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Abstract

Robot Path Planning refers to the task of obtaining a continuous
path through the free configuration space, Cfree, of some robot from
an initial to a goal configuration. This Report reviews the progress in
this field, with particular focus on the Rapidly Exploring Random Tree
(RRT) and the Artificial Potential Fields approaches. Some theoretical
results regarding RRTs are proved, motivating a modification in the
RRT approach to include local biasing and a new scheme for vertex
selection.

1 Introduction

In recent years Path Planning has grown into an enormous field, incorporating
Control Theory, Robotics, Artificial Intelligence and to an extent Algorithm
Analysis and Design [1]. In all its forms, Path Planning essentially involves
defining a sequence of configurations1 of some system beginning at an initial
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state and ending at a target state whilst satisfying certain constraints. In the
context of robotics, an object with several degrees of freedom is given and the
idea is to find a sequence of actions that will enable the object to move from
one place to another in a complex environment. Problems requiring planning
in this sense are vast, ranging from deciding on the best route through a maze
to solving the famous Alpha 1.0 entanglement problem2 [1].

The first challenge in any of these problems is finding a feasible path. Often
this is very difficult due to the intrinsic dimensionality of the problem. Another
consideration, often addressed in Control Theory, is optimality.

This Report reviews two of the currently most successful methods for find-
ing feasible paths in high dimensional spaces, Artificial Potential Fields and
Rapidly Exploring Random Trees. It also introduces a few variants of the
algorithms based on the two above and considers some simple computational
path optimization techniques.

Section 2 introduces the main ideas in robot path planning ; in particular
Section 2.4 constitutes a background literature review in which various exist-
ing path planning algorithms are introduced. In Section 3 the two methods
that form the focus of this paper are reviewed. The Artificial Potential Fields
approach is discussed in Section 3.1, and several variants are described. Sec-
tion 3.2 outlines Rapidly Exploring Random Trees (RRT) and sketches a few
of their basic properties. In Section 4 the limiting case of ‘RRT in a Large
Disc’, which was proposed by LaValle and Kuffner in [2], is considered in a
theoretical setting, and some results are derived. Sections 5.1 to 5.2 describe
some simple variants on the RRT and the Artificial Potential Fields method-
s, mostly based on the theoretical analysis in Section 4. Section 5.3 outlines
a simple optimization procedure once feasible paths have been obtained and
Section 6 provides test results for some of the algorithms presented.

2 Preliminaries

2.1 The Space of a Robot

There are two spaces usually associated with a robot - the workspace and the
configuration space.

2This problem, which involves taking apart two wires twisted in a particular fashion, is
seen as a benchmark test for planning algorithms.
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The workspace,W , also referred to as the world in [1], is the actual physical
space in which the robot physically exists. If a point on the robot is fixed, the
possible positions of that point (assuming all obstacles are removed) describe
positions in the workspace [3]. For instance, a flat robot moving in a plane
has a two-dimensional (2D) workspace that can be best parametrized with
Cartesian coordinates. Likewise a flat robot moving on the surface of a sphere
also has a 2D workspace, best characterized with spherical polar coordinates. A
spacecraft moving in an asteroid field has a three-dimensional (3D) workspace.

Not all of the workspace can be traversed, due to the presence of obstacles.
Each obstacle is also considered as a collection of points in the workspace.
Let Wobs be the union of all the obstacles in the workspace, and let Wfree =
W\Wobs, which can be referred to as the free part of the workspace.

The workspace does not capture all the information required to control
the robot. To capture this information the robot’s configuration (position and
orientation of all components) as well must be considered. For instance the
configuration of a robotic arm can be completely described by the joint angles.
Any rigid 3D object in 3D space has a six-dimensional (6D) configuration
given by its 3D position and its orientation in terms of pitch, yaw and roll.
The Configuration Space, C, of the robot is defined to be the space of all
configurations of the robot. In most planning problems the configuration space
turns out to be a manifold. In the case of the rigid 2D body in 2D space, for
instance, the configuration space is given by position (R2) and orientation (each
angle can be associated with a point on the unit circle, S1), and C = R

2 ×S1,
which is a smooth 3D manifold. Finally, Cfree ⊆ C is defined to be the set of
those configurations for which the robot is entirely contained within Wfree.

In applications attention is restricted to some bounded space (it obviously
would take infinite time to traverse an unbounded space). Thus W and C are
bounded, and thus C is a bounded manifold.

If the robot is constrained so that it is rigid and can only translate (without
rotating) in space, then the position of any (consistently chosen) fixed point
on the robot fully determines the entire configuration of the robot. Hence
in this case (disregarding obstacles) W = C. By appropriately re-scaling the
obstacles3 the problem can be reduced to planning the path of a single point
through the new map. Thus the case W = C is referred to as Point Planning.

In general, however, C is far more complicated than W . A robot arm, for

3The mathematical morphology operation of dilation to the obstacles with the robot as
a structuring element is applied.
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instance, has several joint angles and a robot manipulating complex objects
(like ropes) in the environment must deal with a very high dimensional config-
uration space. Thus in general the planning problem is not a simple problem
to solve, and the solution is seldom visible at the outset. Planning algorithms,
therefore, address both situations that humans find trivial and situations that
humans find challenging.

2.2 Kinematics

Let A be a robot with a configuration space C and a workspace W . Clearly
each configuration in C maps A to some subset of the workspace. Thus if a
point x ∈ A is fixed, any configuration in C sends this point to some point
in W , namely the position of x when the robot is in the given configuration.
Hence the following map is described:

X : A× C → W ,

which is referred to in the literature [3] as the forward kinematic map.
The forward kinematic map fully describes the relationship between the

configuration space and the workspace.

2.3 Path Planning: Formally

Given an initial configuration qinit ∈ Cfree and a set of goal configurations
Qgoal ⊂ Cfree, path planning involves determining a continuous path f : [0, 1]→
Cfree subject to certain constraints.

Often the robot must move according to some dynamics, and its motion is
a function of the controls applied. This can be written as

q̇ = f(q, u)

where q ∈ Cfree and u is the control chosen to act on the robot. This is often
referred to as the state transition equation [1].

In the simplest case, the sequence of positions of the robot are essential.
This is equivalent to dynamic cases where the robot can be controlled com-
pletely and is referred to as Holonomic Control. In this instance, the set of
controls is defined as U = {u : ||u|| ≤ c} with c some constant and f is simply
given by q̇ = u. Hence all velocities up to a maximum bound are attainable at
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any point. This ensures that all physical paths are possible. Often for Holo-
nomic control the velocities are not important. In this case the state transition
equation are not even used, but instead plan a path in space directly. This
paper will be primarily concerned with Holonomic Planning.

Nonholonomic planning refers to instances where the available controls are
not enough to fully characterize the motion of the robot. For instance driving
a car is a Nonholonomic model because while the car has 3 degrees of freedom
(it can rotate and translate in the plane), 2 degrees of freedom (specifying the
angle of the wheels and the forward thrust) are controllable when driving the
car.

2.4 Overview of Methods

In this Report two methods, the Potential Fields and Rapidly-Exploring Ran-
dom Tree approaches, will be discussed in detail in Section 3. Here the context
in which these methods appear is presented. Further to that, the most common
methods in the literature will also be discussed.

