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Abstract

In this report we describe some models and numerical methods used
to simulate the flow and temperature in a pebble bed modular reac-
tor. The reactor core is filled with spherical particles containing low-
enriched uranium. Helium gas is forced through the pebbles to absorb
the tremendous amounts of generated heat. When modelling the reac-
tor, numerical difficulties are encountered owing to large discontinuities
in heat and mass fluxes at boundaries of the system. We first investigate
the gas flow in the pebble region and find in the literature a resolution
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to the numerical issues. We then study the heat flow in the pebble re-
gion. Numerical schemes are presented that can significantly improve
the accuracy of the computed results.

1 Introduction and problem description

A pebble bed modular reactor (PBMR) is a gas cooled nuclear reactor of
approximately cylindrical shape. The reactor core is filled with fuel pebbles
containing low-enriched uranium, located in an annular region close to the
graphite centre of the reactor (Figure 1). During the reaction, helium flows
through the hot pebbles to cool down the system. The heat from the nucle-
ar reaction is transferred to the gas and converted into electricity through a
turbine. PBMR Ltd aims to perform real-time accurate simulations of the
helium flow and temperature in the pebbles. This is currently achieved by
calculating the values of the required parameters for a very limited number
of points. They asked the study group to investigate numerical difficulties
they have encountered with the method they currently use. PBMR Ltd are
looking for solutions that would allow them to keep their present finite volume
numerical model on an unstructured grid.

Two types of numerical difficulties were encountered involving nonphysical
variations in predicted velocities and temperatures at boundaries in the system.
The first problem involves calculation of the flow of the hot gas. An abrupt
change in the flow resistance is encountered when the gas enters the pebble
bed. This causes unrealistic oscillations in the numerical solution around the
gas-pebble interface. The second problem is related to simulations of heat flow
between the pebble bed and reactor walls. Depending on the discretization
used, large variations (up to 30 ◦C) in the temperature at the boundary are
obtained. Refining the mesh removes the difference; however PBMR need to
use a coarse mesh to enable real-time simulations. Both numerical difficulties
have been resolved by a combination of related methods in the literature, and
the development of new numerical methods based on integration and local
analytical solutions. Details are given below, along with some thoughts on the
appropriate physical modelling of the reactor core.
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Figure 1: Schematic pebble bed nuclear reactor.

2 The governing equations

The reactor core is modelled as a cylindrical container as shown in Figure 1.
The gas enters with velocity u at z = −L, flows over the hot pebbles which
occupy the region 0 < z < L and leaves at z = L. Any general model of the
reactor will involve coupled partial differential equations describing conserva-
tion of mass, momentum and energy in the system. However, the numerical
difficulties experienced by PBMR Ltd can be illustrated by considering much
simpler decoupled equations. We assume the gas is incompressible, with an
average density ρg. The pebbles are stationary and we model them as a porous
medium of constant porosity ǫ; they also act as a heat source q per unit vol-
ume. The pressures p0 at z = −L and p1 at z = L are prescribed. The flow
of gas through the reactor is modelled by the incompressible Navier-Stokes
equations:

ρg

(

∂u

∂t
+ (u · ∇)u

)

= −∇p+ µ∇2u− S, ∇ · u = 0, (1)

where u is the average fluid velocity on a scale much larger than a pebble
diameter, S is a momentum sink term, and all the other variables are defined
in the Nomenclature, Section 7. According to PBMR Ltd the gas flow in the
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reactor is turbulent high Reynolds number flow. Therefore the momentum sink
term S can be modelled as ρgλu

2 in the pebbles (Ergun equation [1, 2]) and
zero in −L < z < 0, where λ is a viscous resistance factor. The momentum
sink term S plays the role of a large discontinuous body force and is known to
lead to numerical difficulties [3]. We discuss these briefly in the next section
and find a solution that allows PBMR Ltd to address the difficulties while
continuing to use their basic finite volume code.

