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1 Introduction

This report follows on from the executive summary and provides additional infor-
mation about work carried out on the hydrofoil problem by the Study Group. The
nature of the technical mathematical difficulties that arose will be described and
ways of overcoming these difficulties will be presented by examining analogous sit-
uations.

A boat moving through the water experiences (hull) drag due to the generation
of surface waves and due to viscous dissipation. The hydrofoil is essentially a wing
placed underneath a boat which lifts the moving boat out of the water and thus
greatly reduces the drag, enabling the boat to travel faster. A photograph of a
hydrofoil is presented in Figure 1.

The vortex lattice method is a standard procedure for determining the fluid flow
around an object (such as an airfoil) but additional technical difficulties arise in the
hydrofoil case because of the presence of the water surface; indeed determining the
water waves generated by the hydrofoil is the ‘essence’ of the problem. Gerrie Thiart
has used the vortex lattice method to obtain practical numerical results for the drag
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58 Vortex lattice methods for hydrofoils

Figure 1: A Hydrofoil.

acting on the hydrofoil, but the procedure he uses fails at high speeds as the hydrofoil
moves near to the water surface. The failure displays itself in the form of divergent or
nearly-divergent integrals that need to be evaluated during the computation process,
and may be associated with a failure of mathematical technique, or may be due to
modelling difficulties, depending on circumstances. It was not clear to the group
how Gerrie Thiart currently handles the integration difficulties; it may be that he
has already overcome some of the issues highlighted here.

1.1 The vortex lattice method

Historically, the vortex lattice method was one of the first computational fluid me-
chanics methods used, going back as late as the 1940’s at the Aeronautical Research
Council in the United Kingdom. The method assumes inviscid, incompressible, ir-
rotational flow and is based on Prandtl “lifting line” theory. The method has been
successfully used to predict the effect of airfoil shape on lift and drag and as such is
used for aircraft design.
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1.2 General theory

The velocity field q associated with an incompressible irrotational inviscid fluid flow
can be described in terms of a velocity potential φ defined by

q = ∇φ,

and this description ensures the momentum balance equation is satisfied. Imposing
the continuity condition then requires that

∇2φ = 0,

so the problem reduces to one of solving Laplace’s equation with suitable boundary
conditions. One can do this by using a linear combination of elementary Laplace
equation solutions. The elementary Laplace equation solutions used are the source
and vortex solutions, and using these one can show that the general solution for
the two-dimensional steady flow past a simple airfoil of length L with free stream
velocity of U êx is given by

φ = Ux+

∫ L

0
f(t) log

(
(x− t)2 + y2

)
dt+

∫ L

0
g(t) arctan

(
y − t
x

)
dt ,

where f(t) is the distribution of sources along the airfoil (providing displacement
but not lift), and g(t) is the distribution of vortices (providing lift but not displace-
ment). The f and g need to be chosen so that there is no flow normal to the airfoil.
The results extend to hydrofoils (consisting of a combination of simple airfoils, as
illustrate in Figure 2), and if the hydrofoil is thin then no source terms are required,
so it is now a matter of determining the vortex distribution Γ(x, y, z) over the hydro-
foil’s surface that ensures there is no flow through this surface and also additional
conditions need to be satisfied on the surface of the water, as discussed later. To do
this one discretizes the wing surface into a sequence of panels with associated vortex
strength Γij and (numerically) determines the Γij ’s required to approximately satis-
fy the required boundary conditions, see Figure 2. Imposing these conditions leads
to a set of algebraic equations for the Γij ’s. Using these Γ′ijs the resultant pressure
distribution around the hydrofoil can then be directly determined and lift and drag
results obtained by integration.

1.3 The free surface boundary conditions

A major difficulty is that the location of the ‘free’ water surface needs to be deter-
mined as part of the solution process. If the surface is located at z = β(x, y, t) then
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Figure 2: Discretizing the hydrofoil surface.

the nonlinear boundary conditions

φz = βt + βxφx + βy φy at z = β(x, y, t) , (1)

1
2 ρ(φ2x + φ2y + φ2z) + ρ βg = 0 at z = β(x, y, t) , (2)

φ→ 0 as z → −∞ , (3)

need to be imposed. There is no hope of a nice simple solution for the fully nonlinear
problem, however by linearizing the boundary conditions and applying them on the
unperturbed water surface one can obtain a tractable problem. This gives

φz = βt + Uβx at z = 0 , (4)

1
2 ρU

2 + ρ βg = 0 at z = 0 , (5)

φ→ 0 as z → −∞. (6)

The equations for Γij now reduce to linear algebraic equations which can be inverted.
This is the procedure Gerrie Thiart used, however, difficulties arise in that terms
in the solution matrix involve integrals (associated with determining the velocity
on the airfoil) that diverge for small hydrofoil depths. Of course the linearization
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procedure requires that waves created on the surface are small which will not be the
case as the hydrofoil gets closer to the water surface so inevitably the approach will
fail for small enough depths. However, it may be that the range of validity of the
results can be extended by suitably handling the offending integrals.

