
v2t2

2

(

1− kdvt+ (11 + a2 − 2b)
(kdvt)

2

12
− (50 + 15a2 − 25b)

(kdvt)
3

60

)

,

(28)

y = vt

(

1− kdv
t

2
+ (2− b)

(kdvt)
2

6
− (6 + a2 − 7b)

(kdvt)
3

24

)

. (29)

The y equation shows that the distance travelled is approximately proportional
to the initial velocity and time but that drag reduces this and the effect of drag
increases with time. However, since swerve due to side-spin is our main interest the
x equation is the most revealing. From this we see that to leading order the distance
travelled in the x direction is proportional to the drag coefficient kl and also (vt)2.
The ball design and atmospheric conditions contribute through kl. The product vt
is the first approximation to the distance travelled in the y direction. The quadratic
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dependence then indicates the importance of taking a kick far from the goal. The
further the ball travels the more it will swerve (this is obviously well known to free
kick specialists in football who frequently attempt to move the ball away from the
goal). Perhaps the most famous example is the free-kick of Roberto Carlos against
France in 1997 which exhibited spectacular curve at the end of the flight. This free
kick was taken approximately 35m from goal, see YouTube or [2]. The forward drag
kd enters at first order, that is, it’s effect is relatively small (although it grows with
time) and it acts to reduce the swerve.

Note, if we expand the solutions obtained by just retaining the dominant terms,
equations (16,17), for small kdvt then the y expansion agrees with equation (29)
to O(ǫ). The x expansion only agrees at leading order. Hence the dominant term
balance will provide a reasonable approximation to the y motion but, except for at
very small times, will not be so good in the x direction. We will see this in the
results shown later.

5 Results

Denoting the variables by

x = f1 , ẋ = f2 , y = f3 , ẏ = f4 , (30)

the system represented by (11, 12) may be written as a set of first order differential
equations

ḟ1 = f2 , ḟ2 = −
√

f22 + f24 (kdf2 − kl sin γf4) , (31)

ḟ3 = f4 , ḟ4 = −
√

f22 + f24 (kdf2 + kl sin γf2) , (32)

subject to f1(0) = f2(0) = f3(0) = 0, f4(0) = v. This system is easily solved
numerically by MATLAB. In the following figures we compare the numerical solution
with the approximate solutions of the previous two sections. Parameter values used
in the calculations are provided in Table 1.

Figure 2 displays the different solutions for x(t). The upper plot shows the
numerical solution (solid line) and three perturbation solutions, to O(ǫ, ǫ2, ǫ3). The
O(ǫ) solution is the dotted line lying below the numerical solution. The error at
t = 1 is (xnum − xO(ǫ))/xnum ≈ 0.08, or 8% (this is in keeping with the order of
neglected terms O(ǫ2) ≈ 0.09). The dash-dot line visible just above the numerical
solution is the O(ǫ2) solution (with an expected error of O(ǫ3) ≈ 0.003 ≈ 0.3%).
The O(ǫ3) result is also plotted, as a dashed line, but this is indistinguishable from
the numerical solution. The lower plot shows a comparison of the numerical and
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Figure 2: The x position plotted against time: Upper plot shows the numerical
solution (solid line) compared with the perturbation solutions (O(ǫ) is dotted, O(ǫ2)
is dot-dashed and O(ǫ3) is dashed). Lower plot shows comparison of numerical
solution (solid line) and the logarithmic solution (dashed).



42 T. G. Myers and S. L. Mitchell

Parameter Value Units

Cd 0.35
Cl 0.27
γ 80 degree
m 0.45 kg
ρ 1 kg m−3

r 0.11 m
A 0.039 m2

Table 1: Parameter values.

approximate solution, equation (17). Obviously this is much less accurate than the
perturbation solution, but it still shows the correct qualitative behaviour.