We are also concerned with the heat generated in the reactor and need to
consider the mean temperature Tg in the gas and the mean temperature Tp in
the pebbles. The energy equations for the gas and the pebbles can be written
as

ρgcg

(

∂Tg
∂t

+ ug · ∇Tg
)

= ∇ · (κg∇Tg) +H(Tp − Tg), (2)

ρpcp

(

∂Tp
∂t

)

= ∇ · (κp∇Tp)−H(Tp − Tg) + q, (3)

where ug = u/ǫ, ǫ is the void fraction, H is a heat transfer coefficient, q is
the heat generation, and these equations hold in 0 < z < L, r1 < r < r2.
We also need to consider the heat equation in the solid core, 0 < r < r1, and
the external casing, r2 < r < r3, and then impose boundary conditions of
continuous temperature and heat flux at the interfaces r = r1, r = r2.

We consider two simplified problems to test the numerical scheme. First
we neglect the heat transfer to the gas and solve the steady-state version of
equation (3) with H = 0. This problem is independent of z and it is solved
analytically in Section 4.1. A further extension including the heat transfer term
but assuming that Tg is constant can also be solved analytically as is shown
in Section 4.2. Secondly we considered a one-dimensional model where Tg and
Tp depend on z alone and (2) is solved in −L < z < 0 and (3) in 0 < z < L.
Since the numerical problems seem to be triggered by the discontinuity at
z = 0 caused by the q term, we neglect the heat transfer term. Neither of
these problems are physically realistic, but they have the advantage that they
allow us to test out the numerics and show how the problems encountered by
PBMR Ltd may be avoided.

3 Pressure velocity coupling

In this section we investigate the numerical solution of the equations governing
the transport of cooling gas through the nuclear reactor. We first discuss
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issues with standard numerical schemes that have been used to solve these
equations (Section 3.1). We then discuss, in Section 3.2 the application of a
novel scheme to circumvent the difficulties. We conclude by briefly discussing
other techniques that may be used to solve the governing equations.

3.1 Standard numerical techniques

A common technique used for computing the numerical solution of the Navier–
Stokes equations is the finite volume technique: see, for example, Tannehill
et al. [4]. This method underpins the SIMPLE algorithm [5] which may be
summarised as follows.

1. Guess the pressure field p0.

2. Solve the momentum equation (1a) to calculate u.

3. Use the continuity equation (1b) to update the pressure p.

4. Update the velocity field using unew = uold −A∇p.
5. Repeat steps 2–5 until the solution has converged.

The constant A is a fictitious time increment divided by the density. As far
as implementation of the algorithm goes, it is a relaxation constant, and needs
to be sufficiently high to allow the iterate for u to vary on each iteration, but
sufficiently small for convergence [4].

PBMR have software that implements the SIMPLE algorithm. This soft-
ware has much more functionality than the fluid dynamics discussed here: as
such PBMR are reluctant to implement significant changes to the fluid dynam-
ics component of this software as it may impact elsewhere in the software. As a
consequence, the SIMPLE algorithm must be implemented using a cell–centred
finite volume method.

The drawback to implementing the SIMPLE algorithm using a cell–centred
finite volume mesh is that the phenomenon known as pressure–velocity uncou-
pling occurs. This can sometimes be avoided by the use of Rhie–Chow inter-
polation [6]. However, this technique does not work well when there are rapid
changes in body force, such as those appearing in our model problem in Sec-
tion 2. When applied to the model problem, this technique induces ‘spikes’ in
the computed velocity rather than a constant velocity. This is demonstrated
in Figure 2, where the computed velocity is shown by the solid line and the
pressure shown by a broken line.



94 J. Charpin et al

Figure 2: Velocity spikes: the solution of the model
problem described in Section 2 using the SIMPLE al-
gorithm with Rhie-Chow interpolation. The solid line
represents the velocity, and the broken line represents
the pressure.

3.2 A more appropriate numerical technique

The issue of velocity spikes was addressed by Mencinger and Žun [3] who mod-
elled abrupt changes in the force field due to two mixed fluids, e.g. air bubbles
in water. The key to this algorithm is the discretisation of the momentum
sink: these terms should be discretised on the faces of the control volumes
rather than at the cell centres. When this is done, the velocity spikes shown
in Figure 2 are removed, and the velocity is given by a constant function as
required.

This method appears to solve the problem encountered by PBMR, although
there are some words of warning. As the momentum sink is dependent on
u, this quantity must first be calculated from the values at the cell–centres.
Although this is not exactly what is desired by PBMR, it is likely to be a small
modification to the code that is unlikely to cause any difficulties.