2 The problem integrals

The three integrals that need to be handled carefully and may cause problems are
given by:

uω = −Γij
2π

∫ π/2

−π/2
Im
[
f
(
ν,∆ξ,∆η,∆ζ

)[
J
(
ν, ξr, νr, ζr

)
− J

(
ν, ξl, νl, ζl

)]
cos ν dν, (7)

vω = −Γij
2π

∫ π/2

−π/2
Im
[
f
(
ν,∆ξ,∆η,∆ζ

)[
J
(
ν, ξr, νr, ζr

)
− J

(
ν, ξl, νl, ζl

)]
sin ν dν, (8)

wω =
Γij
2π

∫ π/2

−π/2
Re
[
f
(
ν,∆ξ,∆η,∆ζ

)[
J
(
ν, ξr, νr, ζr

)
− J

(
ν, ξl, νl, ζl

)]
dν, (9)

where

J(ν,∆ξ,∆η,∆ζ) = −2iH(ω)κν exp (κν(z + ζ) + iκνω)

+
1

π

[
1

(z + ζ) + iω)
− κν

∫ ∞
0

e−tdt

t+ κν((z + ζ) + iω))

]
, (10)

f(ν,∆ξ,∆η,∆ζ) =
∆η sec ν + ı∆ζ tan ν

∆ξ cos ν + ∆η sin ν + ı∆ζ
, (11)

κν =
g

U2
sec2 ν, ω = (x− ξ) cos ν + (y − η) sin ν

and H is the Heaviside function.

2.1 Problem integral 1

The first difficulties that we shall discuss come from the function

f(ν,∆ξ,∆η,∆ζ) =
∆η sec ν + ı∆ζ tan ν

∆ξ cos ν + ∆η sin ν + ı∆ζ
.
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Assume that for simplicity ∆ζ = 0 (flat hydrofoil). Then (for example)

uω ∝
∫ π/2

−π/2

Jr − Jl
sin(ν − δ)

dν

where

tan δ = −∆ξ

∆η
.

Figure 3: A grid for calculating uω

This exists only as a Cauchy Principal Value (CPV) integral and MUST be eval-
uated by suitable methods. Standard numerical integration methods (for example,
Gaussian quadrature) will not, in general, cope with CPV integrals. To give a con-
crete illustrative example, let us take the case where we consider a flat non-tapered
hydrofoil and use a one by one grid to calculate the integrals as in Figure 3. The
term involving Jr behaves as shown in Figure 4 which shows a typical “Cauchy”-type
singularity behaviour where cos ν + sin ν = 0, that is at ν = −π/4. (The integrand
behaves like Jr(−π/4)/(ν+π/4) and so the integral does not exist in a normal sense
close to −π/4.) Note also the presence of the Heaviside step function at ν = 0.8
which causes no problems at all because the integral is defined near to this point in
a normal sense.
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ν

Jr/ sin(ν − δ)

Figure 4: The Jr(ν) function.

Numerical evaluation of CPV integrals

The normal tactic is to approximate the integrand using a spectral method (for
example, splines) and use “exact integration” (approximate the function UNDER
the integral sign and do all integrals in closed form) to ensure that the collocation
points do not bump into the singularity as the mesh is refined.
Problem Integral 1: Use the trapezium rule to evaluate

I1 = −
∫ 1

0

t4

t− 1
3

dt =
49

108
+

1

81
log 2 ∼ 0.4622610763

using a regular mesh of N intervals that does not bump into the point t = 1
3 . The

results obtained using the trapezium rule (with different discretizations), together
with the calculation using spectral methods, are displayed in Figure 5. Note that
the trapezium method fails in a way that is not improved by taking more intervals;
biases are introduced close to the singularity.
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N

I1

Figure 5: Numerical evaluation of I1 using the spectral method (middle set
of points). The upper and lower points correspond to N = 1 mod 3 and
N = 2 mod 3.

2.2 Problem integral 2

Another severe difficulty arises from the integral term appearing in the function J .
The third term in J (ν, ξ, η, ζ)) is of the form

κν

∫ ∞
0

e−t

t+ κν((z + ζ) + iω)
dt,

which in the simple case of a 1×1 grid on a flat, non-tapered 1×1 hydrofoil becomes

κ0 sec2 ν

∫ ∞
0

e−t

t+ κ0 sec2 ν
(
2z + 1

2 i(cos ν + sin ν)
) dt.