Figure 3 shows the equivalent results for y(t). Now, even at O(ǫ) the perturbation
solution is highly accurate. The approximate solution of equation (16) is also very
close to the exact solution. The accuracy of the approximations (16,17) is in line
with the observations based on the expansions of the previous section.

Equations (28,29) give explicit and accurate analytical representations for the
position of the ball. Noting a = kl sin γ/kd, it is clear that the main factors affecting
the y motion of the ball are the initial velocity v and the drag coefficient kd. The only
contribution of the spin, through kl occurs at 3rd order and so is virtually negligible.
That is, we can safely represent the motion in the y direction by equation (14b) and
for a given initial velocity if we wish to change the motion in the y direction we
must simply look into factors affecting kd. Note, the terms in the y series expansion
also depend on t and so it is possible that the lower order terms can dominate for
sufficiently large t. If we consider when the first and second terms have the same
magnitude we find t = 2/(kdv) = 10 s. Since this is too long a time-scale for a free
kick we assume that our conclusions hold for all sensible times. The motion in the
x direction is dominated by the leading order term and so the swerve is primarily
due to the size of kl, v, t, γ. However, the presence of the kd term at first order
means that this drag coefficient also plays an important role and its importance will
increase in time. For example, at t = 0.1 the first order term contributes around
1.5% of the movement whilst at t = 1 it contributes 15%. Practically this means that
the swerve of the ball is controlled by a number of factors. To change the swerve we
could look at changing kl, γ or to a lesser extent kd. From the above results it is clear
that the perturbation solutions are highly accurate. The beauty of calculating the
solutions in this form, rather than numerically, is that we may see directly the effect
of parameter values on the ball’s motion. The y solution shows that the motion is
dominated by the initial kicking speed. At first order we find that the drag kd acts



Rough or smooth balls? That is the question 43

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

t

y

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

t

y

Figure 3: The y position plotted against time: Upper plot shows the numerical
solution (solid line) compared with the perturbation solutions (O(ǫ) is dotted, O(ǫ2)
is dot-dashed and O(ǫ3) is dashed). Lower plot shows comparison of numerical
solution (solid line) and the logarithmic solution (dashed).
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to slow the movement down. The x solution is more interesting, it demonstrates a
leading order effect from the drag coefficient kl, the angle γ and the velocity v. So,
for a given kick, fixed γ, v it is clear that the motion varies solely though the effect
of the drag coefficients.

6 Conclusions

Now we return to the question of whether the ball can provide an advantage for
a team. In the case of Bidvest Wits the perturbation solution can be used to find
a clear answer. The swerve in the x direction is proportional to kl = ρACl/(2m)
and the value of the air density ρ decreases with altitude (and other atmospher-
ic conditions) while Cl increases with the ball roughness. In Johannesburg, at an
altitude of 1800m, ρ ≈ 1.04 kg/m3 is approximately 20% lower than at sea-level,
ρ ≈ 1.29 kg/m3. Hence a team accustomed to playing at sea level will expect ap-
proximately 20% more swerve. In Figure 4 we show solutions for two identical kicks
taken at sea level and at 1800m. Unlike previous solutions we now impose an initial
velocity in the x direction such that the ball just enters the goal (for the sea-level
kick) situated around 17m away. The same kick in Johannesburg would miss by
over 30 cm.

Figure 4: Comparison of identical kicks at sea-level and Johannesburg.

Given that coastal teams expect more swerve the strategy for Wits should be to
use a smooth ball (which has a lower Cl value) since this will behave in the manner
furthest to that expected by a lower altitude team. When training for games at lower
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altitude, a rough ball should be used such that Cl increases in a way to reproduce the
value of kl expected at the away game (of course this may be difficult to predict).
Since kl ∝ Clρ if we increase the value of Cl by a factor 1.29/1.04 the kick in
Johannesburg will resemble that at sea-level.

We have now submitted a paper to the Journal of Sports Science which expands
on the work conducted at the study group and summarised in this report [6].
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