3.3 Discussion on pressure–velocity coupling

It should be noted that the SIMPLE algorithm was developed in 1980, and
that the Rhie–Chow interpolation scheme was developed in 1983. The need
to develop uncoupled algorithms such as these was largely dictated by com-
putational resources—particularly memory—available at that time. However,
the significant and steady increase in computer power that has been witnessed



Pebble bed: reflector treatment and pressure velocity coupling 95

during the past 30 years has spawned the development of many more robust
finite–volume methods (FVMs) and finite–element methods (FEMs): although
implementation of these methods would not have been possible on earlier ma-
chines, they are now often the method of choice. Of particular interest are
FEMs. These methods are based on a more sophisticated mathematical basis,
and therefore allow desirable features such as stability to be implemented in
a mathematically rigorous fashion. Furthermore, the abstract mathematical
formulation on which these methods are based lends itself to rigorous error
analysis techniques, from which automatic mesh refinement routines may be
derived to ensure the error is within a given tolerance. These techniques do,
however, require the (computationally memory intensive) solution of large sys-
tems of equations, and so have only recently become popular for large scale
computations. For more details on the application of FEMs to the solution
of the Navier–Stokes equation see Elman et al. [7] and the references therein.
Should PBMR ever decide to significantly overhaul their software they may
wish to use these more robust algorithms.

4 Reflector treatment

The temperature in the pebble bed will now be studied. Two cases will be con-
sidered to solve the steady state numerical difficulties encountered by PBMR
Ltd:

• A simplified (non-physically realistic) solution where no heat may be
transferred to the gas. This case admits straightforward analytical so-
lutions that considerably simplifies comparisons between analytical and
numerical solutions.

• A more general system will then be considered. Analytical solutions
involving Bessel functions are also available and the method developed
for the simplified case will be extended.

When expansions are necessary for numerical solutions, they only include the
terms necessary to achieve accurate approximations.

4.1 Simplified case

The configuration studied in this section is presented in Figure 3. Heat is
only released in Region 2 at the constant rate q. In this case, the governing
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Figure 3: Simplified case configuration.

equations may be written:

0 ≤ r ≤ r1 : −1
r

∂

∂r

(

κ1r
∂T

∂r

)

= 0 , (4)

r1 ≤ r ≤ r2 : −1
r

∂

∂r

(

κ2r
∂T

∂r

)

= q , (5)

r2 ≤ r ≤ r3 : −1
r

∂

∂r

(

κ3r
∂T

∂r

)

= 0 , (6)

subject to the boundary conditions

T (r3) = Tref ,
∂T

∂r

∣

∣

∣

∣

r=0

= 0 . (7)
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Using the continuity of temperatures and heat fluxes, the following analytical
solution may be calculated:

0 ≤ r ≤ r1 : T = T0 −
q

2κ3

(

r22 − r21
)

ln

(

r2
r3

)

− q

4κ2

(

r21 − r22
)

+
qr21
2κ2

ln

(

r1
r2

)

, (8)

r1 ≤ r ≤ r2 : T = T0 −
q

2κ3

(

r22 − r21
)

ln

(

r2
r3

)

− q

4κ2

(

r2 − r22
)

+
qr21
2κ2

ln

(

r

r2

)

, (9)

r2 ≤ r ≤ r3 : T = T0 −
q

2κ3

(

r22 − r21
)

ln

(

r

r3

)

. (10)

Numerical schemes are derived for the system (4-6) on the two types of grids
described on Figure 4. In each case, the space step is ∆x. The position of the
points will vary:

• Type 1 grids. The temperatures are calculated at positions x = i∆x and
the fluxes are evaluated at x = (i + 1/2)∆x. The temperature Ti and
the flux Qi+1/2 should be expressed as functions of the initial conditions
Ti−1 and Qi−1/2, where Q = −κ∂T/∂r is the standard one-dimensional
heat flux in cylindrical polar coordinates.
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• Type 2 grids. The temperatures are calculated at positions x = (i +
1/2)∆x and the fluxes are evaluated at x = i∆x. The temperature
Ti+1/2 and the flux Qi should be expressed as functions of the initial
conditions Ti−1/2 and Qi−1.