We first consider methods specialized towards 2D point planning: planning
a path for a point particle in a 2D workspace. As mentioned earlier, any path
planning problem with a non-rotating rigid body in 2D can be reduced to a
point planning problem. Finding a feasible path in a 2D region with obstacles
is a very well studied problem, and several methods have been developed. The
simplest methods, which are very easy to implement in real-time for robots
navigating a floor with obstacles, are the so-called bug algorithms [1]. All
these essentially work on the principle of starting at xinit and moving in a
straight line towards xgoal. Whenever an obstacle is encountered the robot
chooses a direction and moves around the obstacle (keeping it at a constant
distance) until it returns to the original line on which it was traveling, on the
other side of the object. This continues until the goal is reached. It can be
proven that, with polygonal obstacles, this method will always reach the goal.

An advantage of the bug algorithms is that they are simple to implement
in a real robot with no maps of the environment except the location of the
target. They are also guaranteed to produce a path if one exists in a 2D point
planning situation.

The main disadvantage of the bug algorithms is that they cannot readily
be extended to higher dimensions or to more complex configuration spaces.
This limits their applicability to the rather trivial case of 2D point planning.
Another (less serious) disadvantage of the bug algorithms is that the paths
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Figure 1: An example of the Bug2 variant of the bug algorithm.

they return are not optimal (although there are improvements that make the
paths shorter).

If the configuration space is of relatively low dimension (≤ 3 in most cases
[4]) then Dynamic Programming is a feasible method for path planning. A
suitable variation of Dynamic Programming for the path planning problem
is presented in [4]. Given a set of local controls U , the idea is to obtain a
discretization of the space and then to iterate through this grid repeatedly
updating the optimal cost-to-go, l(xk, uk), and best next control at each point,
L∗k(xk+1). This is done in the classical Dynamic Programming sense [4]:

L∗k(xk) = minuk
{l(xk, uk) + L∗k(xk+1)}.

Dynamic Programming has the advantage of computing optimal paths in
quite a general sense (optimizing a functional). The disadvantage is that it
becomes very expensive as the dimension of the problem increases.

Relatively new approaches to the path-planning problem are the so-called
topological methods. These methods are derived from analytical results on vari-
ous classes of configuration spaces that give information about the complexity
of the path planning problem on these spaces and algorithms for finding s-
mooth paths. The construction of smooth paths in an arbitrary configuration
space is a nontrivial task. Indeed, simple methods available in Euclidean space
are not available in, for instance, the rotation group. In [5] Topological Plan-
ning methods for building such smooth paths via interpolation are introduced.
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Further [6] considers how very high dimensions can affect normally simple path
finding problems, and assigns a value - the topological complexity - to the real
projective spaces, which determines the difficulty of the planning problem in
these spaces.

Most of this work cannot (currently) deal directly with obstacles and dis-
continuities and it is therefore mostly insufficient to build planners entirely
based on these ideas at present, except in cases where Cfree is a well-behaved
and well-studied topological space. On the other hand these methods provide
a good way of dealing with dynamics. In some instances it may be viable
to combine topological methods with more general planners such as RRT or
Probabilistic Road Maps discussed below. They may be particularly useful for
the local connect steps that are sometimes required in these algorithms.

The Probabilistic Road Maps (PRM) method for path planning is a highly
popular and very general method for finding paths in C. The basic strategy
is to generate many random configurations in Cfree and try to connect nearby
configurations (using some local planner). The distance between configurations
is determined by some suitable metric. (These are not, in general, easy to find.
See Section 3.2 for a discussion in the context of RRTs). The configurations
and the connections between them form a graph in C, which can be searched
using some graph-searching algorithm4.

The main objection to PRM is that it is not always easy to connect t-
wo random nearby states. Indeed in some instances (such as those involving
high dimensional kinodynamic planning) this can be almost as difficult as the
original planning problem [4].

In [7] the use of Adaptive Random Walks for single-shot path planning was
proposed. The idea is to start at a point and repeatedly generate a neighbour
based on an increment given with zero mean and a covariance that is adapted
as the walk proceeds. The conditions for convergence are provided in [7]. An
interesting property of this method is that it adapts to the topology of the
environment - if the walk is moving through a narrow corridor, the covariance
matrix will eventually narrow out to choose points in the corridor with more
frequency than those outside. This makes it more efficient than a blind random
walk. An advantage of this method over more structured methods like PRM
or RRT is that it only requires constant time computation on each step (as
opposed to linear or logarithmic time). This makes it feasible even though it
needs to generate many more points than RRT, for instance, to find a path.

4The common choice here being the A∗ algorithm.
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It would be interesting to combine this method with some of the major
planners in some way. In particular, it is considered as a local bias routine for
RRT in Section 5.1

3 The Potential Fields and RRT Approaches

This section introduces the Potential Fields and RRT approaches to path
planning. Each is introduced and reviewed in some detail, and some broad
suggestions are made towards possible extensions.

3.1 The Potential Field Approach

Formally, the potential field method involves coming up with some artificial
potential function V on the configuration space C such that V has a minimum
at the goal configuration (or on the set of goal configurations)5. This potential
function generates an artificial force, F = −∇V , that acts on the configuration
of the robot at any point. The robot is moved as though it was really being
acted upon by this force. Because the goal is the minimum of the artificial
potential, the resulting force causes the robot to be attracted to the goal (like
a marble rolling down hill towards the bottom). Ideally, the goal would be the
only minimum of V , and this is easy to achieve in cases where there are no
obstacles. For instance, one might set V to be a paraboloid, a cone or indeed a
hyperboloid function (as considered more recently in [8]) centered at the goal.
In these cases one has a lot of control over what kinds of paths are developed,
and V can be tweaked in order to come up with different shapes and classes
of paths.

With the introduction of obstacles several issues arise. In order to prevent
the robot from traveling through the obstacles, the obstacles must be assigned
repulsive forces in the potential function. This is usually accomplished by set-
ting V to be large on the obstacles. The problem is that this usually adds
local minima to the potential function, since it must have continuous deriva-
tives. These local minima are traps for the robot. Several solutions have been
proposed for this ‘local minima’ problem, and two of them will be considered
shortly.

Note that mostly the use of numerical methods will be necessary in this
method because ∇V needs to be computed to move the robot. Sometimes, for

5Usually V is zero at the goal.
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specialist applications, it is possible to come up with an analytic expression
for V beforehand and hence avoid numerical differentiation and the associated
discretization of the space, but in most applications this is unreasonable (in-
deed V often depends on the layout of the space, including the obstacles and
hence cannot be computed beforehand).

Since this method often demands the discretization of the space, one is
concerened about the large number of dimensions in the configuration space.
However, the fact that the robot is actually embedded in a lower dimension-
al workspace is advantageous. An approach that first appeared in [3] is to
discretize the workspace and use this discretization in the computation of a
C-space potential function. The C-space does not then need explicit discretiza-
tion. This method is described below.

3.1.1 Numerical Potential Fields

The algorithm considered in [3] consists of four steps:

1. Discretize the Workspace, W .

2. Compute W Potentials.

3. Decide step sizes in C-space.

4. Traverse the C-space.

The first point involves the selection of a discretization parameter or step
size, δ. In [3] several values of δ are chosen, creating a pyramid of discretized
bitmaps of the W-space.