Thus there will be a term in uω of the form
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∫ π
2

−π
2

sec2 ν

cos ν + sin ν
Im

[∫ ∞
0

e−t

t+ κ0 sec2 ν
(
2z + 1

2 i(cos ν + sin ν)
)dt] dν .

(Note that the sec2 ν term in the outer integral is saved by the one in the inner
integral as ν → ±π/2). Multiplying by the complex conjugate we obtain

∫ π
2

−π
2

sec2 ν

cos ν + sin ν

∫ ∞
0

−e−t
(
1
2κ0 sec2 ν(cos ν + sin ν)

)
(t+ 2zκ0 sec2 ν)2 + 1

4κ
2
0 sec4 ν (cos ν + sin ν)2

dt dν .

Though the troublesome cos ν+sin ν terms cancel, the denominator in the t-integral
is 0 exactly when ν = −π

4 and t = −4zκ0. Since z < 0 this will inevitably happen,
giving a hypersingular integral and severe numerical problems.

It is useful to note that the rearrangement

J = −iκν exp(κν(z + ζ) + iκνω) +
1

π
−
∫ ∞
0

κ

κν − κ
exp(κ(z + ζ) + κω)dκ

avoids the hypersingular integral, replacing it with a less severe CPV integral to-
gether with the one discussed previously which are not simultaneously singular. The
Giesing and Smith simplification of J is not the correct way to address the problem
in that the resulting integrals obtained, although simpler in form, are more singular
than needed.

2.3 Problem integral 3

Finally, the first term in J (ν, ξ, η, ζ) is of the form

−2iH(ω)κν exp (κν (z + ζ) + iκνω) .

The exponential part of this term becomes highly oscillatory under the right con-
ditions, which correspond to the hydrofoil being moved close to the surface of the
water. As an illustrative example, for a flat hydrofoil, the exponential can be written
as

E = exp
(
κ0 sec2 ν(2z + iω)

)
.

Since z < 0, when ν is within a distance ε of ±π/2, we have
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E ∼ exp

(
κ0

ε2 +O(ε4)

(
− 2|z|+ iω

))
.

The complex term in the exponential causes high frequency oscillations as ε → 0,
but the real term damps them out. For the oscillation to be “sufficiently” damped
we require (by numerical experiment - more could be done with more time)

2|z| ≈≥ ω

10
.

3 Allowable distance from fluid surface:

Recall that the linear theory will eventually fail for small enough hydrofoil depths.
Here we estimate the validity range for the linear theory. It should be noted that
the complete non-linear theory involves issues that are not yet fully understood, let
alone quantifiable. Waves that form on the surface may break or may propagate and
this will strongly effect the hydrofoil’s performance. Furthermore seemingly minor
design ‘details’ can effect the outcome in this operational range. These issues may
or may not be practically important, but in any case it is important to know when
the linear results can be believed.

Now consider a hydrofoil (span 2l, chord α) with the centre of the leading edge
at (x, y) = (0, 0). We divide the hydrofoil into a 2M × N grid, and our task is to
determine the largest possible value of ω = (x − ξ) cos ν + (y − η) sin ν. This will
allow us to determine a bound for |z| and thus tell us how close to the surface we
can bring the hydrofoil.

Note that max(ω) occurs when calculating the value induced at the top corner
control point by the vortex segment starting at the origin. This maximal value of ω
was found to be given by

ω =
(
α− α

2N

)
cos ν +

(
l − l

2m

)
sin ν.

The maximum value of ω is

ωmax =

√(
α− α

2N

)2
+

(
l − l

2m

)2

,

so we have

|z| ≈≥ 1

20

√(
c− c

2N

)2
+

(
l − l

2M

)2

. (12)

Placing the hydrofoil closer to the surface causes the integrands in (7,8,9) to
become highly oscillatory corresponding to the breakdown of the linearised boundary
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condition, as illustrated in Figure 6. One might be able to analytically evaluate such
integrals for an extended parameter range but any such gains are limited.

Figure 6: Typical integrand behaviour associated with (7,8,9) when the
airfoil moves close to the surface.

4 Final conclusions

• It is absolutely necessary to use a suitable method to calculate the CPV inte-
grals and “spectral” methods are highly recommended.

• The Giesing and Smith simplification of J is not the useful way to proceed.
The less convenient-looking original version is much to be preferred in that
this has CPV integrals, but no hypersingular integrals.

• Use the criterion (12) to determine the applicability range of the linear theory.

• The linear theory will fail for sufficiently small hydrofoil depths, and there is
no known simple fix to cover this range; possibly detailed experiments would
be necessary.
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