The objective here is to get the same quality of results on both grid types.
The temperature will be calculated from the centre, r = 0, i = 0 towards the
external boundary, r = r3, i = i3. Boundary conditions are at the two different
extremities of the domain. In this simplified set-up, replacing the temperature,
T , with T + Tm, where Tm is a constant temperature, will not affect the result
because the heat source q is constant. The temperature T = 0 may be imposed
at the centre, and once the temperature profile has been determined, the value
of Tm is then chosen so the boundary condition T (r3) = Tref is satisfied. The
numerical scheme will be detailed for each of the three zones. Exact and
approximate expressions are given for fluxes and temperatures in all possible
cases.

4.1.1 Zone 1&3: Kernel and external layer

Integrating equation (4) or (6) between α and r leads to:

∫ α

r

∂

∂r

[

κr
∂T

∂r

]

dr = 0⇐⇒ Q =
rα
r
Qα .

Integrating the equation once more between a and r provides the relation:

T = Ta −
rαQα

κ
ln

(r

a

)

.

Using appropriate values for the dummy variables α and a leads to the following
numerical schemes:

• Type 1 grid

Qi+1/2 =
ri−1/2
ri+1/2

Qi−1/2 = Qi−1/2

(

1− ∆r

ri+1/2

)

,

Ti+1 = Ti −
ri+1/2Qi+1/2

κ
ln

(

ri+1

ri

)

= Ti −
Qi+1/2∆r

κ
.
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• Type 2 grid

Qi =
ri−1
ri

Qi−1 = Qi−1

(

1− ∆r

ri

)

,

Ti+1/2 = Ti−1/2 −
riQi

κ
ln

(

ri+1/2

ri−1/2

)

= Ti−1/2 −
Qi∆r

κ
.

4.1.2 Zone 2: Temperature in the pebbles

Similar integrations of equation (5) lead to the following equations:

• Type 1 grid

Qi+1/2 =
ri−1/2
ri+1/2

Qi−1/2 + q
r2i+1/2 − r2i−1/2

2ri+1/2

= Qi−1/2

(

1− ∆r

ri+1/2

)

+ q∆r − q∆r2

2ri+1/2

,

Ti+1 = Ti +

(

qr2i+1/2

2κ2
− ri+1/2Qi+1/2

κ2

)

ln

(

ri+1

ri

)

− q

4κ2

(

r2i+1 − r2i
)

= Ti −
Qi+1/2∆r

κ2
.

• Type 2 grid

Qi =
ri−1
ri

Qi−1 + q
r2i − r2i−1

2ri
= Qi−1

(

1− ∆r

ri

)

+ q∆r − q∆r2

2ri
,

Ti+1/2 = Ti−1/2 +

(

qr2i
2κ2

− riQi

κ2

)

ln

(

ri+1/2

ri−1/2

)

− q

4κ2

(

r2i+1/2 − r2i−1/2
)

= Ti−1/2 −
Qi∆r

κ2
.

4.1.3 Interface zone 1-zone 2

The position of the interface is r1 = i1∆r.
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• Type 1 grid

Qi1+1/2 =
ri1−1/2
ri1+1/2

Qi1−1/2 +
q

2

r2i1+1/2 − r2i1
ri1+1/2

= Qi1−1/2

(

1− ∆r

ri1+1/2

)

+
q

2
∆r − q∆r2

8ri1+1/2
,

Ti1+1 = Ti1 +
qr2i1+1/2/2− ri1+1/2Qi1+1/2

κ2
ln

(

ri1+1

ri1

)

− q

4κ2

(

r2i1+1 − r2i1
)

= Ti1 −
Qi1+1/2∆r

κ2
.

• Type 2 grid

Qi1 =
ri1−1
ri1

Qi1−1 = Qi1−1

(

1− ∆r

ri1

)

,

Ti1+1/2 = Ti1−1/2 +

(

qr2i1
2κ2

− ri1Qi1

κ2

)

ln

(

ri1+1/2

ri1

)

− q

4κ2

(

r2i1+1/2 − r2i1
)

= Ti1−1/2 −
Qi1∆r

2κ2
+

(

Qi1

8ri1κ2
− q

8κ2

)

∆r2 .

4.1.4 Interface zone 2-zone 3

The position of the interface is r2 = i2∆r.