For a given discretization, the W potentials are computed. This can be
done in many ways. The first method considered in [3] is to compute the
W-potential of a point by executing a breadth first search (BFS) through
Wfree, started at the goal. The potential of a node is set when it is visited to
be one more than the potential of its parent in the BFS tree. This method
was implemented in MATLAB for a simple environment, and the resulting
potential function can be visualized in Figure 2.

In [3] another algorithm that keeps objects a good distance away from
obstacles is also considered. This method first builds the potential function on
the skeleton (as in Mathematical Morphology) of the W-space. The potential
function is then computed in the remainder of the space.
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Figure 2: An illustration of the BFS construction of a discrete potential field in
a simple space. The field is illustrated (left) and the original map is endowed
with field contours (right).

The main contribution of [3] was the computation of a C-potential when
given a W-potential. The advantages of this approach are clear - the C-space
does not need to be explicitly discretized at any time. Instead the value of the
C-potential at a point is computed by using the values of the W-potentials.
This is done by making use of the forward kinematic map, f . Some points on
the robot are preset. These are generally chosen as extreme points or other
points that will capture the shape of the robot. These points are called control
points, {c1, c2, . . . , ck} ⊂ A. Now in the configuration qinit, the initial positions
of all the control points are obtained as {f(c1, qinit), f(c2, qinit), . . . , f(ck, qinit)}.
The positions of the control points at qgoal can be found analogously.

Thus one has a system of planning problems in the W-space. For each
control point there is an initial position and a goal position. In particular,
the goal position of each control point can be used to build a potential on the
W-space. For control point ci, Vi denotes its associated W-potential.

A potential function V̄ on C is then given by

V̄ (q) = G(V1(f(c1, q)), V2(f(c2, q)), ..., Vk(f(ck, q)))

where G is referred to as the arbitration function. It turns out that the choice
of G is crucial because mostly it introduces spurious minima.

Using V as defined above it is not necessary to discretize the C-space ex-
plicitly. However, as the planner will need to compute ∇V numerically, a mesh
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granularity in C-space needs to be specified. This is the ’increment distance’,
∆, used for computing ∇V . In [3], this value is computed for each correspond-
ing value of δ, creating a C-space pyramid. The problem is then attempted
first at the lowest granularity and the granularity is increased until a solution
is found.

When choosing the granularity of the C − space two considerations are
important: the mesh must not be too fine relative to the W mesh since then
the computation of V̄ will be erroneous. On the other hand, the mesh must
not be too coarse relative to the W mesh since that would mean unnecessary
work has been expended on the W mesh and not all of the information will
be captured in the discretization on C. In [3] the criterion for selecting the
C-space step size, ∆, given theW-space step size, δ, is to impose the condition
that no point in A moves by more than ǫδ when the configuration changes by
∆. Here ǫ is a small constant (in [3] ǫ = 2 is suggested).

This can be enforced as follows: If we take q̄i − qi = ∆i then, assuming
that x are the variables in workspace, by Taylor expansion one obtains

x̄j = xj(p, q1, q2, . . . , qi +∆i, . . . , qn);

= xj(p, q1, q2, . . . , qi, . . . , qn) + ∆i

∂xj

∂qi
+O(∆2

i );

≈ xj(p, q) + ∆i

∂xj

∂qi
;

where q = (q1, q2, . . . , qn) ∈ C. In this case the convention of Einstein’s sum-
mation is applied.

Hence

∆i

∂xj

∂qi
+O(∆2

i ) = x̄j − xj(p, q) ≤ ǫδ, ∀q ∈ C, ∀p ∈ A, ∀j ∈ {1, . . . , d}

where d is the dimension of W .

Because this inequality must be satisfied over all q ∈ C, p ∈ A, j ∈ {1, . . . , d},
the following holds:

∆i ≤ inf
{q∈C, p∈A, j∈{1,...,d}}

(

ǫδ
∂xj

∂qi

)

=
ǫδ

sup
{q∈C, p∈A, j∈{1,...,d}}

(

∂xj

∂qi

) .



60 D. Fanucchi, J. Claassens, M.K. Banda, S. Utete

It can be observed that the last step follows from the result

inf

(

1

f

)

=
1

sup f

and the fact that ǫδ does not depend on any of the variables in question.

3.1.2 Probabilistic Escape

Regardless of the choice of the arbitration function, there will always be situa-
tions where the C-space potential is riddled with local minima. The algorithm
can check for a local minimum by testing the numerical gradient against a
tolerance. The solution first proposed in [3] for the problem of local mini-
ma was that of probabilistic escape. This has turned out to be a powerful
method, leading to the class of algorithms known as Randomized Potential
Fields planners. Once it has been determined that the algorithm is in a local
minimum, random escape directions are attempted (in the most general sense
a random control is chosen and actuated for a random length of time). After
each random attempt to escape, the algorithm again moves down the potential
field. If it arrives back at the same minimum it tries to escape again but with
a larger displacement than before until it has escaped. Alternatively it can
make several random steps from the minimum (constituting a random walk).
This method can still cause the system to become stuck in a local minimum,
but given enough time, it will always escape the minimum eventually. There
have been many proposals as to which random schemes to use for the random
escape. In [9] a proposal was made to use RRTs for this task and the use
of Adaptive Random Walks was proposed in [7]. To the best of the authors’
knowledge, neither has yet been tried in this context. Several schemes have
been developed in the optimization literature for escaping local minima, and
many of them could be applied to the problem of escaping potential minima.
It might also be of interest to apply clustering or simplex based methods to
this situation.

3.1.3 Harmonic Functions

A major problem with the potential fields method is the existence of many
local minima. To avoid local minima entirely one can impose conditions on V .
In particular, an approach that has gained popularity is to eliminate minima
altogether.
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A harmonic function on an open region Ω is a function, φ(x1, ..., xn), satis-
fying Laplace’s Equation:

n
∑

i=1

∂2φ

∂x2
i

= 0.

It is a classical result that if Ω is multiply connected, then φ will attain its
maximum and minimum values exclusively on the boundary, ∂Ω [10].

This eliminates local minima within the region Ω. Note that this means
the goal point will have to be removed from Ω in order to make it a minimum
of V . The usual procedure is to add a point potential well at the goal such
that V (x)→ −∞ as x approaches the goal.

An example of a harmonic function which might be used for the goal is [11]

g(x) = − log ||x− xgoal||.

Similarly, one can define a repulsive potential by the negative of the above
function. Since Laplace’s equation is linear, any linear combination of the
above potentials will also be harmonic. This means harmonic functions can
be built by superposition of the equations of the above form, building an
attraction at the goal and repulsion around the obstacles.

However, it is argued in [11] that there are always situations in which
superposition style arguments lead to collisions with obstacles, because they
only become infinite at individual points.

A method put forward in [11] to avoid these problems is simply to solve
Laplace’s equation numerically in the given region. From the Taylor expansion
with step size h, ui,j is a discretization (in two dimensions) of φ as shown below:

h2∂
2φ(xi, yj)

∂x2
≈ ui−1,j + ui,j−1 + ui+1,j + ui,j+1 − 4ui,j.

The resulting linear systems can be large (particularly in higher dimensional
space). Thus an iterative solver for linear systems such as the Gauss-Seidel
iterations can be applied [11]. This was implemented in MATLAB for some 2D
environments. Figure 3 illustrates the potential field generated after a small
number of iterations.

The nature of this discretization is that ultimately many flat regions form
in space (due to numerical round-off errors). In [11] a way to alleviate this by
bit-shifting whenever such flat regions are observed was specified.

The establishment of a grid in high dimensions can be an expensive oper-
ation. However, the philosophy in [3] can be applied in this instance to build
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Figure 3: A simple discretized computation of an harmonic function.

the potential function in the W-space. Control points {c1, c2, . . . , ck} ⊂ A are
chosen together with goals {g1, g2, . . . , gk} ⊂ W . The Harmonic Potentials
for each control point are built, which would individually drive them to their
respective goals.

An arbitration function that causes the resulting potential function on the
C-space to be harmonic needs to be chosen. In terms of the arbitration func-
tion, the new potential V̄ can be considered as a change of variables:

V̄ (q) = G(V1(x
1
1(q), x

1
2(q), . . . , x

1
m(q)), . . . , Vk(x

k
1(q), x

k
2(q), . . . , x

k
m(q))).

Thus

∂V̄

∂qs
=
∑

i,j

∂G
∂Vi

∂Vi

∂xi
j

∂xi
j

∂qs
.

Hence
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∂2V̄

∂q2s
=
∑

i,j

∂

∂qs

(

∂G
∂Vi

∂Vi

∂xi
j

∂xi
j

∂qs

)

=
∑

i,j

(

∂2G
∂V 2

i

∂Vi

∂xi
j

∂xi
j

∂qs
+

∂G
∂Vi

∂2Vi

∂(xi
j)

2

∂xi
j

∂qs
+

∂G
∂Vi

∂Vi

∂xi
j

∂2xi
j

∂qs2

)

yielding

∇2V̄ =
∑

i,j,s

(

∂2G
∂V 2

i

∂Vi

∂xi
j

∂xi
j

∂qs
+

∂G
∂Vi

∂2Vi

∂(xi
j)

2

∂xi
j

∂qs
+

∂G
∂Vi

∂Vi

∂xi
j

∂2xi
j

∂qs2

)

.

This gives us a form for G that must be investigated.
As an experiment the Harmonic Function approach in the 2D workspace

of a bar in a simple environment was implemented. The arbitration functions
suggested in [3] (supremum minus infimum) to create a potential function on
Cfree were applied. Provided that enough iterations of the numerical scheme for
Laplace’s Equation were performed, the bar never gets stuck in local minima
in any of the experiments.

3.1.4 Other variants

Many of the Potential Field methods in the literature are inspired by physical
situations. Some make use of the superposition of harmonic functions from
physics while others use Simulated Annealing type strategies to avoid getting
trapped in local minima in arbitrary potential functions. A particularly inter-
esting example of a potential field method for single body robots is to be found
in [12]. This introduces a model which simulates steady state heat transfer with
variable conductivity to find optimal paths by minimizing thermal resistance.
A powerful consequence of this method is that it allows a separate search of
the translation and rotation components of the object, significantly reducing
the problem dimension.

3.2 Rapidly Exploring Random Trees

Since many path planning problems have been shown to be PSPACE-hard [1],
it is not surprising that a moderately large collection of probabilistic tech-
niques to solve path planning problems exist. The most prevalent examples
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of such techniques are the Probabilistic Roadmap Methods (Briefly discussed
in Section 2.4), Randomized Potential Fields (discussed in Section 3.1.2) and
Rapidly Exploring Random Trees (RRTs). As the name implies, an RRT plan-
ner solves the planning problem by building a tree (a connected, acyclic graph)
in the free configuration space of a robot. In the standard RRT, this tree is
rooted at qinit, the initial configuration, and is grown until some node falls
within Qgoal ⊂ C, the goal region.

The key feature of RRT is the manner in which new nodes are added to
the tree at each step [9]. This is performed as follows: a random point is
generated in Cfree, and the node closest to this random point in the existing
RRT is selected. Then out of the possible controls available a feasible one is
chosen (usually also one that minimizes distance to the random point) and
the node is extended by integrating the state transition equation for a small
fixed time δ (but never so long as to go beyond the chosen random point).
Thus a new node is added to the tree, and the node from which it originated
is considered its parent. The chosen control is also stored and associated with
the edge between the parent and the new node.

Clearly once some node falls within the goal region, one can backtrack up
the tree to the root, generating the path to the goal in reverse. The controls
together specify a sequence of controls that will drive the system to a state
in the goal region. Figure 4 presents an example of RRTs applied to Point
Planning with straight line control.

RRTs enjoy the following properties:

1. An RRT is a minimal connected structure in the search space [9]. This
means that under reasonable assumptions the branches of an RRT will
never cross (simply because they were selected to grow outwards from
the nearest neighbour).

2. The space does not need to be discretized when applying RRT. This is
a major advantage as there is no need for an expensive precomputation
step.

3. The RRT algorithm is very simple to implement (indeed, of the methods
reviewed here it is undoubtedly the simplest to implement in MATLAB).

4. A single RRT can be grown from qinit to search for many different goal
configurations.
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Figure 4: RRT applied to a point planning problem in a 2D space.

5. RRT is probabilistically complete [3]. This means that given enough
time the RRT algorithm will always find the goal.

6. An RRT is biased towards free space. This is the characteristic that sets
RRTs apart from other methods and makes them very well suited to high
dimensional path planning problems. A mathematical realisation of this
fact is provided in Subsection 4.

RRTmethods cannot, however, be viewed as a panacea to the path planning
problem. While they are a powerful method for quickly finding feasible paths
in high dimensional spaces, they are not particularly suited, for instance, to
the obtaining of optimal paths (although they have been considered for this -
see [13]). Moreover, RRT methods generate non-smooth paths (although some
classical methods of path smoothing can be employed on the path after it has
been generated). If the planner has to be reused to drive several different
starting points to the same goal point, then one would have to grow new trees
from each different starting point. One way of avoiding this is by growing a
single tree with reverse dynamics from the goal point until it reaches the given
starting points.

Another drawback of RRT is the cost of adding a vertex to the tree. A naive
nearest neighbour query takes O(n) time where n is the number of vertices in
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the tree. This situation can be improved however (see [14]) in order to make
approximate nearest neighbour queries near O(log n) time.

3.2.1 The Voronoi Bias

Given a set, S, of points in space, one can build a structure called the Voronoi
diagram associated with S. The Voronoi cell of some point s ∈ S is defined
as the set of points in space that are closer to s than to any other element of
S. The union of Voronoi cells for all the elements of S partitions space into
the so called Voronoi diagram of S. These diagrams are useful in constructing
meshes for studying various problems or for understanding the distribution of
points in space. In [9] Voronoi diagrams were used to illustrate a desirable
property of RRTs, known as Voronoi Bias.