• Type 1 grid

Qi2+1/2 =
ri2−1/2
ri2+1/2

Qi2−1/2 +
q

2

r2i2 − r2i2−1/2
ri2+1/2

= Qi2−1/2

(

1− ∆r

ri2+1/2

)

+
q

2
∆r − 3q∆r2

8ri2+1/2

Ti2+1

= Ti2 −
ri2+1/2Qi2+1/2

κ3
ln

(

ri2+1

ri2

)

= Ti2 −
Qi2+1/2∆r

κ3
.
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• Type 2 grid

Qi2 =
ri2−1
ri2

Qi2−1 + q
r2i2 − r2i2−1

2ri2
= Qi2−1

(

1− ∆r

ri2

)

+q∆r − q∆r2

2ri2
Ti2+1/2

= Ti2−1/2 − ri2Qi2

[

1

κ2
ln

(

ri2
ri2−1/2

)

+
1

κ3
ln

(

ri2+1/2

ri2

)]

+
qr2i2
2κ2

ln

(

ri2
ri2−1/2

)

− q

4κ2

(

r2i1 − r2i1−1/2
)

= Ti2−1/2 −Qi2∆r

(

1

2κ2
+

1

2κ3

)

+

(

Qi2

8ri2

(

1

κ3
− 1

κ2

)

+
q

8κ2

)

∆r2 .

4.1.5 Numerical results

Figure 5 compares the numerical results calculated with expansions and the
analytical solution for the space step ∆r = 0.5, which means two points per
zone. This is the coarsest possible mesh, on this grid the error should be
maximum. The results are evaluated using first order in ∆r approximations
for the temperature and second order approximations in ∆r for the fluxes. The
second order approximation significantly increases accuracy and compensates
the effects of the coarse grid. A second order approximation in ∆r is also
necessary at the interfaces for the type 2 grid, otherwise, the heat produced in
the pebbles would not influence the temperature on the cell. In this situation,
the temperature calculated with either grid is very close to the analytical
solution: the maximum difference observed, ∆T , occurs in the flat central
region and ∆T ≤ 2oC for both curves. This difference satisfies ∆T ≤ 0.5oC
if the number of points is doubled. Without second order expansions in ∆r,
for ∆r = 0.5 the difference between analytical and numerical results reaches
∆T = 60oC for the type 1 grid and ∆T = 100oC for the type 2 grid. Using a
second order approximation in ∆r for the fluxes and the interfaces of the type
2 grid is absolutely necessary to improve the accuracy of the numerical results.
For comparison, first order results are included in Figure 5.
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4.2 More general system

A more general configuration will now be studied. In this case, the governing
equations may be written:

0 ≤ r ≤ r1 : −1
r

∂

∂r

(

κ1r
∂T

∂r

)

= 0 , (11)

r1 ≤ r ≤ r2 : −1
r

∂

∂r

(

κ2r
∂T

∂r

)

= q +H (Tg − T ) , (12)

r2 ≤ r ≤ r3 : −1
r

∂

∂r

(

κ3r
∂T

∂r

)

= 0 , (13)

subject to the boundary conditions

T (r3) = Tref ,
∂T

∂r

∣

∣

∣

∣

r=0

= 0 . (14)
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An analytical solution may be calculated for the system (11-14). This is de-
tailed in Appendix B. The numerical scheme will be calculated for both type
1 and type 2 grids using the same methods as in the previous section.

4.2.1 Zone 2: temperature in the pebbles

• Type 1 grid

Qi+1/2 = −H
(

Ti−1/2 −
q −HTg

H

)(

∆r − ∆r2

2ri
+
∆r3

4r2i
+
H∆r3

24κ2

)

+Qi−1/2

(

1− ∆r

r
+
∆r2

2r2i
+
H∆r3

24κ2ri
− ∆r3

4r3i

)

,

Ti+1 = Ti −
Qi+1/2∆r

κ2
.

• Type 2 grid

Qi = Qi−1

(

1− ∆r

ri
+
H∆r3

24κ2ri

)

−H
(

Ti1−1/2 −
q −HTg

H

)(

∆r − ∆r2

2ri
− H∆r3

24κ2

)

,

Ti+1/2 = Ti−1/2 −
Qi∆r

κ2
.