Voronoi Bias refers to the inherent bias of the RRT algorithm towards ex-
ploring free space. To understand the meaning of the phrase consider an RRT
growing in a bounded manifold Cfree with a metric, ρ. The nodes, {r1, . . . , rn}
in the RRT are points in Cfree. Each of these points generates a Voronoi Cell,
V(ri) = {w ∈ Cfree|ρ(ri, w) ≤ ρ(rj, w), ∀j 6= i}. The cells partition Cfree into
the Voronoi Diagram {V(ri)}ni=1. Each cell has a Lebesgue measure, µ(V(ri)).
Now given a random point, x ∈ Cfree, the probability that x ∈ V(ri) is given
by

P[x ∈ V(ri)] =
µ(V(ri))
µ(Cfree)

.

Clearly, x has a higher probability of being in one of the larger Voronoi cells.
This in turn would cause the point in r generating that cell to be extended,
thus splitting the cell. Hence in a sense the RRT algorithm splits Voronoi cells
as quickly as possible.

Figure 5 shows a simulation of an RRT in MATLAB and its associated
Voronoi Diagram. Notice that there are no unusually large cells in the dia-
gram. This illustrates the result that the distribution of vertices in the RRT
approaches a uniform distribution.

3.2.2 Other Extensions

There are many extensions to the basic RRT algorithm in the literature, some
of these are briefly outlined below.

In [15] a de-randomized version of RRT is derived by selecting k random
points at each step instead of just one. Efficient nearest neighbour queries in
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Figure 5: The Voronoi Regions associated with the nodes of an RRT in the
plane.

the typical manifolds found as configuration spaces in path planning problems
are developed in [14], enabling a logarithmic time nearest neighbour step in
the RRT algorithm and hence faster convergence. A technique for biasing
the random distribution for finding nodes in the RRT that produces more
optimal paths is considered in [13]. In [1] a method (bidirectional RRT) in
which two trees are grown is described, one from the source and the other
from the target, with one tree growing towards a random point on a given
iteration and the other growing towards the first tree. The roles of the trees are
interchanged at each step. Experiments have shown that this planner produces
better results for target query planning than standard RRT [1]. In [16] a more
greedy algorithm is developed that does not limit the step length like in the
standard RRT. This method turns out to be successful for Holonomic planning.

4 Theoretical Results on RRT in a large disc

In [2] the limiting case of Holonomic RRT path planning with C = Cfree a
large n dimensional ball was considered. In particular, it was of interest to
determine the behaviour of the RRT as the radius of the ball tends to infinity.
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It was observed experimentally in [2] that in this limiting case, the RRT tends
to grow outwards in n+1 branches, and that these branches tend to touch the
vertices of a regular (n + 1)-simplex. What follows constitutes a theoretical
framework in which to consider this behaviour.

4.1 The Two-Dimensional Case

Figure 6: An RRT in a large disc: δ = 0.00001, λ = 1000.

This section is dedicated to the 2D case of the above problem, where the
control set U(x) is just the set of straight lines of length δ falling entirely
in Cfree and emanating from x. A model will be derived that captures the
behaviour of the RRT in the limiting case as the radius of the disc approaches
infinity.

Mathematical clarifications for the experimental results obtained in [2] will
be sought. In particular, the 2D RRT in a very large disc will be shown to
tend to grow in three main ‘spokes’ outward, and that after a large number of
iterations, the three extreme points can be connected to form an equilateral
triangle.
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Definition 1. Let Rλ(m) be an RRT of m vertices grown in a disc of radius
λ. Let r be the root node of the RRT and D = {x ∈ R

2 : ||x − r|| < λ} also
referred as the domain of the RRT.

Figure 7: Adding a new vertex, where the parent is xp and the child xc.

Lemma 1. Given vertices xp, xc ∈ Rλ(m) (not necessarily adjacent), and giv-
en an xn from the uniform distribution. Let θ be the angle formed between
xc and xn at xp (See Figure 7). Then in the limit as λ → ∞ if θ < π

2
, the

probability that the RRT algorithm will not extend xp towards xn approaches 1.

Proof. The cosine rule is applied to the triangle formed by the displacements
(See Figure 7) to obtain:

||xc − xn||2 = ||xp − xn||2 + δ2 − 2δ||xp − xn|| cos(θ) . (1)

From this the difference of the squares of the distances can be computed
after first rearranging the terms. The sign of this value determines which one
is smaller, and hence which one the algorithm would prefer:

sign(||xc − xn||2 − ||xp − xn||2) = sign(δ(δ − 2||xp − xn|| cos(θ)));
= sign(δ − 2||xp − xn|| cos(θ));
= sign(δ − 2N cos(θ), )

=: s(θ)
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where N gives the distance from xp to the new point. Notice that if cos(θ) < 0
then s(θ) = 1.

Now consider the case where cos(θ) > 0. Let 0 < K < λ− ||xp − r||, then
the circle of radius K and centre xp is contained in D. The Lebesgue measure
of this circle is just its area: πK2, and the probability that a point from the

uniform distribution on D falls in this circle is thus given by
πK2

πλ2
=

K2

λ2
. Now

chooseK =
δ

2 cos(θ)
. ThenK > 0 since cos(θ) > 0, and for sufficiently large λ,

K < λ− ||xp− r||. Hence, N < K with probability δ2

4λ2 cos2(θ)
. This approaches

zero as λ→∞. Clearly, then, as λ→∞, P[N ≥ K]→ 1. Hence

lim
λ→∞

s(θ) =

{

1 if cos(θ) < 0;

−1 if cos(θ) > 0.
(2)

At all times, when |θ| > π
2
, the algorithm will not extend xc. Further in

the limiting case as λ→∞, when |θ| < π
2
, xp will not be extended.

Note that setting λ =∞ does not make sense in practice. The proof above
provides a means, however, of determining the probability that the algorithm
will differ from the limiting case. Increasing λ will decrease this probability.

As an example of how Lemma 1 may be applied, consider the case of a tree
with two nodes where xp is the root node and xc is the only other node in the
tree. Then the previous lemma gives the conditions for the behaviour of the
RRT on the next step as:

1. Extend xp towards xn if θ > π
2
;

2. Extend xc towards xn if θ < π
2
;

with probability approaching 1 as λ→∞.
Interestingly, for any given finite λ there will be an interval of values for

θ for which this decision mechanism breaks down. Given 0 < γ < 1, there
exists ǫ such that the probability of failing is greater than γ if θ ∈ (π

2
− ǫ, π

2
).

Increasing λ will decrease ǫ. It is clear from the proof of Lemma 1 that a good
choice of λ should satisfy 2λ cos(π

2
− ǫ)≫ δ.

Lemma 2. In the limit as λ → ∞, no vertex in Rλ(m) has degree greater
than 3.
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Proof. Consider a vertex, c, of the RRT. Assume it has four neighbours,
{v1, v2, v3, v4} and that they are taken in anti-clockwise order, let the angles
between them be θ1, θ2, θ3 and θ4. Clearly

∑4
i=1 θi = 2π. Now xc must have

been extended towards each one of the neighbours in turn, and in particular
for each neighbour added, xc must have been preferred by the algorithm over
all the other neighbours. Thus the angle between any two of the neighbours of
xc must be greater than

π
2
by the previous Lemma. Hence

∑4
i=1 θi > 4π

2
= 2π,

contradiction.
Therefore, each vertex can have degree no greater than 3.