4.2.2 Interface zone 1-zone 2

• Type 1 grid

Qi1+1/2 = −H
(

Ti1−1/2 −
q −HTg

H

)(

∆r

2
− ∆r2

8ri1
+
H∆r3

48κ2
+

∆r3

16r2i1

)

+Qi1−1/2

(

1− ∆r

2ri1
+
H∆r2

8κ2
+
∆r2

4r2i1
− H∆r3

24κ2ri1
− ∆r3

24r3i1

)

,

Ti1+1 = Ti1 −
Qi1+1/2∆r

κ2
.
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• Type 2 grid

Qi1 =
ri1−1
ri1

Qi1−1 = Qi1−1

(

1− ∆r

ri1

)

,

Ti1+1/2 = Ti1−1/2 +

(

HTi1−1/2
κ2

− q +HTg
κ2

)(

∆r2

8
− ∆r3

48ri1

)

+
Qi1

κ2

(

∆r

2
− 3∆r2

8ri1
− H∆r3

24κ2
+
9∆r3

48r2i1

)

.

4.2.3 Interface zone 2-zone 3

• Type 1 grid

Qi2+1/2 = −H
(

Ti2−1/2 −
q −HTg

H

)(

∆r

2
− 3∆r2

8ri2
− H∆r3

24κ2
+
3∆r3

16r2i2

)

+Qi2−1/2

(

1− ∆r

ri2
+
∆r2

r22
− H∆r2

8κ2
+
7H∆r3

48κ2ri2
− ∆r3

4r3i2

)

,

Ti2+1 = Ti2 −
Qi2+1/2∆r

κ3
.

• Type 2 grid

Qi2 = Qi2−1

(

1− ∆r

ri2
+

H∆r3

24κ2ri2

)

−H
(

Ti2−1/2 −
q −HTg

H

)(

∆r − ∆r2

2ri2
− H∆r3

24κ2

)

,

Ti2+1/2 = Ti2−1/2 −
H

κ2

(

Ti2−1/2 −
q −HTg

H

)(

3∆r2

8
− 7∆r3

48ri2

)

+
Qi2−1

κ2

(

−∆r
2
+
3∆r2

8ri2
+

∆r3

12r2i2
+

H∆r3

24κ2r2i2

)

+Qi2

(

∆r

2κ3
− ∆r2

8κ3ri2
+

∆r3

24κ3r
2
i2

)

.

4.2.4 Numerical results

Figure 6 compares the numerical results calculated with expansions and the
analytical solution for the space step ∆r = 0.5, which again means two points
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Figure 6: Comparison of the various schemes for the more general model. Note
the radius is measured along the horizontal axis.

per zone. The temperatures calculated with either grid are again really close
to the analytical results. The differences is less than ∆T = 4oC for all points
except for the type 2 grid after the second interface, where the error is ∆T =
16.5oC. Here again, the error is reduced when the space step gets lower: the
maximum error is ∆T ≤ 4.5oC for ∆r = 0.25 with all other points except for
one are calculated with an error less than ∆T ≤ 1.5oC. The error is mainly
due to the approximation of the flux. If accuracy may not be achieved with
the third order accuracy in ∆r for large values of the space step, using the
exact solution of the flux could be a better option. For grids of type 1 and
type 2, first order approximations in ∆r lead to errors up to 50oC. The errors
occur around r = 2. They would be difficult to see on Figure 6 so the first
order curves are not included.

These results were calculated with gas temperature Tg = 700oC. This
temperature will vary significantly with the position in the vessel. This aspect
will now be studied more carefully.
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Figure 7: Simple geometry of the system.

5 Temperature variation of gas in the pebbles

The temperature of the gas flow through the pebble bed will now be consid-
ered. We model the pebble bed reactor as a uniform channel with two distinct
Regions I & II, see Figure 7. In Region I, a cooling gas of temperature Tg flows
with constant mean velocity U (averaged over the cross section of the channel)
towards Region II which is occupied by pebbles. This region has a constant
void fraction, ǫ, and heat source, q, and an adiabatic end. The temperature
of the gas in Region II is denoted Tgp. The effect of heat transfer from the
pebbles to the gas is modelled as an effective heat source q in the gas.