An obvious consequence of the above lemma is that in the limit as λ→∞,
no vertex in Rλ(m) except the root can have more than 2 children. Exper-
iments have shown that for modestly large values of λ, this result still holds
approximately.

It follows from Lemma 2 that if a node has degree three it will not be
involved in any further nearest neighbour tests in the limiting case. This gives
rise to the following definition.

Definition 2. We call a node v ∈ Rλ(m) an Active Node if its Voronoi
region is unbounded. Otherwise we call it an Inactive Node.

In the limiting case, the probability of selecting an Inactive Node for ex-
tension goes to zero as λ→∞ since its Voronoi region remains of a fixed area,
whilst the area of D approaches ∞. Hence the name Inactive Node.

This and Lemma 2 imply that in the limiting case any node of degree 3 in
the RRT has a finite Voronoi region.

Note that the RRT algorithm can run until a node that has degree 3 has
been constructed. It is a simple matter to verify that this will eventually occur.
For what remains, assuming there is some vertex of degree 3 in the RRT and,
without loss of generality, assuming this to be the root vertex, r (if it is some
other vertex, the tree can be rotated so that it is the root).

Definition 3. Let x ∈ D. The angle of x is defined to be the angle taken
between the positive x-axis rooted at r and the line connecting r and x. This
is denoted by arg(x).

In the limiting case, when x is uniformly selected, arg(x) actually gives
us the angle to x from any point in the RRT, as illustrated in the following
Lemma.
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Lemma 3. Let arg(C;A) denote the angle between the positive x-axis rooted
at A and the line connecting A and C. Then for C ∈ unif(D) and A,B any
points in D, arg(C;A)→ arg(C;B) as λ→∞.

Proof. The sine rule on △ABC (See Figure 8) will be applied.

Figure 8: The angle to C from A and B.

Construct point x′ to complete the parallelogram Axx′B. Let θ be the
angle from the x−axis at A to x and let β be the angle at A from the x−axis
to B. Let α be the angle ∠CBC ′, then by parallel lines ∠ACB = α.

Now applying the sine rule on △ABC:

sin(α)

AB
=
sin(θ − β)

BC
.

Also

sin(α) = sin(θ − β)
AB

BC
<

AB

BC
.

Now it can be shown by a similar argument to that used in the proof of
Lemma 1 that as λ → ∞, and for any K > 0, P[BC > K] → 1. Hence as
λ → ∞, and for any ǫ > 0, P[AB

BC
< ǫ] → 1. And so with full probability,

limλ→∞ sin(α) = 0, and since sin is continuous, sin(0) = 0 and α is acute,
then α→ 0 as λ→∞. Hence arg(C;A)→ arg(C;B) as λ→∞.

The next objective is to determine the criterion for finding the nearest
neighbour in the existing tree to a point x ∈ unif(D) as λ→∞. It turns out
that this result is only dependent on the angle of x.
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Theorem 1. Selection Criterion
Given x ∈ unif(D), and vertices {v1, v2, . . . , vn} in the RRT, with the root
node at the origin. In the limiting case as λ→∞, the nearest neighbour of x
is that vertex vi maximizing vj · x

||x||
, j = 1, 2, . . . , n.

Proof. Let x = (N cos(θ), N sin(θ)). and vj = (aj cos(αj), aj sin(αj)) for each
j. Then

x− vj = (N cos(θ)− aj cos(αj), N sin(θ)− aj sin(αj)).

Hence
||x− vj||2 = N2 + aj(aj − 2N cos(θ − αj))

and

||x− vi||2 − ||x− vj||2 = a2i − a2j + 2N(aj cos(θ − αj)− ai cos(θ − αi)).

Now by a similar argument to that used in the proof of Lemma 1, it can be
shown that in the limiting case λ → ∞, the last term in the above equation
dominates the result. Thus in the limiting case, vi will be closer to x than vj
only when

aj cos(θ − αj)− ai cos(θ − αi) < 0,

i.e. only when
aj cos(θ − αj) < ai cos(θ − αi).

So in the limiting case, vi will be the closest point to x in the set {v1, ..., vn}
if and only if ai cos(θ − αi) is maximized.

Now notice that this quantity can be reduced as follows:

ai cos(θ − αi) = ai cos(θ) cos(αi) + ai sin(θ) sin(αi);

= vi · (cos(θ), sin(θ));
= vi ·

x

||x|| .

This theorem stipulates how to code simulations of the limiting case di-
rectly (as opposed to just making λ large). Several simulations were run,
and the results were similar to those obtained when running simulations with
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Figure 9: An RRT with infinite disc simulation using Theorem 1 and its convex
hull.

the original RRT algorithm in a disc with δ ≪ λ. See Figures 6 and 9 for
comparison.

Theorem 1 shows that the choice of nearest neighbour in the limiting case
depends on the angle of x but not its magnitude. Indeed in the computation
x
||x||

was used, which belongs to the unit circle, S1. Thus the decision process

can be thought of as taking as input a point in x̂ ∈ S1 and returning the node
v in the tree maximizing x̂ · v. This leads to a construct which will be termed
the Connect Region Diagram.

Definition 4. Let R be the RRT being constructed by the method of Theorem
1. For each node v ∈ R let C(v) be the set of x̂ ∈ S1 that would be classified
nearest to v by the method of Theorem 1. The class {C(v)|v ∈ R} forms a
partition of S1 which is called the Connect Region Diagram.

Notice that this is similar to a Voronoi Diagram, except that S1 is parti-
tioned based on elements not in S1. Indeed in this case v /∈ C(v), in general.
Also take note that if v is an inactive node, then C(v) = ∅. In fact it is easy
to verify that C(v) = ∅ precisely when v is an inactive node.

Lemma 4. The locus of the projections of v onto all the points in S1 is a
circle passing through 0 and v, which is termed the projection circle of v. The
projection circle of v is denoted by Pc(v).
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Proof. Clearly the points 0 and v must be on this locus, corresponding to
angles equal to that of v and perpendicular to it. Further, for any other point,
the projection x2 completes a right angled triangle △ovx2, with right angle
at x2. Hence these are angles in a circle with ov as diameter, and centre v

2
.

Another way of seeing this is by using congruent triangles as in Figure 10 to
show that the distance to the projection from v

2
is always equal to ||v

2
||. So the

locus of these projections, Pc(v) = {proju(v)|u ∈ S1}, is a circle centered at v
2

with radius ||v
2
||.

Figure 10: The length of the line from v
2
to x2 is equal to ||v2 ||.

Lemma 5. For each v ∈ R, C(v) is connected.

Proof. (Sketch)

Clearly for any element, x̂ of S1, the quantity x̂ · v is the length of the line
segment starting at the origin, passing through x̂ and ending on Pc(v). Clearly
v that maximizes this quantity for a given x is sought. Recall that o is the root
node of the RRT, and it satisfies x̂ · o = 0, ∀ x̂ ∈ S1. Thus for any v 6= 0, v can
only be considered for maximizing x̂ · v if this quantity is positive - i.e. if the
line passing x̂ intersects Pc(v) on the same side of the origin that it intersects
x̂.

Now consider the figure formed by the union of the projection circles of
all the points in the RRT, taken together with their interiors. It is clear
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Figure 11: Boundary circles correspond to active nodes.

from construction that those circles with points on the boundary of this union
constitute the ‘active nodes’ (presented in red in Figure 11)

No new projection circle can intersect the boundary of the Figure more
than twice. Indeed, let Γ0 be any circle that intersects the Figure at least
two times. Since any two circles intersect at most twice and all the projection
circles already intersect at the origin, Γ0 must intersect at least two other
projection circles, say Γ1 and Γ2. Let the unique point of intersection (other
than the origin) with Γ1 be A and likewise let the unique point of intersection
with Γ2 be B. Then since 0 is contained within all circles, we must have that
the path on Γ0 from 0 to A is contained in Γ1, and likewise the path from 0 to
B is contained in Γ2 (See Figure 12). Hence the arc on Γ0 moving through A,
0 and B is completely contained in the figure. Likewise if at some point on the
opposite arc, Γ0 were to enter the figure, it would intersect with some circle
Γ3, and would not be able to escape that circle until returning to the origin -
a contradiction (because it must re-enter the figure at the other two circles).
Hence the outer arc is completely outside of the figure.

This shows that the set of points on the projection circle of v that is also on
the boundary of the figure is connected. It is easy to find a homeomorphism
(via straight lines through the origin) mapping this set to C(v). Hence since
connectedness is a topological property, C(v) is connected.
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Figure 12: Γ0, Γ1 and Γ2 .

Thus the Connect Region Diagram can be treated as a pie chart giving the
points on S1 nearest to each vertex in the RRT. For each active node, v, since
C(v) is connected it has a central angle. Denote this angle at the nth step by

Θn(v). Then the probability of choosing v on this step is Θn(v)
2π

.
An immediate observation is that if v becomes inactive at step n, then

Θm(v) = 0, ∀m ≥ n. Another relatively simple result is that Θm is non-
increasing for all m.

From the above argument it is clear that with a given active node, one
can associate with it a projection circle. Further each active projection circle
either intersects no other circles on the boundary of the figure, or two such
circles. The case with no intersections is degenerate, hence it is neglected.

Definition 5. Active neighbours of an active node, v, are defined to be the
two active nodes w1 and w2 corresponding to the two neighboring circles when
the projection circle diagrams are drawn.

After the algorithm has run for long enough, ||v|| ≫ δ. This means that
if v is extended by δ it is changed only very slightly relative to its original
position, and the only connect regions influenced are those of v, w1 and w2.
All of them are either left unchanged or decreased, whilst the region of the new
node will be slightly larger than what v was before. This can be visualized as
v exerting a force on its neighboring circles proportional to the size of C(v).
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An outline of how a proof of the main result might be obtained is now
provided. If for some node v, its active neighbours both have larger connect
regions than itself, then their connect regions will tend to grow, decreasing the
connect region of v still further. Thus in some sense the number of active nodes
must tend towards being minimal as the distance from the root gets larger.
But there cannot be less than three such active nodes, because then the origin
could not be completely covered, and there would always be a chance for a
new active node to grow there.

Further, given that there are three active nodes, the case in which they
have similar radii and are equally spaced apart is in some sense an equilibrium
state. In this state each active node attempts to grow into the active regions
of its neighbours with the same probability, and each growth step is roughly
the same size. This means that the radii and angles will be kept similar. If the
radii are vastly different at some step, but the connect regions have equal sizes,
then the system is not in equilibrium because even though each active node
has an equal chance of being extended, the resulting changes in the Connect
Region Diagram would be different. This is because a small circle causes more
change in connect regions when altered by a constant δ than does a large
circle, so the small circle will be inclined to grow into the connect region of its
neighbours. This in turn will cause its connect region to be increased, causing
it to be selected more often, and hence for its radius to increase. Conversely,
a large circle affects a smaller change in connect region diagram, so one would
expect the region to decrease over time until the radii are equal. In the case of
equal radii, geometric arguments should suffice to show that the angles must
also approach equality.

The last part of this article sketches a possible proof. The first step towards
a formal derivation will be to find precise description of how the connect regions
change when some node is extended by δ in a given direction. A technique
that might be successful here is to model the system in the complex plane.

4.2 Higher Dimensions

Results in 2D are obtained by first associating a random point in a large disc
with its angle alone. This is analogous to associating a random point in n
dimensions with a point on Sn−1. Theorem 1 has an analogous form in this
case: for a random point x ∈ Sn−1, choose the vertex vi that maximizes vi · x.
The behaviour in n dimensions as λ → ∞ can thus be easily simulated. The
definition of an active node as a node with an unbounded Voronoi region
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extends naturally to any metric space.
The Connect Region Diagram on R

n becomes a partition of Sn−1 and
C(v) = x ∈ Sn−1 s.t. x · v > x · w, ∀w ∈ R\{v}. An analysis of this
structure could possibly shed light on the analysis of higher dimensional cases.

5 Suggested Extensions to RRT

5.1 Locally Biased RRT

As illustrated by the RRT-in-a-disc model above, the standard RRT search tree
tends to grow outwards towards the boundary of the disc, biased towards free
space, without exploring the nearby space much. This behaviour is desirable
on the whole, but there are some circumstances where it would be inefficient:

• Consider an example where a point robot is situated in the centre of a
very large plane. The robot has to navigate to a goal location relatively
close by. The standard RRT algorithm would behave like the limiting
case and search outwards in a long, sparse structure. As such it would
have a poor chance of finding the goal.

• Consider as a second example the situation depicted in Figure 13. As ǫ
is made smaller, the standard RRT is less and less inclined to traverse
the corridor. With some local bias the chances of traversing the corridor
are increased, and once the tree has entered the corridor, the local bias is
likely to pull it through to the other side (particularly if using adaptive
random walks).

Thus there is some justification in biasing the distribution function in the
region to favour local points slightly over more distant points. (It is important
to keep this bias slight, as a large bias would cancel the Voronoi bias of the
RRT, which is one of its strongest features). This leads to a Locally Biased
RRT approach. There are several options as to how to implement local bias
in the RRT distribution:

• Choose points based on a normal distribution with centre at the root
node and with a very large standard deviation (on the order of the size
of the whole region). This solution is not ideal, however, as the bias is
statically associated with the root node, even when the remainder of the
tree has changed.
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Figure 13: A situation which causes bad performance in the standard RRT.

• Use a weighted sum of Gaussian distributions centred at each node of
the tree. This seems feasible in terms of introducing a local bias that is
not static, but it would be impractical from an implementation point of
view as the cost would increase with the size of the tree.

• Choose a uniform distribution with probability 1 − µ and a local dis-
tribution with probability µ where µ is a fixed number representing the
probability of performing local search at a given step. The expected
number of steps between performing local search is 1

µ
. The local distri-

bution is a Gaussian distribution centred at a randomly chosen vertex
of the RRT. This can be combined with goal-biased RRT by including
a separate, small probability ν ≪ 1, with µ + ν < 1 and let the dis-
tribution be a Gaussian distribution centred at xgoal with probability ν.
Let normal(Cfree, vrnd) denote a normal distribution on Cfree centred at
a random vertex of the RRT with prescribed variance. The choice of
distribution is then a function of the random variable X:

distX =











normal(Cfree, vrnd), if X ≤ µ;

normal(Cfree, xgoal), if µ < X ≤ µ+ ν;

unif(Cfree), otherwise.