5.1 Model

For this one dimensional system, the steady state heat equations may be writ-
ten:

−ρgcgU
∂Tg
∂z

= κg
∂2Tg
∂z2

in Region I −L ≤ z ≤ 0, (15)

−ρgcg
U

ǫ

∂Tgp
∂z

= κg
∂2Tgp
∂z2

+ q in Region II 0 ≤ z ≤ L, (16)

and all the quantities are defined in the Nomenclature, Section 7. To simplify
the problem, all quantities are assumed constant. Equations (15) and (16) are
solved subject to the following boundary conditions:
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• Imposed temperature at z = −L:

Tg(−L) = T0 ,

• Adiabatic condition at z = L:

∂Tgp
∂z

∣

∣

∣

∣

z=L

= 0 ,

• Continuity of temperature and fluxes at the interface

Tg(0) = Tgp(0)

∂Tg
∂z

∣

∣

∣

∣

z=0

=
∂Tgp
∂z

∣

∣

∣

∣

z=0

.

The flux condition may be simplified since the conduction is the same
on either side of the interface.

The length and temperature are non-dimensionalised as follows:

z = Lz′ , T = T0 +∆TT ′ ,

where L is the typical height, T0 is the initial temperature of the gas and ∆T
a typical temperature gap. The governing equations become

∂Tg
∂z

= − κg
ρgcgLU

∂2Tg
∂z2

,

∂Tgp
∂z

= − ǫκg
ρgcgLU

∂2Tgp
∂z2

− ǫLq

ρgcg∆TU
.

Diffusion is a slow phenomenon, so clearly, the temperature is governed by
convection and the heat source. The typical temperature gap is therefore:

∆T =
ǫLq

ρgcgU
.

The governing equations are then

∂Tg
∂z

= −κ1
∂2Tg
∂z2

, (17)

∂Tgp
∂z

= −ǫκ1
∂2Tgp
∂z2

− 1 , (18)
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subject to the boundary condition

Tg(−1) = 0 , (19)

∂Tgp
∂z

∣

∣

∣

∣

z=1

= 0 , (20)

Tg(0) = Tgp(0) , (21)

∂Tg
∂z

∣

∣

∣

∣

z=0

=
∂Tgp
∂z

∣

∣

∣

∣

z=0

, (22)

where

κ1 =
κg

ρgcgLU
.

Equations (17–22) may be easily solved:

Tg = A+Be−z/κ1 , (23)

Tgp = C +De−z/(ǫκ1) − z , (24)

where

A = −κ1e1/κ1

(

1− e1/(ǫκ1)
)

,

B = κ1
(

1− e1/(ǫκ1)
)

,

C = ǫκ1e
1/(ǫκ1) + κ1

(

1− e1/(ǫκ1)
) (

1− e1/κ1

)

,

D = −ǫκ1e1/(ǫκ1) .

5.2 Numerical results

The temperature of the air is plotted in Figure 8 for κ1 = 0.1, 1, 10. The
results are dimensionalised to fit with experimental results: at the top of the
pressure vessel, the temperature is T = 500oC and at the bottom T = 900oC.
These curves correspond to ǫ = 0.1. The curves calculated with ǫ = 0.3 are
very close to the curves obtained in Figure 8. The parameter κ1 seems to have
more influence. The value of this parameter depends on the thermal properties
of the gas and the velocity of the gas. These values were taken constant but
should vary with the gas temperature and pressure. The results are therefore
only a first approximation.
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Figure 8: Gas temperature profiles for various values of κ1. The top of the
reactor corresponds to z = −13.5m and the bottom z = 13.5m.

6 Conclusion and future work

The study group provided insights on the gas flow model inside the pebbles
and suggested solutions for the numerical problems encountered by PBMR
Ltd.

• The velocity spikes observed numerically at the surface of the pebbles
may be removed by employing a more appropriate numerical method.
The crux of the problem is the discretisation of the sink terms: they
should be evaluated at the boundaries of the grid cells and not at the
centre.

• The numerical problems due to the two different types of grids may be
solved by using specially designed numerical schemes. To achieve maxi-
mum accuracy, the formulae should be based on local analytical solutions
of the governing equations. The formulae can be approximated using
Taylor series expansions as in Section 4. Depending on the position and
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parameter, first, second or third order Taylor expansions are required to
guarantee that the numerical solutions are close enough to the analytical
solution. The method was developed for specific grid positions relative
to interfaces. If necessary, the method could be extended to more general
cases using a similar approach.

The temperature in the pebbles was calculated in each cross section of the
pressure vessel. The evolution of the temperature in the axis direction was
neglected, although this was shown to vary significantly. Vertical heat conduc-
tion should be investigated to further increase the accuracy of the numerical
simulations.
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7 Nomenclature

α Heat transfer coefficient W·m−2·K−1
ǫ Void fraction 0− 1 ND
κ Thermal conductivity κ1 = 10, κ2 = 15, W·m−1·K−1

κ3 = 20
λ Inertial resistance factor m−1

µ Dynamic viscosity kg·m−1·s−1
ρ Density kg·m−3
∆r, ∆x, ∆y Space steps in the r, x m

and y directions
c Heat capacity J·kg−1·K −1

p Pressure Pa
q Heat source 10000 W·m−3
r, x, y Radial and Cartesian m

coordinates
t Time s
~v = (u, v) Velocity in x and y m·s−1

directions
H Non-standard heat W·m−3·K−1

transfer coefficient
Q Heat flux W·m−2
Re Reynolds number
S = (Sx, Sy) Momentum sink term m·s−2
T Temperature K
U Cross-sectional average m·s−1

gas velocity

Subscripts

p, Pebbles, g, Gas gp, Gas in the pebbles.
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Appendix

A Bessel functions

Bessel functions are necessary to solve the system (11) to (14) in Section 4.
These functions are defined as follows:

I0(x) =
∞
∑

k=0

x2k

4k(k!)2
,

I1(x) = I ′0(x) =

∞
∑

k=1

(2k)x2k−1

4k(k!)2
,

K0(x) = −I0(x)
[

ln
(x

2

)

+ γ
]

+

∞
∑

k=1

x2kψ(k)

4k(k!)2
,

K1(x) = −K ′

0(x) = I1(x)
[

ln
(x

2

)

+ γ
]

+
I0(x)

x
−

∞
∑

k=1

(2k)x2k−1ψ(k)

4k(k!)2
,

where γ = 0.57721566 is the Euler constant and

ψ(k) =
k
∑

i=1

1

k
.

In the present code, the functions were approximated using sums up to kmax =
30, this is high enough to calculate accurate values. Many other choices are
possible.

B Analytical solution for the system in

Section 4.2

An analytical solution for the system (11) to (14) may be calculated using the
continuity of temperatures and heat fluxes:
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0 ≤ r ≤ r1 : T = αI0

(

r1

√

H

κ2

)

+ βK0

(

r1

√

H

κ2

)

+
q +HTg

H
, (25)

r1 ≤ r ≤ r2 : T = αI0

(

r

√

H

κ2

)

+ βK0

(

r

√

H

κ2

)

+
q +HTg

H
, (26)

r2 ≤ r ≤ r3 : T = T0 + γ ln

(

r

r3

)

, (27)

where I0 and K0 are the modified Bessel functions (see Appendix A). The
constants are defined by:

α =
κ3γ

r2
√
Hκ2

×
K1

(

r1
√

(H/κ2)
)

I1

(

r2
√

(H/κ2)
)

K1

(

r1
√

(H/κ2)
)

− I1

(

r1
√

(H/κ2)
)

K1

(

r2
√

(H/κ2)
) ,

β =
κ3γ

r2
√
Hκ2

×
I1

(

r1
√

(H/κ2)
)

I1

(

r2
√

(H/κ2)
)

K1

(

r1
√

(H/κ2)
)

− I1

(

r1
√

(H/κ2)
)

K1

(

r2
√

(H/κ2)
) ,

γ =

(

q +HTg
H

− T0

)

/

(

ln

(

r2
r3

)

−∆

)

,

∆ =
κ3

r2
√
Hκ2

×
I1

(

r1
√

(H/κ2)
)

K0

(

r2
√

(H/κ2)
)

+ I0

(

r2
√

(H/κ2)
)

K1

(

r1
√

(H/κ2)
)

I1

(

r2
√

(H/κ2)
)

K1

(

r1
√

(H/κ2)
)

− I1

(

r1
√

(H/κ2)
)

K1

(

r2
√

(H/κ2)
)

and the functions I1 and K1 are modified Bessel functions defined in
Appendix A.