This biasing scheme can be easily applied to Bi-RRT. In [17] and [18]
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a kind of local bias for RRT is introduced. The former by emulating a
local ‘flood fill’ behaviour and the latter by restricting the distribution
to the union of the dynamically visible regions surrounding each point.

• Apply a random walk planner [7] with an adaptive covariance matrix.
The covariance changes so that, for instance, while walking down a thin
horizontal corridor the chance of moving right or left increases, while the
chance of moving up or down decreases. This method could be incorpo-
rated into an RRT, by keeping a covariance matrix at each (active) node
and letting the local search be a single step of the Adaptive Random
Walk algorithm proposed in [7].

5.2 Modified Nearest Neighbour Search for Holonomic

RRT

The nearest neighbour search is a central part of the RRT algorithm. If per-
formed naively, it uses O(k) work on each step, where k is the size of the RRT.
Hence, when building an RRT of n vertices, the Nearest Neighbour algorithm
contributes O(n2) amount of work, which can be very large. This situation
cannot be improved much if the exact nearest neighbour of each point must be
found. There are approximate nearest neighbour schemes [14] that can do the
work in around O(log(k)) per step, and hence O(n log(n)) overall. However,
if some nodes could be removed from consideration on certain steps, then this
should benefit all methods.

The motivation for this algorithm comes primarily from the notion of active
node, which arose when dealing with the limiting case. It is easy to keep track of
active nodes in the tree, and when the neighbour for selection is sufficiently far
away from the remainder of the tree (which is especially true while the tree is
growing in a large space) all other nodes can be eliminated from consideration.

At each stage in the RRT algorithm, the following information can be made
cheaply available:

1. The centroid of the RRT. This can be tracked in linear time;

2. The Euclidean diameter of the RRT or an upper bound thereof;

3. An upper bound on the Euclidean radius of a circle containing the
Voronoi region of each inactive node.
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For instance, given the centroid of the first n vertices, x̂n, and a new vertex
rn+1, the new centroid can be written immediately as:

x̂n+1 =
nx̂n + rn+1

n+ 1
.

The Euclidean diameter can be estimated by the sum of the distances of the
two furthest vertices from the root (which can be kept track of as the algorithm
progresses).

For vertices with three neighbours, an upper bound on the Voronoi region
is given by the area of the Voronoi triangle formed between those three neigh-
bours and the vertex. This information can be stored with the vertex. If the
vertex gets a new neighbour it can be updated.

A list of vertices of degree less than 3 is also maintained (candidates for
active vertices).

The nearest neighbour procedure can thus be subjected to the following
improvements:

Let x be the random point generated.

1. If x is further from the root than the Euclidean diameter, only compare
x to the active nodes.

2. If x is further from the centroid than the Euclidean diameter, only com-
pare x to the active nodes.

An interesting modification to the algorithm would be to choose the active
node with the highest estimated Voronoi area in this case and extend it re-
gardless of whether it is actually closest to x. In this case, then, the selection is
in constant time. This latter case also looks a bit like a local biasing. It would
make interesting further research to investigate whether the method provides
improvements over standard RRT.

5.3 A new method for improving path optimality

Because RRT is a fast and randomized algorithm, there is perhaps some sense
in running it several times to generate paths with different topologies through a
space. If performed judiciously, these repeated runs can be utilized to produce
optimal looking paths.

Define the cost of a polygonal path as the sum of some functional over that
path (much as in the case of Dynamic Programming). Simulated Annealing can
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then be used to generate optimal paths as follows: The standard Metropolis
algorithm is used, with the neighbour function either permuting slightly one of
the elements in the path (with high probability) or planning an entirely new
path using a method like RRT (with low probability). After applying either
of these operations, a path smoothing algorithm is applied, which eliminates
unnecessary jumps in the path.

The Simulated Annealing Approach was tested in 2D discretized point plan-
ning environments using a randomized planner akin to a naive Probabilistic
Road Maps Method. Figure 14 illustrates some of the different paths con-
sidered by the Simulated Annealing method. Notice how the topologies are
different in some cases.

Figure 14: Different Paths available for selection by the Simulated Annealing
Method.

6 Further Experiments

Consider the problem of navigating a rectangle through a field of obstacles.
The problem is Holonomic, since we can completely control the rectangle’s
configuration at any step. The workspace in this instance is two dimensional
- some bounded region in R

2. Since the rectangle is free to translate to any
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position in the plane and rotate by any angle, its configuration space is a 3D
bounded subspace of R2 × S1. See Figure 15.

Figure 15: An example of a path planned for a 2D rectangle.

The following methods were employed to find a path for the rectangle.

1. Basic RRT;

2. RRT with local and goal bias;

3. The Numerical Potential Field method from [3];

4. A Numerical Potential Field method finding a harmonic function in the
W-space and extends it by the method of [3].

The forward kinematic function for the rectangle was computed, and KKT
optimization was used to find the necessary suprema in the method from [3]
to find the C-space granularity, ∆. The code was all written in MATLAB.
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6.1 Results and discussion

The Numerical Potential Field algorithm which was harmonic in the work-
space worked particularly well for this problem. On all initial orientations
attempted, the algorithm returned a path that was both smooth and avoided
obstacles.

The potential field planner following [3] could find the goal from some
locations and orientations, but was extremely poor at doing this from others.
In particular, if the rectangle was started in a half-rotated state it had trouble.

Both the standard RRT and the RRT with local bias found paths for the
robot. In terms of the number of iterations required the standard RRT out-
performed the locally biased RRT in a normal to slightly cluttered grid, but
the locally biased RRT seemed to flourish when the grid was either empty or
full.

It might be interesting to test these algorithms in more complex scenarios
by using, for instance, the Motion Strategy Library [19].

7 Conclusion

The first part of this paper provided a review of robot path planning and some
of the techniques available in the literature, with specific emphasis on Artificial
Potential Fields and RRT. A careful consideration of the former, particularly
the methods proposed in [3] and [11] led to the idea of creating W-space
harmonic potential functions, and the conditions under which these could be
extended to harmonic functions on the C-space. Some theoretical results on
the performance of RRT in the limiting, Holonomic case were also considered.
An algorithm for simulating the limiting case effectively was derived and a
basic framework was created in which further reasoning should be possible.

The theoretical analysis and literary review led naturally into the descrip-
tion of three methods. The first, motivated in part by the preceding theoret-
ical discussion, is the inclusion of a slight local bias into the RRT. The use
of the adaptive random walks of [7] as a local step was considered but not
implemented, and therefore is a candidate for future work. The second, moti-
vated by some heuristic arguments, was an adaptation of the nearest neighbour
selection scheme in RRT, leading to a Greedy RRT algorithm. Finally an op-
timization technique based on Simulated Annealing and relying on the ability
of planners like RRT to find feasible paths quickly was discussed. It remains
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to be investigated whether one of RRT or Adaptive Random Walk (or indeed
some optimization heuristic) might be suitable as escapes in Potential Fields
Methods, or whether the modified nearest neighbour method proposed for R-
RT algorithms in this paper is feasible in practice. The harmonic workspace
potential method has proven itself a fierce contender in the case of the toy
example of moving a rectangle through an obstacle field, but it would need to
be tested in more complex environments.
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